Foamed ceramic with embossment effect and preparation method thereof

文档序号:1608446 发布日期:2020-01-10 浏览:11次 中文

阅读说明:本技术 一种带浮雕效果的发泡陶瓷及制备方法 (Foamed ceramic with embossment effect and preparation method thereof ) 是由 孔令珂 彭也庆 胡小强 任丽敏 冯唐涛 于 2019-09-30 设计创作,主要内容包括:本发明提供了一种带浮雕效果的发泡陶瓷,包括依次设置的发泡基体层和浮雕效果层,所述发泡基体层和所述浮雕效果层经一次性烧结形成一体,其中,所述发泡基体层的体积密度为0.36-0.5g/cm<Sup>3</Sup>,所述浮雕效果层的体积密度为0.5-1.0g/cm<Sup>3</Sup>。所述带浮雕效果的发泡陶瓷是采用一次性烧制成型,其表面直接含有浮雕结构的浮雕效果,无需通过进一步雕刻和表面装饰。本发明还提供了一种带浮雕效果的发泡陶瓷的制备方法。(The invention provides foamed ceramic with a relief effect, which comprises a foamed base body layer and a relief effect layer which are sequentially arranged, wherein the foamed base body layer is formed by coating a layer of a foaming base body and a layer of a relief effect on the foaming base body layerThe layer and the relief effect layer are integrated through one-time sintering, wherein the volume density of the foaming matrix layer is 0.36-0.5g/cm 3 The volume density of the relief effect layer is 0.5-1.0g/cm 3 . The foamed ceramic with the relief effect is formed by one-time firing, the surface of the foamed ceramic directly has the relief effect of the relief structure, and further carving and surface decoration are not needed. The invention also provides a preparation method of the foamed ceramic with the relief effect.)

1. The foamed ceramic with the relief effect is characterized by comprising a foamed base layer and a relief effect layer which are sequentially arranged, wherein the foamed base layer comprises at least one foamed layer, the foamed base layer and the relief effect layer are integrally formed through one-time sintering, and the volume density of the foamed base layer is 0.36-0.5g/cm3The volume density of the relief effect layer is 0.5-1.0g/cm3

2. The foamed ceramic of claim 1 wherein the side of said embossed effect layer remote from said foamed substrate layer is covered with a dense protective layer; the volume density of the compact protective layer is more than 2.2g/cm3The porosity is less than or equal to 20%.

3. The foamed ceramic of claim 2 wherein said dense protective layer has a thickness of 0.2 to 1 mm.

4. The foamed ceramic of claim 1, wherein the porosity of the foamed matrix layer is from 80% to 87%; the porosity of the relief effect layer is 63% -87%.

5. The foamed ceramic of claim 1, wherein at least one transitional foam layer is disposed between the foam substrate layer and the relief effect layer, and the transitional foam layer, the foam substrate layer and the relief effect layer are sintered to form a whole.

6. The foamed ceramic of claim 1, wherein the relief effect layer has a relief structure thereon, the relief structure comprising geometric lines or a 3D pattern.

7. The preparation method of the foamed ceramic with the relief effect is characterized by comprising the following steps of:

weighing a blank raw material of the foaming matrix layer, performing ball milling and granulation to obtain first powder, pressing the first powder into a first blank, and scraping the first blank;

weighing a blank raw material of the relief effect layer, performing ball milling and granulation to obtain second powder, and then paving the second powder on the first flattened blank; pressing the second powder laid on the first green body into a second green body by using a relief mould, and forming a relief structure on the second green body;

transferring the ceramic blank into a kiln for one-time high-temperature sintering, sintering the first blank body and the second blank body into a whole, and then cutting and processing the ceramic blank into a required size to obtain the foamed ceramic with the relief effect;

wherein the volume density of the foaming matrix layer is 0.36-0.5g/cm3The volume density of the relief effect layer is 0.5-1.0g/cm3

8. The method of claim 7, wherein after leveling the first green body and prior to laying down the second frit further comprises: and paving at least one layer of transition foaming layer green body on the first green body after the leveling, leveling the transition foaming layer green body, and paving the second powder on the leveled transition foaming layer green body.

