一种陶瓷浆料的制备方法及固形方法

文档序号:162843 发布日期:2021-10-29 浏览:37次 >En<

阅读说明:本技术 一种陶瓷浆料的制备方法及固形方法 (Preparation method and shaping method of ceramic slurry ) 是由 黎兆早 余恺为 吴明洋 于 2021-08-11 设计创作,主要内容包括:本发明公开了一种陶瓷浆料的制备方法及固形方法。包括以下步骤:将氧化物混合球磨,加入光敏树脂和助剂搅拌混合,加入陶瓷粉体搅拌均质化,得到固含量大于50%的陶瓷浆料。并利用光固化3D打印机,将陶瓷浆料应用于制备精度高、表面质量优的陶瓷制品。有益效果:通过优化陶瓷浆料的组成和配比,在不提高紫外曝光强度的情况下,完成表面快速固形,实现高固相材料的光固化3D打印。脱脂过程中,引入紫外再固化工艺,实现了保形脱脂效果,避免了陶瓷生坯在传统脱脂过程中应力变化引起的塌陷、裂痕等问题。脱脂过程中,引入光催化脱脂技术,进一步完成有机物的分解,实现完全脱脂,减少脱脂时间。实现陶瓷生坯固相含量超过90%的工艺水平。(The invention discloses a preparation method and a shaping method of ceramic slurry. The method comprises the following steps: mixing and ball-milling the oxides, adding the photosensitive resin and the auxiliary agent, stirring and mixing, adding the ceramic powder, stirring and homogenizing to obtain the ceramic slurry with the solid content of more than 50 percent. And the ceramic slurry is applied to the preparation of ceramic products with high precision and excellent surface quality by using a photocuring 3D printer. Has the advantages that: by optimizing the composition and the proportion of the ceramic slurry, the surface is quickly solidified under the condition of not improving the ultraviolet exposure intensity, and the photocuring 3D printing of high-solid-phase materials is realized. In the degreasing process, an ultraviolet re-curing process is introduced, so that the shape-preserving degreasing effect is realized, and the problems of collapse, cracks and the like caused by stress change in the traditional degreasing process of the ceramic green body are avoided. In the degreasing process, a photocatalytic degreasing technology is introduced to further finish the decomposition of organic matters, complete degreasing is realized, and the degreasing time is shortened. The technological level that the solid content of the ceramic green body exceeds 90 percent is realized.)

一种陶瓷浆料的制备方法及固形方法

技术领域

本发明涉及陶瓷技术领域,具体为一种陶瓷浆料的制备方法及固形方法。

背景技术

陶瓷材料由于具有高硬度、高耐磨性、耐高温、抗氧化、耐腐蚀、化学稳定性好等优异性能,与金属材料、高分子材料并列为当今三大固体材料。但是,陶瓷材料由于硬度极高、脆性大等特点,使得其在机械加工中存在成本高昂、加工效率低等问题;进而使得传统成型工艺极大地限制了复杂结构的陶瓷制品的应用和发展。

近年来,基于陶瓷制品的快速成型工艺由于无需模具、制造周期短、成本低等优点成为了研究热点。目前,快速成型工艺主要包括SLS(选择性激光烧结)、FDM(熔融沉积成型)、LOM(叠层实体制造)、I-J 3DP(三维喷墨打印)、SLA(立体光刻)、DLP(数字光处理)。其中,SLS能够制备出复杂结构的陶瓷制件,且无需支撑,但其缺点在于制成的陶瓷坯体致密度低,需要通过浸渍工艺提高其致密度;FDM能够实现层与层之间的完全粘结,但其难点在于陶瓷细丝的制造,及成形过程中微小结构的尺寸精度的控制;LOM速度快,成本低,能够制造大尺寸的陶瓷零件,但其缺点在于成形精度较低,材料利用率低;I-J 3DP可制作大尺寸样件,且无需支撑,但其缺点在于工艺过程中陶瓷浆料的固相含量低,使得陶瓷制品的致密度差,精度较低,易导致陶瓷素坯在烧结过程中出现开裂或变形。而SLA、DLP光固化成型工艺由于成型精度高、表面质量优良、可制作结构比较复杂的零件,广泛应用于航空航天、机械、电子通讯以及医用医疗等领域。

