一种介电陶瓷组合物及其制备方法与应用

文档序号:162854 发布日期:2021-10-29 浏览:30次 >En<

阅读说明:本技术 一种介电陶瓷组合物及其制备方法与应用 (Dielectric ceramic composition and preparation method and application thereof ) 是由 陈仕军 马艳红 邱基华 于 2021-07-15 设计创作,主要内容包括:本发明公开一种介电陶瓷组合物及其制备方法与应用,涉及介电陶瓷及使用了它的多层陶瓷电容器。本发明所述介电陶瓷组合物,包括主成分、副成分和镁的化合物;所述主成分为以通式ABO-(3)所表示的化合物,A为二价主族金属元素,B为四价副族金属元素;所述副成分包括M1、M2和M3,所述M1为La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、Y中至少一种,所述M2为Mn、V、Cr、Fe、Ni、Zn、Mo中至少一种,所述M3为Si、Al、B、Li中至少一种;所述镁的化合物为镁的氧化物或镁盐;所述介电陶瓷组合物中,M2和M3的摩尔百分比之和与镁的化合物的摩尔百分比的比值为:(b+c)/d=0.8~5。(The invention discloses a dielectric ceramic composition, a preparation method and application thereof, and relates to dielectric ceramic and a multilayer ceramic capacitor using the same. The dielectric ceramic composition of the present invention comprises a main component, a subcomponent and a compound of magnesium; the main component is represented by the general formula ABO 3 The compound is represented by A is a divalent main group metal element and B is a tetravalent accessory group metal element; the accessory components comprise M1, M2 and M3, wherein M1 is at least one of La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu and Y, M2 is at least one of Mn, V, Cr, Fe, Ni, Zn and Mo, and the likeM3 is at least one of Si, Al, B and Li; the magnesium compound is an oxide or a magnesium salt of magnesium; in the dielectric ceramic composition, the ratio of the sum of the mole percentages of M2 and M3 to the mole percentage of the magnesium compound is: (b &#43; c)/d is 0.8 to 5.)

一种介电陶瓷组合物及其制备方法与应用

技术领域

本发明涉及介电陶瓷及使用了它的多层陶瓷电容器,尤其是一种介电陶瓷组合物及其制备方法与应用。

背景技术

随着信息化设备电路集成程度的不断提高,安装于电路中各种电子元件的小型化,高容量化也在不断推进。多层陶瓷电容器作为代表性的陶瓷电子元件之一,通常由陶瓷体(由陶瓷材料组成),内部电极(在陶瓷体内部,形成多层结构),外部电极(在陶瓷体外部,以连接对应的内部电极)三部分组成,目前陶瓷体所用介电材料以钛酸钡系化合物为主。

由于多层陶瓷电容器的小型化、高容化的要求,介质陶瓷层和内电极层的厚度也在逐渐减薄;陶瓷介质层越薄,其单位厚度承受的电压就越大,从而即使只施加较低的电压给介质层,也可能使介质层发生介电击穿,使得电容器在使用条件下的可靠性降低;在多层陶瓷电容器的制备过程中,内电极层和介质陶瓷是采用共烧的方法进行的,从而内电极层越薄,在共烧过程中,其电极连续性也会变差,使得产品的静电容量降低;此外,随着薄层化的推进,以及更加严苛的使用环境,介质陶瓷层和内电极,以及它们的界面,更容易产生物理缺陷,从而使得产品失效。

目前制备介电陶瓷时,主成分是ABO3表示的化合物,其中A是Ba、Sr、Ca,B是Ti、Zr、Hf,属于多晶结构;副成分主要分为几类,第一类副成分,像La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、Y中的至少一种;第二类副成分,像Mg、Ni、Mn、Co、Fe、Cr、Cu、Al、Mo、W、V中的至少一种;第三类副成分,像Si、B、Li中的至少一种。

