透镜组件及光学镜头

文档序号:1612910 发布日期:2020-01-10 浏览:2次 >En<

阅读说明:本技术 透镜组件及光学镜头 (Lens unit and optical lens ) 是由 丁先翠 李建军 杨海艳 赵烈烽 戴付建 于 2019-11-07 设计创作,主要内容包括:本发明提供了一种透镜组件及光学镜头。透镜组件包括:从物侧到像侧方向依次排列的至少两个透镜;隔片,相邻两个透镜之间均设有隔片;第一限位结构,位于相邻两个透镜中的一个透镜的朝向隔片的非光学部表面;第二限位结构,位于相邻两个透镜中的另一个透镜的朝向隔片的非光学部表面,第一限位结构和第二限位结构中的至少一个与隔片承靠。本发明的技术方案解决了现有技术中的透镜组件存在成像质量较差的问题。(The invention provides a lens assembly and an optical lens. The lens assembly includes: at least two lenses arranged in order from an object side to an image side; the spacers are arranged between every two adjacent lenses; the first limiting structure is positioned on the surface, facing the non-optical part of the spacer, of one lens in two adjacent lenses; and the second limit structure is positioned on the surface of the other lens of the two adjacent lenses, which faces the non-optical part of the spacer, and at least one of the first limit structure and the second limit structure is abutted with the spacer. The technical scheme of the invention solves the problem of poor imaging quality of the lens assembly in the prior art.)

透镜组件及光学镜头

技术领域

本发明涉及光学镜头领域,具体而言,涉及一种透镜组件及光学镜头。

背景技术

光学镜头在生产过程中,离不开烘烤这一工艺步骤,光学镜头需要经过烘烤对内应力进行释放,另外光学镜头中的透镜组件需要经过烘烤来进行胶水固化。然而,由于光学镜头中起遮光作用的隔片在烘烤过程中容易变形,当隔片的变形量过大时,在变形位置容易形成炫光,从而影响光学镜头中透镜的成像质量。

也就是说,现有技术中的透镜组件存在成像质量较差的问题。

发明内容

本发明的主要目的在于提供了一种透镜组件及光学镜头,以解决现有技术中的透镜组件存在成像质量较差的问题。

为了实现上述目的,根据本发明的一个方面,提供了一种透镜组件,透镜组件包括:从物侧到像侧方向依次排列的至少两个透镜;隔片,相邻两个透镜之间均设有隔片;第一限位结构,位于相邻两个透镜中的一个透镜的朝向隔片的非光学部表面;第二限位结构,位于相邻两个透镜中的另一个透镜的朝向隔片的非光学部表面,第一限位结构和第二限位结构中的至少一个与隔片承靠。

进一步地,隔片具有相对设置的第一表面和第二表面,第一限位结构与隔片的第一表面承靠,第二限位结构与隔片的第二表面承靠或者第二限位结构与隔片的第二表面之间具有距离a;或者,隔片具有相对设置的第一表面和第二表面,第二限位结构与隔片的第二表面承靠,第一限位结构与隔片的第一表面之间具有距离a。

进一步地,当第二限位结构与隔片的第二表面之间具有距离a;或者第一限位结构与隔片的第一表面之间具有距离a时,距离a满足如下关系:0.005mm≤a≤0.5mm。

进一步地,距离a满足如下关系:0.005mm≤a≤0.2mm。

进一步地,第一限位结构包括与相邻两个透镜中的一个透镜连接的一个或者多个第一凸起,当第一限位结构包括多个凸起时,沿远离透镜的光轴的方向,多个第一凸起间隔设置;或者,第二限位结构包括与相邻两个透镜中的另一个透镜连接的一个或者多个第二凸起,当第二限位结构包括多个第二凸起时,沿远离透镜的光轴的方向,多个第二凸起间隔设置。

进一步地,当第一限位结构包括第一凸起时,第一凸起的朝向隔片的表面的宽度c1满足以下关系:0.05mm≤c1≤0.5mm;或者,当第二限位结构包括第二凸起时,第二凸起的朝向隔片的表面的宽度c2满足以下关系:0.05mm≤c2≤0.5mm。

进一步地,第一限位结构与第二限位结构错位设置。

进一步地,当第一限位结构相对于第二限位结构靠近透镜的光轴设置时,第一限位结构的下边沿与隔片的内侧面之间具有距离b1,第二限位结构的下边沿与隔片的内侧面之间具有距离b2,其中,距离b1满足以下关系:0mm≤b1≤0.05mm,距离b2满足以下关系:0.1mm≤b2≤0.35mm;或者,当第二限位结构相对于第一限位结构靠近透镜的光轴设置时,第一限位结构的下边沿与隔片的内侧面之间具有距离b1,第二限位结构的下边沿与隔片的内侧面之间具有距离b2,其中,距离b1满足以下关系:0.1mm≤b1≤0.35mm,距离b2满足以下关系:0mm≤b2≤0.05mm。