陶瓷制品的SLA、DLP光固化成型工艺与光敏树脂的光固化工艺相似,区别在于陶瓷制品使用的陶瓷浆料中由于陶瓷粉体的加入,使得体系的粘度上升,从而使得光固化工艺工程变得更为复杂。同时,陶瓷浆料中光敏有机材料浓度远高于传统机械成型工艺中使用的浆料,使得光固化成型后的陶瓷素坯需要更长的脱脂时间;烧结后的陶瓷制品的收缩率远高于传统机械成型工艺制品,且易出现裂纹或变形,不利于精密MLCC等陶瓷电子器件的制造。

综上,解决上述问题,得到一种陶瓷浆料,用于固形制备精度高、表面质量优的陶瓷制品具有重要意义。

发明内容

本发明的目的在于提供一种陶瓷浆料的制备方法及固形方法,以解决上述背景技术中提出的问题。

为了解决上述技术问题,本发明提供如下技术方案:

一种陶瓷浆料的制备方法,包括以下步骤:将氧化物混合球磨,加入光敏树脂和助剂搅拌混合,加入陶瓷粉体搅拌均质化,得到固含量大于50%的陶瓷浆料。其中,最佳固含量为80~85%。

较为优化地,所述氧化物为氧化物A和氧化物B的混合物;所述氧化物A为SiO2、Al2O3、ZrO2、CaO、MgO中一种或多种;所述氧化物B为TiO2或表面改性的TiO2。其中,较优化的方案为二氧化硅表面改性的TiO2。氧化物A和氧化物B两者之间产生瑞利散射作用。

较为优化地,所述光敏树脂为醛类光敏树脂。其中,醛类光敏树脂包括聚醛树脂、脲醛树脂等。

较为优化地,所述陶瓷粉体在UVA条件下光谱透光率高于50%。

较为优化地,所述陶瓷浆料的原料包括以下成分:50~85vol%陶瓷粉体、10~45vol%光敏树脂、1~4vol%氧化物、1~4vol%助剂;所述助剂为分散剂、表面活性剂中一种或两种。

较为优化地,所述陶瓷粉体的粒径为100~500nm;所述陶瓷粉体为氧化物陶瓷粉体、氮化物陶瓷粉体、碳化物陶瓷粉体、钛酸盐陶瓷粉体中一种或多种。其中,较优化选择为碱金属钛酸盐、Al2O3等高透过率材料。

较为优化地,所述氧化物A的粒径小于氧化物B;所述氧化物A的粒径为5~20nm;所述氧化物B的粒径为15~40nm。

较为优化地,一种陶瓷浆料的固形方法,将陶瓷浆料通过光固化3D打印机逐层打印,成型,得到陶瓷生坯;将其转移至惰性气氛的排胶炉中,在紫外灯照射下进行脱脂;干燥,转移至真空或惰性气体的烧结炉中,控温烧结,得到陶瓷制品。

较为优化地,所述光固化3D打印机为SLA型或DLP型,光固化的波长为300~400nm;逐层打印中,每一层的厚度为1~20μm;紫外灯的波长为300~400nm。

较为优化地,所述脱脂为热脱脂或催化脱脂;所述热脱脂的条件为:以升温速率为0.5~10℃/min升温至300~800℃;过程中每升温至100~300℃保温0.5~3小时;所述催化脱脂的条件为:在酸催化剂下,设置温度小于200℃。

技术方案中,提供了一种陶瓷浆料,选用合适粒径的陶瓷粉体搭配醛类光敏树脂作为陶瓷浆料主体,并辅助以氧化剂,选择性加入助剂,形成高固相含量和低粘度的陶瓷浆料;并利用光固化3D打印机,将陶瓷浆料应用于制备致密度高、精度高、表面质量优的陶瓷制品。

在陶瓷浆料的制备方法中,(1)利用具有光催化性能的氧化剂A、氧化剂B之间产生的瑞利散射作用,解决传统紫外固化陶瓷浆料中固相含量低的问题;加速光固化成型过程,缩短表面固形时间;加速脱脂进程,将脱脂过程中的有机大分子分解为小分子CO2和H2O,避免陶瓷制品中有机小分子残留;并利用氧化剂A、氧化剂B、陶瓷粉体之间的相容性,增强烧结晶体的稳定性。(2)光敏树脂采用醛类的树脂,因为该类树脂在脱脂过程中仅产生甲醛类气体,从而被氧化剂光催化分解为CO2和H2O,避免了其他高分子杂质的产生,从而产生质量优异的陶瓷制品。(3)透光率高于50%的陶瓷粉体有利于降低陶瓷制品的制备时间,增强陶瓷制品的品质。(4)分层打印,通过提高每层的固化质量,完成晶界的细化,提升器件质量。