9. The method as claimed in claim 7, wherein the sintering temperature is 1130-1200 ℃ and the sintering time is 8-12 h.

10. The method of claim 7, wherein the surface layer of the embossed effect layer away from the foamed substrate layer is a dense protective layer; the volume density of the compact protective layer is more than 2.2g/cm3The porosity is less than or equal to 20%.

Technical Field

The invention relates to the technical field of building decoration materials, in particular to foamed ceramic with a relief effect and a preparation method thereof.

Background

The foamed ceramic (foamed ceramic) material is a porous material with high-temperature characteristics, has the excellent properties of low thermal conductivity coefficient, light weight, high hardness, corrosion resistance, wear resistance, water seepage resistance, easy regeneration and the like, and can be widely applied to the fields of environmental protection, industrial and civil buildings, national defense and military industry, petrochemical industry, municipal construction, underground engineering, road traffic, bridge and tunnel, biological planting, refrigeration industry, thermal equipment and the like. The relief is a semi-three-dimensional carving artistic form, and a three-dimensional shape is formed by a model embossed on the surface of a material. The foamed ceramic plate is decorated, and the relief is applied to the foamed ceramic plate, so that the novel foamed ceramic with excellent performance and attractive relief of the foamed ceramic can be obtained.

However, in the prior art, it is common to obtain a relief surface on a foamed ceramic plate by at least a secondary processing process and then prepare a surface decoration and a protective layer; the whole product process is complicated, the processing time is long, the trimming and polishing in the product process can influence the outturn rate of the plate, and the production cost is increased. Especially, the foamed ceramic plate with different porosity or density of the upper and lower surface layers is formed with relief effect.

Disclosure of Invention

In view of the above, the present invention provides a foamed ceramic with a relief effect and a preparation method thereof, wherein the foamed ceramic with a relief effect is formed by one-time firing, and the surface of the foamed ceramic directly contains a relief effect of a relief structure without further engraving and decoration.

In a first aspect, the invention provides a foamed ceramic with a relief effect, which comprises a foamed base layer and a relief effect layer which are sequentially arranged, wherein the foamed base layer and the relief effect layer are integrally formed through one-time sintering, and the volume density of the foamed base layer is 0.36-0.5g/cm3The volume density of the relief effect layer is 0.5-1.0g/cm3

Optionally, the bulk density of the relief effect layer is higher than the bulk density of the foam matrix layer.

Optionally, the foamed matrix layer has a porosity of 80% to 87%; the porosity of the relief effect layer is 63% -87%.

In the invention, important correlation exists between the volume density (or the volume density) of each layer structure of the foamed ceramic and the strength of the foamed ceramic, and the foamed ceramic has light weight and high strength.

In the present invention, the porosity can be represented by the formula (1- ρ)0Calculated as/[ rho ]) [ 100%, [ rho ], [ wherein0And rho is the volume density of the foamed ceramic blank raw material before and after preparation, and the larger the volume density is, the smaller the porosity is.

Optionally, the surface layer of one side of the relief effect layer, which is far away from the foaming matrix layer, is a dense protective layer. Wherein the bulk density of the dense protective layer is more than 2.2g/cm3(ii) a The porosity is less than or equal to 20%.

Optionally, the thickness of the dense protective layer is 0.2-1 mm.

In the invention, the compact protective layer is of a surface layer structure of the relief effect layer, has a smooth surface and a compact structure, and can be used as a protective layer of the foamed ceramic with the relief effect to prevent the foamed ceramic from being worn, so that the relief pattern structure of the relief effect layer is more stable.

Optionally, a relief structure is arranged on the relief effect layer, and the relief structure comprises geometric lines or a 3D pattern. For example, the relief structure on the relief effect layer can be various patterns with three-dimensional effect or other beautiful patterns.

Optionally, the relief effect layer completely covers one side surface of the foam base layer, so that the one side surface of the foam base layer near the relief effect layer is not exposed.

Optionally, the thickness of the relief effect layer is 2-7 cm. In the invention, the thickness of the relief effect layer is related to the texture depth of the relief pattern, the thickness of the relief effect layer can be adjusted based on different relief patterns, and the relief effect layers with different thicknesses can be correspondingly designed aiming at different relief patterns.