进一步地,隔片的厚度尺寸h满足以下关系:0.012mm≤h≤0.04mm。

进一步地,透镜组件包括n个透镜,任意相邻两个透镜10之间均设有隔片20,第一个透镜10的朝向隔片20的非光学部表面设有第一限位结构30,第n个透镜10的朝向隔片20的非光学部表面设有第二限位结构40,位于中间的第n-i个透镜10的相对设置的两侧对应设有第一限位结构30和第二限位结构40,设置在第n-i个透镜10上的第一限位结构30靠近第n个透镜10设置并与设置在第n个透镜10上的第二限位结构40共同对位于该两个透镜10中的隔片20进行限位;设置在第n-i个透镜10上的第二限位结构40靠近第一个透镜10设置并与设置在第n-(i+1)个透镜上的第一限位结构30共同对位于该两个透镜10中的隔片20进行限位,其中,n≥3,1≤i<n,且i和n均为自然数。

根据本发明的另一方面,提供了一种光学镜头,包括镜筒和位于镜筒内的透镜组件,透镜组件为上述的透镜组件。

应用本发明的技术方案,与隔片承靠的一个限位结构能够防止隔片往该限位结构所在的一侧变形,即隔片只能朝向另一个限位结构所在的一侧变形;与隔片不承靠的另一个限位结构与隔片之间具有间隙,这样利用该间隙可以控制隔片在烘烤步骤中的变形量。这样,利用第一和第二两个限位结构可以控制隔片的变形量,避免由于隔片在烘烤时的变形量过大导致在隔片变形位置形成炫光而影响透镜的成像质量的情况发生,进而确保了透镜的光学性能。

附图说明

构成本申请的一部分的说明书附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:

图1示出了根据本发明的透镜组件的实施例一的结构示意图;

图2示出了根据本发明的透镜组件的实施例二的结构示意图;

图3示出了根据本发明的透镜组件的实施例三的结构示意图;

图4示出了根据本发明的透镜组件的实施例四的结构示意图;以及

图5示出了根据本发明的透镜组件的实施例五的结构示意图。

其中,上述附图包括以下附图标记:

10、透镜;11、第一支撑凸起;12、第二支撑凸起;20、隔片;21、第一表面;22、第二表面;30、第一限位结构;40、第二限位结构。

具体实施方式

需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本发明。

需要指出的是,除非另有指明,本申请使用的所有技术和科学术语具有与本申请所属技术领域的普通技术人员通常理解的相同含义。

在本发明中,在未作相反说明的情况下,使用的方位词如“上、下、顶、底”通常是针对附图所示的方向而言的,或者是针对部件本身在竖直、垂直或重力方向上而言的;同样地,为便于理解和描述,“内、外”是指相对于各部件本身的轮廓的内、外,但上述方位词并不用于限制本发明。

本发明及本发明的实施例提供了一种透镜组件。透镜组件包括从物侧到像侧方向依次排列的至少两个透镜10、隔片20、第一限位结构30和第二限位结构40。其中,隔片20位于相邻两个透镜10之间,第一限位结构30位于相邻两个透镜10中的一个透镜10的朝向隔片20的非光学部表面,第二限位结构40位于相邻两个透镜10中的另一个透镜10的朝向隔片20的非光学部表面,第一限位结构30和第二限位结构40中的至少一个与隔片20承靠。

根据上述设置,与隔片20承靠的限位结构能够防止隔片20在朝向其的方向上变形,这样使得隔片20只能朝向与隔片20不承靠的另一个限位结构的方向变形。与隔片20不承靠的另一个限位结构能通过其与隔片20的表面的间距来控制隔片20的变形量。这样,上述限位机构能够控制隔片20在烘烤过程中的变形,从而避免由于隔片20在烘烤时的变形量过大导致在隔片20变形位置形成炫光而影响透镜10的成像质量的情况发生,进而确保了透镜10的光学性能。