在陶瓷浆料的固形方法中,(1)光固化阶段:采用SLA型或DLP型的光固化3D打印机,逐层打印,得到陶瓷生坯。过程中,陶瓷浆料固相含量高造成透过率低于传统紫外固化浆料,因此在打印过程中采用两侧或单侧曝光,利用瑞利散射效应快速表面固形;同时,每层打印厚度大于1μm时,中心固化程度较弱,如果继续进行紫外曝光固化,则表面光敏树脂可能接受过多的紫外光子能量,发生变形、黑边等情况,同时高分子材料间的结合应力发生变化,造成器件保形率趋势向坏,因此,该过程中得到的陶瓷生坯是表面全固化、中心半固化状态。(2)脱脂阶段:将后固化和脱脂同时进行,去脂时除去表面全固化有机物时,同时在紫外灯的照射下固化中心半固化部分,进而保障器件去脂阶段的固形问题。同时,采用紫外光源照射下的热脱脂或催化脱脂技术。其中,紫外光源照射至陶瓷生坯表面的辐照强度小于紫外光固化成形时的能量,紫外灯辐照强度是光固化辐照强度的40%~60%。由于后固化的进行,以及紫外光源对中心半固形的光敏树脂进行完全固化,保证了陶瓷生坯不发生因为应力变化导致的塌陷、裂痕等问题出现。另外,第一:由于陶瓷生坯中存在氧化剂的光催化能力,相较于传统脱脂过程,进一步提高了脱脂效率,提高固相比。第二:氧化物联合醛类光敏树脂,使得脱脂过程中仅产生CO2和H2O,相比于传统脱脂工艺,避免了陶瓷粉末表面附着其他高分子物质,使得陶瓷生坯的脱脂程度接近理想值,在进入烧结时,不产生有机物造成的污染缺陷。第三:氧化剂作为强化剂,包覆在主体表面及大粒径陶瓷粉体间隙,在烧结时完成空隙的填充和大粒径粉体的固结,阻止陶瓷粉体的晶体再增长,保证了陶瓷器件的表面平整度。

综上所述,与现有技术相比,本发明所达到的有益效果是:(1)通过优化陶瓷浆料的组成和配比,在不提高紫外曝光强度的情况下,完成表面快速固形,实现高固相材料的光固化3D打印。(2)脱脂过程中,引入紫外再固化工艺,实现了保形脱脂效果,避免了陶瓷生坯在传统脱脂过程中应力变化引起的塌陷、裂痕等问题。(3)脱脂过程中,引入光催化脱脂技术,进一步完成有机物的分解,实现完全脱脂,减少脱脂时间。(4)可以实现陶瓷生坯固相含量超过90%的工艺水平。

附图说明

附图用来提供对本发明的进一步理解,并且构成说明书的一部分,与本发明的实施例一起用于解释本发明,并不构成对本发明的限制。在附图中:

图1是实施例1中陶瓷生坯脱脂的扫描电镜图。

具体实施方式

下面将对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。

实施例1:

步骤1:将3vol%氧化物混合球磨,氧化物包括氧化物A和氧化物B,加入18vol%光敏树脂和2vol%助剂搅拌混合,加入77vol%陶瓷粉体搅拌均质化,得到固含量为82%的陶瓷浆料。

步骤2:设置光固化的波长为400nm,将陶瓷浆料通过DLP型光固化3D打印机逐层打印,每一层的厚度为10μm,成型,得到陶瓷生坯;将陶瓷生坯表面清洗,置于60℃的烘箱中干燥2小时,转移至惰性气氛的排胶炉中,在波长为400nm的紫外灯照射下,以升温速率为2℃/min升温至500℃;过程中每升温至100℃保温1小时,进行脱脂;再次干燥,转移至真空或惰性气体的烧结炉中,控温烧结,得到陶瓷制品。

本方案中,氧化物A为10nm的SiO2;氧化物B为20nm的TiO2。光敏树脂脲醛树脂。陶瓷粉体为250nm的Al2O3和碱金属钛酸盐混合物,在UVA条件下光谱透光率为58%。助剂为聚乙烯吡咯烷酮。

实施例2:

步骤1:将4vol%氧化物混合球磨,氧化物包括氧化物A和氧化物B,加入45vol%光敏树脂和1vol%助剂搅拌混合,加入50vol%陶瓷粉体搅拌均质化,得到固含量为55%的陶瓷浆料。