近来,相对廉价的贱金属(如铜,镍)被广泛用作内电极材料,但这些贱金属在高温氧化性气氛中容易氧化,从而无法发挥其内电极的作用;当在中性或者还原性气氛中烧结以防止内电极金属氧化,则介电陶瓷层会发生还原并改性成半导体层;为了进一步提高产品可靠性,很多都是通过提高第一类副成分的摩尔百分比,来提高芯壳结构的厚度,来提高产品的可靠性,但是当第一类副成分的摩尔百分比大于5mol%时,其静电电容会有明显下降,难以满足高容的要求;同时,可能会产生烧绿石等二次相,这些二次相的产生,对于产品的耐热冲击性都具有明显的影响(CN1320936A)。

发明内容

基于此,本发明的目的在于克服上述现有技术的不足之处而提供一种介电陶瓷组合物及其制备方法与应用,利用本发明提供的介电陶瓷组合物制备得到的多层陶瓷电容器,在保证其较好的可靠性的同时,取得较高的介电常数和良好的耐热冲击性。

为实现上述目的,本发明所采取的技术方案为:一种介电陶瓷组合物,包括主成分、副成分和镁的化合物;所述主成分为以通式ABO3所表示的化合物,A为二价主族金属元素,B四价副族金属元素;所述副成分包括M1、M2和M3,所述所述M1为La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、Y中至少一种,所述M2为Mn、V、Cr、Fe、Ni、Zn、Mo中至少一种,所述M3为Si、Al、B、Li中至少一种;所述镁的化合物为镁的氧化物或镁盐;所述介电陶瓷组合物中,M1的摩尔百分比为a,M2的摩尔百分比为b,M3的摩尔百分比为c,镁的化合物的摩尔百分比为d;所述介电陶瓷组合物中,M2和M3的摩尔百分比之和与镁的化合物的摩尔百分比的比值为:(b+c)/d=0.8~5;且b、c、d均不为0。

由于金属和陶瓷的润湿性问题,单纯的陶瓷和金属的界面结合力是比较弱的,因而多层陶瓷电容器在介质陶瓷和金属内电极交错的这种结构,很容易在温度,电压等条件作用下产生裂纹,甚至导致失效,性能测试中表现为电极连续性及耐热冲击性变差、寿命特性恶化;本发明的介电陶瓷组合物以ABO3所表示的化合物为主成分,具体通式为ABO3+a M1+b M2+c M3+d MgX。本申请发明人研究发现,组分M2、玻璃组分M3和镁的化合物的摩尔百分比b、c、d之间存在一定的关系,当(b+c)/d过小时,副成分M1对于内电极和陶瓷介质层界面的润湿性改善不明显,使得电极连续性变差,耐热冲击性变差;当(b+c)/d过大时,绝缘特性低下,寿命特性恶化。本发明控制了副成分M2、M3与镁的化合物的比值,因为虽然为了形成芯壳结构,保证多层陶瓷电容器的可靠性,添加镁的化合物是必要的,但由于镁的化合物的存在,其也会从介质层中向介质层和电极层的界面处扩散,且会在电极层表面形成二次相,破坏电极连续性,同时可造成多层陶瓷电容器烧结性差,寿命特性也发生恶化,耐热冲击性也较差,二次相的形成会消耗Ni元素,导致不能与副成分M2、M3共同作用形成过渡层,因此要控制添加M2、M3与MgO之间的比例范围。

进一步优选地,所述介电陶瓷组合物中,M2和M3的摩尔百分比之和与镁的化合物的摩尔百分比的比值为:(b+c)/d=1~3。本申请发明人经过大量创造性试验研究发现,采用上述比值选择时,得到的介电陶瓷组合物应用在多层陶瓷电容器中,多层陶瓷电容器的可靠性更好,也可以取得较高的介电常数和良好的耐热冲击性。

优选地,所述主成分中,A位主元素包含Ba、Ca、Sr中的至少一种,B位主元素包含Ti、Zr、Hf中的至少一种。

优选地,所述介电陶瓷组合物中,M1的摩尔百分比为0.1%~5%。优选地,所述介电陶瓷组合物中,M2的摩尔百分比为0.05%~3%,M3的摩尔百分比为0.05%~10%,镁的化合物的摩尔百分比为0.05%~5%。

