氮化硅陶瓷零件及其制造方法

文档序号:162876 发布日期:2021-10-29 浏览:32次 >En<

阅读说明:本技术 氮化硅陶瓷零件及其制造方法 (Silicon nitride ceramic component and method for producing same ) 是由 曹冲 张振翀 马金秋 于 2021-07-05 设计创作,主要内容包括:本发明涉及陶瓷材料领域,具体涉及一种氮化硅陶瓷零件及其制造方法。本发明所述的氮化硅陶瓷零件,由以下质量百分比的原料制造而成:硅粉50~80%,α-Si-(3)N-(4)20~50%,粘结剂的质量占硅粉和α-Si-(3)N-(4)总质量的5~30%,助烧剂的质量占硅粉和α-Si-(3)N-(4)总质量的0.5~5%;硅粉为工业硅粉,纯度99.5%以上,粉末粒径为5~70μm;α-Si-(3)N-(4)的中位粒径为10±0.5μm。本发明提供一种氮化硅陶瓷零件,既能保持氮化硅陶瓷的高强度、高抗弯性能、高硬度的性能优势,又能降低生产成本,达到市场推广的目的;本发明还提供其制备方法。(The invention relates to the field of ceramic materials, in particular to a silicon nitride ceramic part and a manufacturing method thereof. The silicon nitride ceramic part is prepared from the following raw materials in percentage by mass: 50-80% of silicon powder and alpha-Si 3 N 4 20-50%, and the mass of the binder accounts for silicon powder and alpha-Si 3 N 4 5-30% of the total mass, and the sintering aid accounts for the mass of the silicon powder and the alpha-Si 3 N 4 0.5-5% of the total mass; the silicon powder is industrial silicon powder, the purity is more than 99.5 percent, and the particle size of the powder is 5-70 mu m; alpha-Si 3 N 4 Has a median particle diameter of 10. &#43; -. 0.5. mu.m. The invention provides a silicon nitride ceramic part, which not only can keep the performance advantages of high strength, high bending resistance and high hardness of silicon nitride ceramic, but also can reduce the production cost and achieve the aim of market promotion; the invention also provides a preparation method of the composition.)

氮化硅陶瓷零件及其制造方法

技术领域

本发明涉及陶瓷材料领域,具体涉及一种氮化硅陶瓷零件及其制造方法。

背景技术

Si3N4陶瓷是一种重要的结构材料,具有硬度大,本身润滑性好,并且耐磨损承受力强,因此成为制造滚珠轴承、气轮机叶片、机械密封环、永久性模具等零部件的重要材料。

最早的硅粉氮化的方法合成Si3N4粉末的方法,成本较低,可以大规模生产,但产品粒度大,将纯度较高的硅粉置于反应炉内通氮气或氨气,加热到1200~1400℃进行氮化反应就可得到Si3N4粉末,但是原始这种由低廉价格的硅粉制备的氮化硅部件,强度、韧性和耐腐蚀性性能很低,很难满足先进汽车精细零件,工程要求比较高的零部件;并且,以硅粉氮化成氮化硅,需要将硅粉颗粒首先氮化为氮化硅,然后制作成型,制备工艺比较复杂,成型工艺繁琐,成型率较低。

SLS技术采用激光有选择的分层烧结固体粉末,并使烧结成型的固化层叠加,生成所需形状的制件,利用SLS技术成型陶瓷零件时,需要加入熔点较低的高分子材料作为粘结剂,得到的零件素坯还要依次通过排胶、高温烧结等工艺去除粘结剂,这又导致了素坯强度和致密度的下降。

目前市场上为满足高强度,高耐磨性的的氮化硅材料,多采用价格昂贵的纯度高的氮化硅粉末来满足市场的零件需求,但是昂贵的氮化硅原材料极大的限制了氮化硅陶瓷零件市场的推广与扩展,因此急需寻找一种制造成本低,制造工艺简单,又能依旧保证氮化硅陶瓷零件的高强度、高耐性、高抗弯性能的工艺方法,使氮化硅陶瓷零件得到规模性推广。

CN104609867A专利公开了一种选择性激光烧结陶瓷件的致密方法,包括选择性激光烧结技术打印陶瓷零件素坯,进行两次真空压力浸渍,将陶瓷零件进行包套后抽真空,然后经过冷等静压、排胶、预烧结、热等静压处理的制备步骤,制备的陶瓷零件,气孔率低,提高了零件致密度和强度,而采用的则是高纯度的氮化硅粉末或者氧化铝粉末原料,以此改善陶瓷零件的致密性和强度。