本发明及本发明的实施例中,如图1所示,为了安装隔片20,两个透镜10的相向设置的非光学部表面上均设有支撑凸起,比如,一个透镜10的非光学部表面上设有第一支撑凸起11,另一个透镜10的非光学部表面上设有第二支撑凸起12,隔片20位于两个透镜10之间且夹设在第一支撑凸起11和第二支撑凸起12之间,其中,隔片20与第一支撑凸起11抵接接触,隔片20与第二支撑凸起12抵接接触,通过设置第一支撑凸起11和第二支撑凸起12,可以将隔片20固定在两个透镜之间。

其中,第一支撑凸起11相对于第一限位结构30远离透镜10的光轴(即第一支撑凸起11位于透镜10的外侧);第二支撑凸起12相对于第二限位结构40远离透镜10的光轴。

实施例一

如图1所示,本发明的实施例一中,隔片20具有相对设置的第一表面21和第二表面22,第一限位结构30与隔片20的第一表面21承靠,第二限位结构40与隔片20的第二表面22之间具有距离a。

根据上述设置,在烘烤隔片20的过程中,由于第一限位结构30与隔片20的第一表面21承靠,第一限位结构30能防止隔片20向朝向第一限位结构30的方向变形。隔片20受热变形时只能朝向靠近第二限位结构40的方向变形,且由于第二限位结构40与第二表面22之间具有距离a,所以隔片20的变形量不超过上述距离a,这样,利用第二限位结构40能控制隔片20受热变形时的变形量。由上可知,第一限位结构30和第二限位结构40能够控制隔片20在烘烤过程中的变形,从而可以避免由于隔片20变形量过大导致在隔片20变形位置形成炫光,从而影响透镜10的成像质量的情况发生,进而确保了透镜10的光学性能。

具体地,如图1所示,第一限位结构30为设置在相邻的两个透镜10中的一个上的第一凸起,第二限位结构40为设置在相邻的两个透镜10中的另一个上的第二凸起。根据上述设置,第一凸起和第二凸起能够控制隔片20在烘烤过程中的变形量,从而避免由于隔片20变形量过大导致在隔片20的变形位置形成炫光而影响透镜10的成像质量的情况发生,进而确保了透镜10的光学性能。

当然在附图中未示出的替代实施例中,根据实际情况,第一限位结构30可以包括多个第一凸起,且第二限位结构40可以包括多个第二凸起,或者仅将第一限位结构30设置成多个第一凸起,或者仅将第二限位结构40设置成多个第二凸起。其中,多个第一凸起或者多个第二凸起沿与透镜10的光轴具有一定的夹角的方向间隔设置。

需要说明的是,本申请及本申请的实施例中,远离透镜的光轴的方向是指沿透镜10的径向方向远离透镜的光轴的方向。

具体地,如图1所示,第一凸起(或者第二凸起)同与其相对应连接的透镜10为一体成型结构,便于透镜10的注塑制造,从而降低生产成本。

当然在附图中未示出的替代实施例中,也可以根据实际情况,将第一凸起(或者第二凸起)与对应的透镜10设为分体设置。

具体地,如图1所示,第二凸起与隔片20的第二表面22之间具有距离a,距离a满足如下关系:0.005mm≤a≤0.5mm。

需要说明的是当隔片20在烘烤时,允许隔片20有一定的变形量以释放隔片20受热膨胀时产生的热应力。但是,上述变形量不能过大,变形量过大会导致隔片20在变形位置产生炫光,从而影响透镜10的成像质量。

根据上述设置,利用第二凸起可以对容纳隔片20的变形量的空间进行限定,从而控制隔片20的变形量不超过0.5mm,这样能够确保隔片20的变形量在允许的范围以内,一方面隔片20既能释放受热膨胀时产生的热应力,另一方面能有效地防止隔片20产生炫光而影响透镜10的成像质量。将距离a设置成大于等于0.005mm,这样保证隔片20有一定的变形量,能够释放受热膨胀时产生的热应力,防止隔片20在热应力的作用下被破坏而无法使用。

优选地,距离a满足如下关系:0.005mm≤a≤0.2mm。上述设置中,将隔片20的变形量控制在0.2mm以内,这样,一方面可以确保隔片20更好地释放受热膨胀时产生的热应力,另一方面又能更好地防止隔片20产生炫光而影响透镜10的成像质量。

具体地,如图1所示,第一凸起的朝向隔片20的表面的宽度c1满足以下关系:0.05mm≤c1≤0.5mm,第二凸起的朝向隔片20的表面的宽度c2满足以下关系:0.05mm≤c2≤0.5mm。根据上述设置,第一凸起和第二凸起的朝向隔片20的端部形成平面,这样,隔片20在受热变形时,隔片20与第一凸起和第二凸起的端部面面接触,从而增强第一凸起和第二凸起对隔片20的限位作用,同时能防止第一凸起和第二凸起的端部划伤隔片20的表面,从而确保隔片20能正常的使用。