本发明通过对副成分的调控,在保证其较好的可靠性的同时,取得较高的介电常数和良好的耐热冲击性,使得其在薄介质层陶瓷电容器的制备过程中,具有良好的性能指标。本发明通过对副成分的元素选择和调控,使得介质陶瓷和金属内电极之间形成一层互扩散过渡层,大大提升了界面的结合力,即耐热冲击性;且副成分M2和M3对过渡层的形成有明显改善作用,这主要是因为副成分M2在烧结过程中,可改善其和Ni的界面润湿性,使得过渡层更容易形成;M3在烧结过程中,会在介质陶瓷致密化前期形成液相,并在致密化过程中协助副成分M2向界面层移动,使得过渡层更容易形成;同时,过渡层的形成,也使得内电极金属在介质陶瓷层的覆盖率提高,从而提高了其实际多层陶瓷电容器的介电常数。M1稀土元素主要是为了形成稀土掺杂的钛酸钡芯壳结构的,主要作用是保证多层陶瓷电容器的可靠性和TCC温度特性;本发明镁的化合物主要是为了起到减缓稀土元素向晶格扩散的作用,保证在正常的烧结工艺进程中,防止由于稀土元素扩散过快,进入晶格中取代主位元素形成固熔体。

本申请发明人经过大量创造性试验研究发现,稀土元素M1的摩尔百分比a与电容率、烧结性、绝缘电阻等密切相关,当a过多时,静电容量温度系数稳定化,电容率低,烧结性低下,绝缘电阻劣化;当a过少时,高温绝缘电阻低,高温寿命时间缩短。组分M2的摩尔百分比b与绝缘电阻、耐热冲击性等密切相关,当b过少时,耐还原性低下,绝缘电阻减小,难以形成界面过渡层,耐热冲击性能差;当b过多时,容易发生半导化,老化率及DC-bias特性低下。玻璃组分M3的摩尔百分比c过少时,烧结性低下,绝缘电阻特性较差,在烧成过程中传质能力较弱,难以形成连续的界面过渡层;当c过多时,晶粒容易长大,寿命特性恶化。镁的化合物的摩尔百分比d过少时,难以和M1协同形成芯壳结构,寿命特性恶化,温度特性较差;当d过多时,烧结性低下,且电极连续性较差。

此外,本发明提供了所述的介电陶瓷组合物在多层陶瓷电容器中的应用。进一步地,本申请提供了一种包含所述的介电陶瓷组合物的多层陶瓷电容器。

优选地,所述多层陶瓷电容器的制备方法,包括如下步骤:

(1)将主成分、3种副成分、镁的化合物、粉碎介质和水混合球磨,干燥后得到陶瓷原料粉末;

(2)将步骤(1)中制备得到的陶瓷原料粉末和有机粘合剂、有机溶剂、粉碎介质混合球磨,得到陶瓷浆料,对陶瓷浆料进行成型加工,得到陶瓷生片;

(3)使用导电膏在步骤(2)中得到的陶瓷生片上进行丝网印刷,在陶瓷生片表面得到给定图案的导电膜;

(4)按照给定方向,放置多层含有导电膜的陶瓷生片,最后一层为不含导电膜的陶瓷生片,压接、切断后得到多层陶瓷层叠体;

(5)将步骤(4)中制备得到的多层陶瓷层叠体加热处理,后烧结处理,陶瓷烧结体;

(6)在步骤(4)中制备得到的陶瓷烧结体两端面涂覆外部电极用导电膏,烘烤处理后,形成外部电极,在外部电极表面通过电解的方式,镀覆第一镀覆膜和第二镀覆膜,得到所述多层陶瓷电容器。

优选地,所述步骤(1)中,主成分的粒径为0.15~0.2μm;所述步骤(2)中,得到陶瓷生片的厚度≤2μm;所述步骤(3)中,导电膏为以贱金属材料为主成分的内部电极用导电膏;所述步骤(4)中,给定方向是指按照印刷图案确定叠层方向。