CN104628393B专利公开了一种高性能陶瓷的制备方法,包括陶瓷零件素坯、排胶处理、冷等静压处理、预烧结处理、热等静压包套制作同步送粉激光熔覆处理、热等静压烧结,精米加工的制备步骤,采用的是高纯度的氮化硅粉末为原料,无需抽真空,封装,周期短,效率高,成本低,强度高,性能好,但是零件的致密度受到了限制。

以上两件公开专利的第二发明人,作为本申请的发明人,在后期使用过程中,发现市场上高纯氮化硅粉末约在每千克在几百到几千不等,而普通工业硅粉价格低廉很多,这些原材料的成本高,令企业难以接受,市场难以推广的缺点,因此目前急需改变这种现状。

发明内容

本发明要解决的技术问题是提供一种氮化硅陶瓷零件,既能保持氮化硅陶瓷的高强度、高抗弯性能、高硬度的性能优势,又能降低生产成本,达到市场推广的目的;本发明还提供其制备方法。

本发明所述的氮化硅陶瓷零件,由以下质量百分比的原料制造而成:

硅粉 50~80%,

α-Si3N4 20~50%,

粘结剂的质量占硅粉和α-Si3N4总质量的5~30%,

助烧剂的质量占硅粉和α-Si3N4总质量的0.5~5%;

硅粉为工业硅粉,纯度99.5%以上,粉末粒径为5~70μm;

α-Si3N4的中位粒径为10±0.5μm。

粘结剂为双酚A型环氧树脂,粒径为10-50μm。

助烧剂为氧化镁、氧化锆、碳粉中的一种或多种。

本发明所述的氮化硅陶瓷零件的制造方法,包括以下步骤:

(a)选择性激光烧结技术制作零件素坯;

(b)第一次真空压力浸渍;

(c)第一次冷等静压处理;

(d)排胶处理;

(e)第二次真空压力浸渍;

(f)第二次冷等静压处理;

(g)反应烧结;

(h)精密加工。

选择性激光烧结技术中激光器为35~60W的CO2激光器,预加热温度为40~60℃,单层厚度为0.1~0.2mm,扫描间距为0.1~0.2mm,扫描速度800~4000mm/s。

第一次真空压力熔渗浸渍中将零件素坯体置入真空箱中,抽真空至100pa~200pa,保压15~60min后注入8%~30%浓度的纳米Si3N4悬浮液淹没零件素坯,在真空状态下继续保持10min~20min,常压静置15min~60nin,再往真空压力浸渍器中充入氮气对浸渍液渗压20~60min,压力200Pa~300pa,将零件素坯放入烘箱中于80℃~120℃干燥1h~3h,将零件素坯使用包套密封包覆后进行抽真空处理。

第一次冷等静压升降压速度5MPa/s,压力升至200MPa,保压30s再降压。

排胶处理首先以2~4℃/min的速度升至粘结剂软化点温度T1-10℃,再以2℃/min的升温速度升至150~170℃,保温1.5h,最后以2℃/min的速度升至T2+50℃,保温2h;T1为粘结剂熔点或者软化点,T2为完全分解温度。

第二次冷等静压升降压速度2MPa/s~4MPa/s,压力升至300MPa,保压30s再降压。

将零件素坯置于烧结气氛为1atm的流动氮气气氛烧结炉中,以2~8℃/min速度升至烧结温度1420℃,保温2h;反应烧结后进行热等静压后处理,温度为1550℃~1700℃,选用氩气或者氮气作为HIP气氛,成型压力为100MPa~300Mpa,保温时间1~6h。

具体地,本发明所述的氮化硅陶瓷零件的制造方法,包括以下步骤:

(a)将质量分数为50~80%的纯度99.5%以上,粉末粒径为5~70μm的工业硅粉、质量分数为20~50%中位粒径为10±0.5μm的α-Si3N4通过球磨混合均匀,然后加入硅粉和α-Si3N4总质量的5~30%的粒径为10-50μm双酚A型环氧树脂和硅粉和α-Si3N4总质量的0.5~5%的助烧剂,采用选择性激光烧结技术(SLS)制作零件素坯,采用三维造型设计软件(如catia、solidworks,pro/E)设计陶瓷零件的三维数字模型,并用切片分层软件将其转为STL格式导入SLS设备,激光器为35~60W的CO2激光器,预加热温度为40~60℃,单层厚度为0.1~0.2mm,扫描间距为0.1~0.2mm,扫描速度800~4000mm/s;添加助烧剂为碳粉时,氮气流量、氮化温度和氮化时间亦根据粉末粒径、零件致密度、零件大小做相应的调整,零件素坯的相对密度为30%~35%;