Optionally, at least one transition foaming layer is arranged between the foaming base layer and the relief effect layer, and the transition foaming layer, the foaming base layer and the relief effect layer are integrated through one-time sintering.

In the invention, the volume density of the transitional foaming layer is greater than that of the foaming matrix layer, and the volume density of the transitional foaming layer is less than that of the relief effect layer.

When multiple transitional foaming layers are arranged between the foaming matrix layer and the relief effect layer, the volume density of the multiple transitional foaming layers can be increased in sequence but is not limited to be increased in sequence. For example, in the foamed ceramic, the bulk density increases in sequence in the direction from the foamed matrix layer to the embossed effect layer.

In the invention, the bulk density of the relief effect layer refers to the bulk density of the part except the dense protective layer, and the thickness of the dense protective layer is too small compared with that of the relief effect layer, so that the influence of the bulk density of the dense protective layer on the bulk density of the whole relief effect layer is very small and can be ignored.

According to the invention, the transitional foaming layer can be beneficial to improving the bonding strength between the relief effect layer and the foaming matrix layer, improving the stability of the overall structure of the foamed ceramic with the relief effect and prolonging the service life of the foamed ceramic.

In a specific embodiment of the invention, the foamed ceramic with the relief effect comprises a transitional foaming layer, and the foamed ceramic with the relief effect consists of a foaming matrix layer, the transitional foaming layer and the relief effect layer which are arranged in sequence.

In another embodiment of the present invention, the foamed ceramic with relief effect comprises a first transitional foaming layer and a second transitional foaming layer, and the foamed ceramic with relief effect comprises a foamed base layer, the first transitional foaming layer, the second transitional foaming layer and the relief effect layer which are sequentially arranged.

Optionally, the thickness of each transition foaming layer is 1-3 cm.

In the invention, the thickness of the foamed ceramic with the relief effect can be adjusted based on actual requirements. For example, by adjusting the thickness of the foamed base layer or the transitional foamed layer.

Optionally, the thickness of the foamed ceramic with the relief effect is 5-22 cm.

Optionally, the thickness of the foamed matrix layer is 3-20 cm.

Optionally, the foamed matrix layer has a thickness of 3-15 cm.

In one embodiment of the present invention, the thickness of the foamed substrate layer may be, but is not limited to, 3cm, or 5cm, or 8cm, or 10cm, or 12cm, or 15cm, or 18cm, or 20 cm.

In a second aspect, the invention further provides a preparation method of the foamed ceramic with the relief effect, which comprises the following steps:

weighing a blank raw material of the foaming matrix layer, performing ball milling and granulation to obtain first powder, pressing the first powder into a first blank, and scraping the first blank;

weighing a blank raw material of the relief effect layer, performing ball milling and granulation to obtain second powder, and then paving the second powder on the first flattened blank; pressing the second powder laid on the first green body into a second green body by using a relief mould, and forming a relief structure on the second green body;

transferring the ceramic blank into a kiln for one-time high-temperature sintering, sintering the first blank body and the second blank body into a whole, and then cutting and processing the ceramic blank into a required size to obtain the foamed ceramic with the relief effect;

wherein the volume density of the foaming matrix layer is 0.36-0.5g/cm3(ii) a The volume density of the relief effect layer is 0.5-1.0g/cm3

Optionally, the first green body is sintered to form a foamed matrix layer and the second green body is sintered to form a relief effect layer.

Optionally, the foamed matrix layer has a porosity of 80% to 87%; the porosity of the relief effect layer is 63% -87%.

In the invention, the process of leveling the first green body may be leveling the top surface of the first green body, and the second powder is laid on the top surface of the leveled transitional foaming layer green body. In the invention, the peripheral side surfaces and the bottom surface of the first blank can form a plane structure by being attached to the inner surface of the die.

Optionally, after the first green body is scraped, before the second powder is laid, the method further comprises: and paving at least one layer of transition foaming layer green body on the first green body after the leveling, leveling the transition foaming layer green body, and paving the second powder on the leveled transition foaming layer green body.