优选地,所述步骤(5)中,加热处理的温度为250~350℃,烧结处理的温度为1100~1300℃,烧结处理的时间为1.5~2.5h,烧结处理在强还原性气体的氛围下进行;所述步骤(6)中,导电膏为以银、铜、银铜合金为主成分的外部电极用导电膏,烘烤处理的温度为600~900℃,第一镀覆膜的材料包含Ni、Cu、Ni-Cu合金中的至少一种,第二镀覆膜的材料包含焊料、锡中的至少一种。

相对于现有技术,本发明的有益效果为:通过对成分的调控,在保证其较好的可靠性的同时,取得较高的介电常数和良好的耐热冲击性,使得其在薄介质层陶瓷电容器的制备过程中,具有良好的性能指标。

具体实施方式

为更好的说明本发明的目的、技术方案和优点,下面将结合具体实施例对本发明作进一步说明。

实施例中,所使用的实验方法如无特殊说明,均为常规方法,所用的材料、试剂等,如无特殊说明,均可从商业途径得到。

本发明介电陶瓷组合物的具体实施例的组分及摩尔百分比选择如下表1所示:

表1具体实施例的组分及摩尔百分比

本发明的一种实施例,本实施例所述多层陶瓷电容器的制备方法,包括如下步骤:

(1)将主成分BaTiO3、3种副成分、镁的化合物MgO、粉碎介质和水混合球磨,主成分的粒径为0.1~0.2μm,干燥后得到陶瓷原料粉末;

(2)将步骤(1)中制备得到的陶瓷原料粉末和有机粘合剂(不同分子量的聚乙烯醇缩丁醛)、有机溶剂(甲苯、乙醇等)、粉碎介质混合球磨,得到陶瓷浆料,对陶瓷浆料进行成型加工,得到陶瓷生片,陶瓷生片的厚度≤2μm;

(3)使用导电膏在步骤(2)中得到的陶瓷生片上进行丝网印刷,导电膏为以贱金属材料镍或铜为主成分的内部电极用导电膏,在陶瓷生片表面得到给定图案的导电膜;

(4)按照给定方向,放置多层含有导电膜的陶瓷生片,最后一层为不含导电膜的陶瓷生片,压接、切断后得到多层陶瓷层叠体;

(5)将步骤(4)中制备得到的多层陶瓷层叠体加热处理,后烧结处理,陶瓷烧结体;加热处理的温度为300℃,烧结处理的温度为1200℃,烧结处理的时间为2h,烧结处理在强还原性气体的氛围下进行;

(6)在步骤(4)中制备得到的陶瓷烧结体两端面涂覆外部电极用导电膏,烘烤处理后,形成外部电极,在外部电极表面通过电解的方式,镀覆第一镀覆膜和第二镀覆膜,得到所述多层陶瓷电容器;导电膏为以铜为主成分的外部电极用导电膏,烘烤处理的温度为600~900℃;第一镀覆膜的材料为Ni,第二镀覆膜的材料为锡。

本发明实施例和对比例所述多层陶瓷电容器的制备方法与实施例1完全相同,仅组分及摩尔百分比不同;本发明对比例的组分及摩尔百分比选择如下表2所示:

表2具体对比例的组分及摩尔百分比

M1 a M2 b M3 c d (b+c)/d
对比例1 Dy+Y+Ho 1.4 Mn+V+Ni 1 Si+Al 1 4 0.50
对比例2 Dy+Y+Ho 1.4 Mn+V+Ni 2 Si+Al 7 1.5 6.00
对比例3 Dy+Y+Ho 0 Mn+V+Ni 0.8 Si+Al 1.3 1.5 1.40
对比例4 Dy+Y+Ho 8 Mn+V+Ni 0.8 Si+Al 1.3 1.5 1.40
对比例5 Dy+Y+Ho 8 Mn+V+Ni 0.8 Si+Al 0 1.5 0.53
对比例6 Dy+Y+Ho 8 Mn+V+Ni 0 Si+Al 1.3 1.5 0.87
对比例7 Dy+Y+Ho 1.4 Mn+V+Ni 2 Si+Al 12 4 3.50
对比例8 Dy+Y+Ho 1.4 Mn+V+Ni 6.97 Si+Al 0.03 5 1.40
对比例9 Dy+Y+Ho 1.4 Mn+V+Ni 2.4 Si+Al 6 6 1.40
对比例10 Dy+Y+Ho 1.4 Mn+V+Ni 0.05 Si+Al 0.05 0.02 5.00