(b)对零件素坯进行第一次真空压力熔渗浸渍,将零件素坯体置入真空箱中,抽真空至100pa~200pa,保压15~60min后注入8%~30%浓度的纳米Si3N4悬浮液淹没零件素坯,在真空状态下继续保持10min~20min,常压静置15min~60nin,再往真空压力浸渍器中充入氮气对浸渍液渗压20~60min,压力200Pa~300pa,将零件素坯放入烘箱中于80℃~120℃干燥1h~3h,得到一次浸渍处理的零件素坯,将零件素坯使用包套密封包覆后进行抽真空处理;

(c)对零件素坯进行第一次冷等静压处理,升降压速度5MPa/s,压力升至200MPa,保压30s再降压;

(d)对零件素坯排胶处理,除去低温粘结剂,首先以2~4℃/min的速度升至粘结剂软化点温度T1-10℃,再以2℃/min的升温速度升至150~170℃,除尽水蒸气,保温1.5h,最后以2℃/min的速度升至T2+50℃,保温2h;T1为粘结剂熔点或者软化点,T2为完全分解温度;

(e)对零件素坯进行第二次真空压力浸渍,可根据实际需要调整工艺参数或者重复第一次真空压力浸渍;

(f)对零件素坯进行第二次冷等静压处理,升降压速度2MPa/s~4MPa/s,压力升至300MPa,保压30s再降压,零件素坯相对密度约为58%~62%;

(g)将零件素坯置于烧结,气氛为1atm的流动氮气气氛烧结炉中,以2~8℃/min速度升至烧结温度1420℃,保温2h;反应烧结后进行热等静压后处理,温度为1550℃~1700℃,选用氩气或者氮气作为HIP气氛,成型压力为100MPa~300Mpa,保温时间1~6h;

(h)对Si3N4陶瓷零件进行精密加工,表面处理,提高精度和表面质量,制作的Si3N4陶瓷零件主要以α-Si3N4和β-Si3N4为主,含少量游离硅,氮化率均在90%以上。

本发明的氮化硅陶瓷零件,以价格低廉的硅粉为主要原料,采用选择性激光烧结技术(SLS),得到综合性能优良的氮化硅陶瓷零件;其中选择性激光烧结技术(SLS))成型后进行两次真空溶渗浸渍处理,冷等静压处理,最后通过反应烧结使已成型的硅粉零件素坯氮化成为氮化硅零件;采用的SLS技术成型复杂形状的零件,尤其是具有复杂曲面和内部中空的零件,可以通过计算各工艺过程中的收缩率,得到零件的形状和尺寸大小,达到或接近近净成形,减少加工余量,提高效率,缩短制备周期;其中制备工艺中采用两次熔渗浸渍和冷等静压工艺提高其体积密度,降低气孔率,烘干后留下的Si3N4可在高温烧结时做助烧剂,增快氮化速度,提高淡化效率。

反应烧结是通过添加物的作用使反应与烧结同时进行的一种烧结方法,液相反应烧结和气相反应烧结两类,通过反应烧结可提高制品质量,而且收缩小,尺寸变化小,反应速度快,是一种高效低耗的近净成形方法。

本发明利用工业硅粉为原料协同选择性激光烧结技术SLS,在制备工艺中首先SLS形成素坯,然后再利用浸渍、冷等静压处理,进行反应烧结的同时完成硅粉氮化,形成高性能的氮化硅陶瓷部件。

与现有技术相比,本发明具有以下有益效果:

(1)本发明中的氮化硅陶瓷零件,为了降低生产成本,改变零件的配方以及配方比例和制备方法,保证了氮化硅陶瓷零件的高强度、高抗弯性能和高硬度的性能;

(2)本发明中的氮化硅陶瓷零件的制备方法,减少加工余量,提高效率,缩短制备周期;

(3)本发明中的氮化硅陶瓷零件的制备方法,增快氮化速度,提高淡化效率,工艺简单,价格低廉,提高零件素坯的致密度和后期的氮化率,利于市场推广。

附图说明

图1为实施例1的选区激光烧结成型示意图;

图2为实施例1的电镜观察到的Si3N4/Si/EP粉末SLS烧结形貌示意图;