And sintering the transition foaming layer green body to form a transition foaming layer. At this time, in the foamed ceramic with the relief effect, the first blank, the transition foam layer blank and the second blank are fired to form an integrated structure of the foam base layer, the transition foam layer and the relief effect layer after a primary sintering process.

When the preparation method is not provided with a transitional foaming layer, in the foamed ceramic with the relief effect, the first blank body and the second blank body are fired to form an integrated structure of a foaming matrix layer and the relief effect layer after a primary sintering process.

In the invention, the blank raw material of the relief effect layer is a material with low foaming rate, which is beneficial to obtaining the relief effect layer with higher volume density, and the surface layer of the relief effect layer is smooth and compact.

The surface layer of one side of the relief effect layer, which is far away from the foaming matrix layer, is a compact protective layer; the volume density of the compact protective layer is more than 2.2g/cm3The porosity is less than or equal to 20%.

In the firing process of the foamed ceramic, the surface atmosphere and the internal atmosphere of the relief effect layer are different, the surface layer is easy to exhaust, and a porous structure is not easy to form, so that the surface layer of one side of the relief effect layer, which is far away from the foaming matrix layer, forms a compact protective layer, the surface of the compact protective layer is smooth and compact, and the relief effect layer containing the compact protective layer can be directly used for indoor and outdoor devices without modifying the surface.

Optionally, the thickness of the dense protective layer is 0.2-1 mm.

Optionally, the thickness of the relief effect layer is 2-7 cm.

Optionally, the thickness of each transition foaming layer is 1-3 cm.

In the invention, the thickness of the foamed ceramic with the relief effect can be adjusted based on actual requirements. For example, by adjusting the thickness of the foamed base layer or the transitional foamed layer.

Optionally, the thickness of the foamed ceramic with the relief effect is 5-22 cm.

Optionally, the thickness of the foamed matrix layer is 3-20 cm.

Optionally, the foamed matrix layer has a thickness of 3-15 cm.

Optionally, the ratio of the thickness of the relief effect layer to the thickness of the foaming matrix layer is 1 (2-5).

Optionally, the ball milling and granulating process includes: transferring the blank raw material to a ball mill for ball milling to obtain slurry, and then carrying out spray granulation on the slurry.

Optionally, the moisture content of the first green body and the moisture content of the second green body are both not more than 10%.

Optionally, in the high-temperature sintering process, the sintering temperature is 1130-1200 ℃, and the sintering time is 8-12 h.

In the invention, the foamed ceramic with the relief effect is a green environment-friendly building material, and the raw materials of the foamed matrix layer or the blank of the relief effect layer generally mainly comprise conventional argil tailings, ceramic fragments, industrial waste residues, quartz and clay, and are matched with a foaming agent, a dispersing agent or a fluxing agent. The foamed ceramics with different volume densities can be prepared by adjusting the dosage of the fluxing agent and the foaming agent in the preparation process.

In one embodiment of the present invention, the raw material of the foamed substrate layer includes tailings, talc, kaolin calcium oxide, a dispersing agent and a foaming agent. The dispersant may be, but is not limited to, a ceramic dispersant, such as one or more of sodium polyphosphate, sodium silicate, and sodium carbonate. The foaming agent may be, but is not limited to, one or more of silicon carbide, coke powder, coal powder, and limestone.

In one embodiment of the invention, the blank raw materials of the relief effect layer comprise tailings, talc, kaolin calcium oxide, a dispersing agent and a foaming agent. The dispersant may be, but is not limited to, a ceramic dispersant, such as one or more of sodium polyphosphate, sodium silicate, and sodium carbonate. The foaming agent may be, but is not limited to, one or more of silicon carbide, coke powder, coal powder, and limestone. The compositions of the blank raw material of the relief effect layer and the blank raw material of the foaming matrix layer can be the same, but the contents of the components are different.

For example, in the present invention, the amount of foaming agent in the green material of the relief effect layer is lower than the amount of foaming agent in the green material of the foamed matrix layer.

In one embodiment of the present invention, the green body material of the transitional foaming layer may include, but is not limited to, tailings, talc, kaolin, calcium oxide, a dispersing agent, and a foaming agent.