需要说明的是在本发明的实例一中的第一凸起和第二凸起为不规则形状的凸台,这样便于注塑,从而降低光学镜头的制造成本。当然在附图中未示出的替代实施例中,也可将第一凸起和第二凸起设置成规则形状,例如圆台或者棱台。

具体地,如图1所示,在垂直于透镜10的光轴的方向上,第一凸起和第二凸起错位设置,第一凸起相对于第二凸起靠近透镜的光轴设置,第一凸起的下边沿与隔片20的内侧面之间具有距离b1,第二凸起的下边沿与隔片20的内侧面之间具有距离b2,其中,距离b1满足以下关系:0mm≤b1≤0.05mm,b2满足以下关系:0.1mm≤b2≤0.35mm。

根据上述设置,通过进一步地限定第一凸起、第二凸起和隔片20的相对位置关系,第一凸起和第二凸起能够更好地对隔片20进行限位,控制隔片20在烘烤过程中的变形量,从而防止由于隔片20变形量过大导致在隔片20变形位置形成炫光而影响透镜10成像质量的情况发生,进而确保了透镜10的光学性能。

需要说明的是,隔片20的厚度尺寸h满足以下关系:0.012mm≤h≤0.04mm。这样,隔片20能够满足光学镜头组装时的尺寸要求,从而保证透镜组件能够顺利地安装在镜筒内。

实施例二

如图2所示,实施例二与实施例一的不同之处在于:实施例二中,第二限位结构40与隔片20的第二表面22承靠,第一限位结构30与第一限位结构30与隔片20的第一表面21之间具有距离a。

实施例二中,其余结构与实施例一中相同,此处不再赘述。

实施例三

如图3所示,实施例三与实施例一的不同之处在于:实施例三中,第二限位结构40相对于第一限位结构30更靠近透镜10的光轴设置,具体地,第一凸起的下边沿与隔片20的内侧面之间具有距离b1,b1满足以下关系:0.1mm≤b1≤0.35mm。第二凸起的下边沿与隔片20的内侧面之间具有距离b2,b2满足以下关系:0mm≤b2≤0.05mm。

实施例三中,其余结构的描述与实施例一中相同,此处不再赘述。

实施例四

如图4所示,实施例四与实施例一的不同之处在于:

实施例四中,(1)第二限位结构40与隔片20的第二表面22承靠,第一限位结构30与第一限位结构30与隔片20的第一表面21之间具有距离a。

(2)第二限位结构40相对于第一限位结构30更靠近透镜的光轴设置,具体地,第一凸起的下边沿与隔片20的内侧面之间具有距离b1,满足以下关系:0.1mm≤b1≤0.35mm。第二凸起的下边沿与隔片20的内侧面之间具有距离b2,满足以下关系:0mm≤b2≤0.05mm。

实施例四中,其余结构的描述与实施例一中相同,此处不再赘述。

实施例五

对于三个或者三个以上依次排列的透镜10而言,任意相邻两个透镜10之间都可以采用实施例一至四中的限位结构。这样,位于中间位置的透镜10上既设有第一限位结构30,又设有第二限位结构40,任意相邻的两个透镜10之间都是第一限位结构30和第二限位结构40共同对同一个隔片20进行限位的。上述设置中,利用第一限位结构30和第二限位结构40可以控制隔片20的变形量,从而避免由于隔片20在烘烤时的变形量过大导致在隔片20变形位置形成炫光而影响透镜10的成像质量的情况发生,进而确保了透镜10的光学性能。

如图5所示,实施例五与实施例一的不同之处在于:

透镜组件包括三个透镜10,任意相邻两个透镜10之间均设有隔片20,三个透镜10中,最靠近物侧的第一个透镜10的朝向隔片20的非光学部表面设有第一限位结构30,最靠近像侧的第三个透镜10的朝向隔片20的非光学部表面设有第二限位结构40,位于中间位置的第二个透镜10的相对设置的表面对应设有第一限位结构30和第二限位结构40。其中,设置在最靠近物侧的透镜10上的第一限位结构30与设置在位于中间位置的透镜10上第二限位结构40共同对位于该两个透镜10中的隔片20进行限位;设置在最靠近像侧的透镜10上的第二限位结构40与设置在位于中间位置的透镜10上的第一限位结构30共同对位于该两个透镜10之间的隔片20进行限位。

下面结合附图进行具体说明:

需要说明的是,为了清楚的说明透镜10与隔片20的相对位置关系,将设置在第一个透镜10和第二个透镜10之间的隔片20称之为第一隔片,将设置在第二个透镜10和第三个透镜10之间的隔片20称之为第二隔片。

具体地,如图5所示,三个透镜10中,第一个透镜10上的第一限位结构30为设置在第一个透镜10的朝向第一隔片的非光学部表面的第一凸起。位于中间位置的第二个透镜10上的第一限位结构30和第二限位结构40对应为设置在第二个透镜10上的相对设置的表面上的第一凸起和第二凸起,其中,第二凸起设置在第二个透镜10的靠近第一个透镜10的表面上,第一凸起设置在第二个透镜10靠近第三个透镜10的表面上。第三个透镜10上的第二限位结构40为设置在透镜10的朝向第二隔片的非光学部表面的第二凸起。

第一个透镜10上的第一凸起与第一隔片的第一表面21承靠,第二个透镜10上的第二凸起与第一隔片的第二表面22具有间距a,距离a满足如下关系:0.005mm≤a≤0.5mm。第一个透镜10上的第一凸起的朝向第一隔片的第一表面21的宽度c1满足以下关系:0.05mm≤c1≤0.5mm,第二个透镜10上的第二凸起的朝向第一隔片的第二表面22的宽度c2满足以下关系:0.05mm≤c2≤0.5mm。第一个透镜10上的第一凸起相对于第二个透镜10上的第二凸起错位设置,第一个透镜10上的第一凸起相对于第二个透镜10上的第二凸起靠近光轴。其中,第一个透镜10上的第一凸起的下边沿与第一隔片的内侧面之间具有距离b1,b1满足以下关系:0mm≤b3≤0.05mm。第二个透镜10上的第二凸起的下边沿与第一隔片的内侧面之间具有距离b2,b2满足以下关系:0.1mm≤b2≤0.35mm。

第二个透镜10上的第一凸起与第二隔片的第一表面21承靠,第三个透镜10上的第二凸起与第二隔片的第二表面22具有间距a,距离a满足如下关系:0.005mm≤a≤0.5mm。第二个透镜10上的第一凸起的朝向第二隔片的第一表面21的宽度c3满足以下关系:0.05mm≤c3≤0.5mm,第三个透镜10上的第二凸起的朝向第二隔片的第二表面22的宽度c4满足以下关系:0.05mm≤c4≤0.5mm。第二个透镜10上的第一凸起相对于第三个透镜10上的第二凸起错位设置,第二个透镜10上的第一凸起相对于第三个透镜10上的第二凸起靠近光轴。其中,第二个透镜10上的第一凸起的下边沿与第二隔片的内侧面之间具有距离b3,b3满足以下关系:0mm≤b3≤0.05mm。第三个透镜10上的第二凸起的下边沿与第二隔片的内侧面之间具有距离b4,b4满足以下关系:0.1mm≤b4≤0.35mm。

需要说明的是,为了清楚的说明第二个透镜10上的第一凸起、第三个透镜10上的第二凸起以及第二隔片的相对位置关系。将第二个透镜10上的第一凸起的朝向第二隔片的第一表面21的宽度设置成c3,将第三个透镜10上的第二凸起的朝向第二隔片的第二表面22的宽度设置成c4,将第二个透镜10上的第一凸起下边沿与第二隔片的内侧面之间的距离设置成b3,将第三个透镜10上的第二凸起下边沿与第二隔片的内侧面之间的距离设置成b4。

从以上的描述中,可以看出,本发明上述的实施例实现了如下技术效果:在烘烤隔片的过程中,由于第一限位结构与隔片的第一表面承靠,第一限位结构能防止隔片向朝向第一限位结构的方向变形。隔片受热变形时只能朝向靠近第二限位结构的方向变形,且由于第二限位结构与第二表面之间具有距离a,所以隔片的变形量不超过上述距离a,这样,利用第二限位结构能控制隔片受热变形时的变形量。由上可知,第一限位结构和第二限位结构能够控制隔片在烘烤过程中的变形,从而可以避免由于隔片变形量过大导致在隔片变形位置形成炫光,从而影响透镜的成像质量的情况发生,进而确保了透镜的光学性能。

显然,上述所描述的实施例仅仅是本发明一部分的实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本发明保护的范围。

需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本申请的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、工作、器件、组件和/或它们的组合。

需要说明的是,本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施方式能够以除了在这里图示或描述的那些以外的顺序实施。

以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

15页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:两档定焦、反射镜切换变焦、高清镜头的结构及实现方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!