步骤2:设置光固化的波长为400nm,将陶瓷浆料通过SLA型光固化3D打印机逐层打印,每一层的厚度为1μm,成型,得到陶瓷生坯;将陶瓷生坯表面清洗,置于60℃的烘箱中干燥2小时;转移至惰性气氛的排胶炉中,在波长为400nm的紫外灯照射下,升温速率为2℃/min升温至500℃;过程中每升温至100℃保温1小时,进行脱脂;再次干燥,转移至真空或惰性气体的烧结炉中,控温烧结,得到陶瓷制品。

本方案中,氧化物A为5nm的Al2O3;氧化物B为15nm的TiO2。光敏树脂为聚醛树脂。陶瓷粉体为100nm的碱金属钛酸盐,在UVA条件下光谱透光率为62%。所述助剂为聚乙烯吡咯烷酮。

实施例3:

步骤1:将1vol%氧化物混合球磨,氧化物包括氧化物A和氧化物B,加入10vol%光敏树脂和4vol%助剂搅拌混合,加入85vol%陶瓷粉体搅拌均质化,得到固含量为85%的陶瓷浆料。

步骤2:设置光固化的波长为300nm,将陶瓷浆料通过DLP型光固化3D打印机逐层打印,每一层的厚度为20μm,成型,得到陶瓷生坯;将陶瓷生坯清洗,置于55℃的烘箱中干燥1小时,转移至惰性气氛的排胶炉中,在波长为300nm的紫外灯照射下,使用草酸催化剂,设置温度为150℃,进行脱脂;再次干燥,转移至真空或惰性气体的烧结炉中,控温烧结,得到陶瓷制品。

本方案中,氧化物A为20nm的SiO2、Al2O3、ZrO2、CaO、MgO中一种或多种;氧化物B为40nm的二氧化硅表面改性的TiO2。光敏树脂为聚醛树脂。陶瓷粉体为500nm的Al2O3,在UVA条件下光谱透光率为52%。所述助剂为乙烯基三甲氧基硅烷。

对比例1:将氧化物全部使用氧化物A,其余与实施例1相同。

对比例2:氧化物A的直径大于氧化物B,氧化物A为20nm的SiO2,氧化物B为10nm的TiO2;其余与实施例1相同。

对比例3:将脲醛树脂更换为聚酯丙烯酸酯树脂,其余与实施例1相同。

对比例4:陶瓷粉体为平均粒径为420nm的Al2O3、碳化硅、碳化锆混合物,在UVA条件下光谱透光率为41%,其余与实施例1相同。

实验:将实施例和对比例中制备的陶瓷制品进行相对密度、表层硬度、外观等性能表征,结果如下所示:

实施例 相对密度/% 表层硬度/Gpa 外观
实施例1 >98% 20.6 无变形、无黑点
实施例2 >98% 20.5 无变形、无黑点
实施例3 >98% 20.3 无变形、无黑点
对比例1 >98% 18.5 有裂纹、有黑点
对比例2 >98% 19.8 有裂纹、有黑点
对比例3 <98% 18.6 有裂纹、有黑点
对比例4 <98% 17.5 有变形、有黑点

结论:由实施例1~3的实验数据可知:优化的陶瓷浆料,在不提高紫外曝光强度的情况下可,实现高固相材料的光固化3D打印;同时其表面硬度高,并未出现塌陷、裂痕等问题,也并未出现黑点和其他杂质;同时实现了陶瓷制品相对密度均大于98%。

将实施例1与其他对比例相比可知:对比例1中,由于未加入氧化物B,降低了瑞利散射效果出现,使得光固化成型过程变慢,表面固形较差,表面硬度降低;脱脂进程变慢,有机大分子分解为小分子CO2和H2O不完全存在小分子有机物,造成树脂长时间固化过程中,出现碳化黑点;同时,烧结晶体的稳定性降低。对比例2中氧化物A的直径大于氧化物B瑞利散射效应较弱,并无产生变形,但存在黑点。对比例3中,由于树脂更换,使得脱脂过程中产生了不能完全分解的有机分子,使得表面硬度下降,由于脱脂不完全产生裂纹和黑点。对比例4中,由于陶瓷粉体的光谱透光率为小于50%,显著降低了固化成形的效率,从而使得表面硬度的降低,且陶瓷器件存在变形。

最后应说明的是:以上所述仅为本发明的优选实例而已,并不用于限制本发明,尽管参照前述实施例对本发明进行了详细的说明,对于本领域的技术人员来说,其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

8页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种高精度陶瓷3D打印膏料及其制备方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!