In the traditional preparation process of the foamed ceramic, a foamed ceramic plate is usually obtained by firing, then the embossed surface is prepared according to the embossing production process, and then the coating with the protection and decoration effects is prepared by adopting the processes of spraying, brushing, curtain coating and the like after the embossed surface is obtained. In the preparation method, the foamed ceramic plate with the embossment effect can be obtained by one-time sintering, and the embossment effect layer of the foamed ceramic plate is provided with the compact protective layer; the process time is shortened, the firing efficiency is improved, the plate outturn rate is increased, the generation of leftover bits and pieces is reduced, and compared with the traditional process, the process has the advantages of lower cost and higher production efficiency.

The beneficial effects of the invention include:

(1) the foamed ceramic with the relief effect is formed by one-time firing, the surface of the fired foamed ceramic directly has the relief effect of the relief structure, and further carving and surface decoration are not needed.

(2) The preparation method of the foamed ceramic with the relief effect has the advantages of simple process and high production efficiency, and is suitable for industrial production, the relief effect is realized by carrying out compression molding on a paved green body through a mold, and the relief structure is kept unchanged after high-temperature firing, so that a foamed ceramic product with the relief effect can be directly obtained; the preparation process does not need to carry out the steps of trimming and polishing again, greatly improves the production efficiency and the outturn rate of the foamed ceramic plate, and reduces the production cost.

Advantages of the invention will be set forth in part in the description which follows, and in part will be obvious from the description, or may be learned by practice of embodiments of the invention.

Drawings

In order to more clearly illustrate the contents of the present invention, a detailed description thereof will be given below with reference to the accompanying drawings and specific embodiments.

FIG. 1 is a process flow chart of a method for preparing a foamed ceramic with an embossed effect according to an embodiment of the present invention;

fig. 2 is a schematic structural diagram of a foamed ceramic 100 with a relief effect according to an embodiment of the present invention;

FIG. 3 is a partial schematic view of a foamed ceramic with an embossed effect according to another embodiment of the present invention;

fig. 4 is a schematic structural diagram of a foamed ceramic 200 with a relief effect according to another embodiment of the present invention.

Detailed Description

While the following is a description of the preferred embodiments of the present invention, it should be noted that those skilled in the art can make various modifications and improvements without departing from the principle of the embodiments of the present invention, and such modifications and improvements are considered to be within the scope of the embodiments of the present invention.

The following examples are intended to illustrate the invention in more detail. The embodiments of the present invention are not limited to the following specific embodiments. The present invention can be modified and implemented as appropriate within the scope of the main claim.

Unless otherwise specified, the raw materials and other chemicals used in the examples of the present invention are commercially available.

As shown in fig. 1, an embodiment of the present invention provides a method for preparing a foamed ceramic with a relief effect, including the following steps:

s10, weighing blank raw materials of the foaming matrix layer, performing ball milling and granulation to obtain first powder, pressing the first powder into a first blank, and scraping the first blank;

s20, weighing the blank raw material of the relief effect layer, performing ball milling and granulation to obtain second powder, and then paving the second powder on the first blank which is strickled; pressing the second powder laid on the first green body into a second green body by using a relief mould, and forming a relief structure on the second green body;

s30, transitionSintering the mixture in a kiln at a high temperature for one time, sintering the first green body and the second green body into a whole, and then cutting and processing the whole into a required size to obtain the foamed ceramic with the relief effect; wherein the volume density of the foaming matrix layer is 0.36-0.5g/cm3The volume density of the relief effect layer is 0.5-1.0g/cm3

Optionally, the blank raw material is transferred to a ball mill for ball milling to obtain a first slurry, and the first slurry is subjected to spray granulation to obtain a first powder material. Optionally, the S10 further includes: and putting the first powder into a bin for ageing, and pressing the aged first powder into a first blank.

Optionally, in S10, the blank raw material of the foamed base layer includes: one or more of argil tailings, ceramic fragments, industrial waste residues, quartz and clay, and a foaming agent, a dispersing agent and a fluxing agent. Then adding proper amount of auxiliary materials to obtain the product with the volume density of 0.36-0.5g/cm3The foamed base layer of (1).