效果验证

本发明进行介电常数、介电损耗、耐热冲击性、加速寿命试验、电极连续性试验测试,具体测试过程如下:

介电常数:使用自动桥接式测定器,在频率1KHz、实效电压0.5Vrms、温度25℃的条件下测定静电电容C,再结合样品尺寸,计算出该样的介电常数;

介电损耗:使用自动桥接式测定器,在频率1KHz、实效电压0.5Vrms、温度25℃的条件下测定样品介电损耗;

耐热冲击性:每类样品取40只,在温度设定为250℃和350℃的焊料槽中分别进行3分钟浸渍,再从焊料槽中取出,用树脂固定后,进行研磨,在显微镜下观察,确认是否存在裂缝,只要存在裂缝,该样即判定为NG品,NG只数越少耐热冲击性越好。热冲击250℃无开裂,350℃开裂比例小于20%,可满足使用要求。

加速寿命试验:每个试样取样40只,利用高加速寿命试验箱,在150℃下,按10V/um加压测试,记录发生失效的时间,时间越长,相对样品寿命越好。加速寿命大于90可满足使用要求。

电极连续性:每类样品随机取10颗,用环氧树脂固化后,采用研磨机和抛光机对样品的LT面进行加工(长度方向*厚度方向),表面没有明显划痕为止,采用奥林巴斯显微镜下进行照片拍摄,将样品划分为上中下三个部分,在这三个部分分别取左中右三个区域,一共九个区域进行照片拍摄,再采用相关软件对所拍照片统计电极有效长度,最终再取平均值,得到该样品的电极连续性。电极连续性大于80%可满足使用要求。

试验结果如表2所示;

表2性能测试结果

由表2性能测试结果可知,对比例1由于(b+c)/d偏低,从而在界面上形成较多的二次相,使得电极连续性有明显下降,从而耐冲击NG比例偏高;

对比例2电极连续性较好,但(b+c)/d偏高,使得晶粒容易长大,使得其可靠性有一定程度的下降;

对比例3中由于没有添加副成分M1,从而其难以形成芯壳结构,其可靠性较差;

对比例4中M1添加量过多,其可靠性较好,但由于其介电常数偏低,从而难以应用在超薄膜带,高K值产品中;

对比例5未添加副成分M3,从而使得其可烧结性明显降低,且在烧结过程中,缺少传质液相,未形成较好的过渡层,其电机连续性和耐热冲击性较差;

对比例6中未添加剂副成分M2,其在还原性气氛烧结过程中,抗还原性较差,从而其可靠性明显恶化;

对比例7电极连续性较好,由于M3成分的添加量偏高,使得晶粒容易长大,使得其可靠性有一定程度的下降;

对比例8中副成分M2添加量过多,使得介质陶瓷基体有明显的半导化,其可靠性明显恶化;

对比例9中由于添加剂Mg的量过多,从而使得其在界面处形成明显的二次相,使得其电极连续性变差;

对比例10中Mg的添加量过少,致使其难以形成芯壳结构,可靠性明显恶化;

实施例5,6中各组分添加量适中,使得其在具有较好的可靠性的同时,其电极连续性也有明显提高,且同时具有较高的介电常数。

最后所应当说明的是,以上实施例仅用以说明本发明的技术方案而非对本发明保护范围的限制,尽管参照较佳实施例对本发明作了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的实质和范围。

10页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种介电常数大于12000的介电材料及制备方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!