Optionally, in S20, the blank raw material of the relief effect layer includes: one or more of argil tailings, ceramic fragments, industrial waste residues, quartz and clay, and a foaming agent, a dispersing agent and a fluxing agent. Then adding proper amount of auxiliary materials to obtain the product with the volume density of 0.5-1.0g/cm3The relief effect layer of (1).

Optionally, the blank raw material of the relief effect layer is laid on the scraped side surface of the first blank. Through the relief mold, a relief structure may be formed on the second blank.

Optionally, the relief structure comprises geometric lines or a 3D pattern.

Optionally, after the first green body is scraped, before the second powder is laid, the method further comprises: and paving at least one layer of transition foaming layer green body on the first green body after the leveling, leveling the transition foaming layer green body, and paving the second powder on the leveled transition foaming layer green body.

And sintering the transition foaming layer green body to form a transition foaming layer. At this time, in the foamed ceramic with the relief effect, the first blank, the transition foam layer blank and the second blank are fired to form an integrated structure of the foam base layer, the transition foam layer and the relief effect layer after a primary sintering process.

Optionally, in S30, in the high-temperature sintering process, the sintering temperature is 1130-. In the preparation method, a one-time high-temperature sintering process is adopted, and the foaming base layer and the relief effect layer are integrally sintered at one time to obtain a foaming ceramic crude product with the relief effect; and then cutting and processing the crude foamed ceramic product into required sizes.

In the traditional preparation process of the foamed ceramic, a foamed ceramic plate is usually obtained by firing, then the embossed surface is prepared according to the embossing production process, and then the coating with the protection and decoration effects is prepared by adopting the processes of spraying, brushing, curtain coating and the like after the embossed surface is obtained. In the preparation method, the foamed ceramic plate with the embossment effect can be obtained by one-time sintering, and the embossment effect layer of the foamed ceramic plate is provided with the compact protective layer; the process time is shortened, the firing efficiency is improved, the plate outturn rate is increased, the generation of leftover bits and pieces is reduced, and compared with the traditional process, the process has the advantages of lower cost and higher production efficiency.

As shown in fig. 2, the foamed ceramic 100 with relief effect prepared by the above preparation method comprises a foamed base layer 10 and a relief effect layer 20 which are sequentially arranged, wherein the foamed base layer 10 and the relief effect layer 20 are integrally formed by one-time sintering, and the bulk density of the foamed base layer 10 is 0.36-0.5g/cm3The volume density of the relief effect layer 20 is 0.5-1.0g/cm3

In the embodiment of the present invention, the thicknesses of the foam base layer 10 and the relief effect layer 20 may be adjusted according to a preset thickness during the preparation process.

In the embodiment of the present invention, the relief effect layer 20 is provided with a relief structure, and the relief structure includes geometric lines or a 3D pattern. The relief structure may be formed by pressing during the manufacturing process using relief molds of different shapes or containing different patterns.

Referring to fig. 3, in the embodiment of the present invention, the side of the embossed effect layer 20 away from the foam substrate layer 10 is covered by a dense protection layer 21. In the embossment effect 20, the remaining part 22 except the dense protection layer 21 is tightly combined with the foam matrix layer 10. In order to facilitate the viewing of the dense protective layer 21, fig. 3 shows a partial structure diagram, and the relief structure is not specifically shown.

As shown in fig. 4, the embossed ceramic foam 200 prepared by the above-mentioned preparation method further includes a transitional foam layer 30 disposed between the foam base layer 10 and the embossed effect layer 20, compared to the embossed ceramic foam 100.

In the invention, the compact protective layer is of a surface layer structure of the relief effect layer, has a smooth surface and a compact structure, and can be used as a protective layer of the foamed ceramic with the relief effect to prevent the foamed ceramic from being worn, so that the relief pattern structure of the relief effect layer is more stable.

According to the invention, the transitional foaming layer can be beneficial to improving the bonding strength between the relief effect layer and the foaming matrix layer, improving the stability of the overall structure of the foamed ceramic with the relief effect and prolonging the service life of the foamed ceramic.

11页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种3D打印织构化自润滑陶瓷材料的方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!