图3为实施例1的依次经SLS成型、冷等静压、排胶、气压烧结后的负球面零件示意图;

图4为实施例1的冷等静压前后氮化硅素坯SEM形貌图示意图。

具体实施方式

以下结合实施例对本发明作进一步描述。

实施例1

一种氮化硅(Si3N4)陶瓷负球面零件的制造方法,包括以下步骤:

(a)将80g的纯度99.5%以上,粉末粒径为5~25μm的工业硅粉、20g中位粒径为10±0.5μm的α-Si3N4通过球磨混合均匀,然后加入10g粒径为20-50μm双酚A型环氧树脂和1g氧化镁、2.5g氧化锆,采用三维造型设计软件catia设计陶瓷负球面零件的三维数字模型,并用切片分层软件将其转为STL格式导入SLS设备,激光器为60W的CO2激光器,预加热温度为40℃,单层厚度为0.1mm,扫描间距为0.1mm,扫描速度1000mm/s,零件素坯的相对密度为30~35%;

(b)对零件素坯进行第一次真空压力熔渗浸渍,将零件素坯体置入真空箱中,抽真空至100pa,保压20min后注入8%浓度的纳米Si3N4悬浮液淹没零件素坯,在真空状态下继续保持10min,常压静置15min,再往真空压力浸渍器中充入氮气对浸渍液渗压60min,压力200Pa,将零件素坯放入烘箱中于80℃干燥1h,得到一次浸渍处理的零件素坯,将零件素坯使用包套密封包覆后进行抽真空处理;

(c)对零件素坯进行第一次冷等静压处理,升降压速度5MPa/s,压力升至200MPa,保压30s再降压;

(d)对零件素坯排胶处理,除去低温粘结剂,首先以2℃/min的速度升至粘结剂软化点温度80℃,再以2℃/min的升温速度升至150℃,除尽水蒸气,保温1.5h,最后以2℃/min的速度升至700℃,保温2h;

(e)对零件素坯进行第二次真空压力浸渍,与步骤(b)相同;

(f)对零件素坯进行第二次冷等静压处理,升降压速度2MPa/s,压力升至300MPa,保压30s再降压,零件素坯相对密度约为58%~62%;

(g)将零件素坯置于烧结,气氛为1atm的流动氮气气氛烧结炉中,以2℃/min速度升至烧结温度1420℃,保温2h;反应烧结后进行热等静压后处理,温度为1550℃,选用氩气作为HIP气氛,成型压力为100Mpa,保温时间1h;

(h)对Si3N4陶瓷零件进行精密加工,表面处理,提高精度和表面质量,制作的Si3N4陶瓷零件主要以α-Si3N4和β-Si3N4为主,含少量游离硅,氮化率均在90%以上。

性能测试:上述工艺步骤制造的氮化硅(Si3N4)陶瓷负球面零件,微观结构均匀相对密度在99%以上,测量方法参考GB/T3850;硬度(HV10)在1550kgf/mm2,测量方法参考GB/T16534;断裂韧性6.5MPa·m1/2,测量方法参考ASTMF2094;三点抗弯强度1100MPa,测量方法参考GB/T6569,由抗弯强度计算的Weibull模数为12.5。

实施例2

一种氮化硅(Si3N4)陶瓷负球面零件的制造方法,包括以下步骤:

(a)将50g的纯度99.5%以上,粉末粒径为10~25μm的工业硅粉、50g中位粒径为10±0.5μm的α-Si3N4通过球磨混合均匀,然后加入15g粒径为20-50μm双酚A型环氧树脂和2g氧化镁、3g氧化锆,采用三维造型设计软件pro/E设计陶瓷负球面零件的三维数字模型,并用切片分层软件将其转为STL格式导入SLS设备,激光器为35W的CO2激光器,预加热温度为60℃,单层厚度为0.2mm,扫描间距为0.2mm,扫描速度3000mm/s,零件素坯的相对密度为30~35%;

(b)对零件素坯进行第一次真空压力熔渗浸渍,将零件素坯体置入真空箱中,抽真空至200pa,保压60min后注入30%浓度的纳米Si3N4悬浮液淹没零件素坯,在真空状态下继续保持20min,常压静置60min,再往真空压力浸渍器中充入氮气对浸渍液渗压40min,压力300Pa,将零件素坯放入烘箱中于120℃干燥2h,得到一次浸渍处理的零件素坯,将零件素坯使用包套密封包覆后进行抽真空处理;

(c)对零件素坯进行第一次冷等静压处理,升降压速度5MPa/s,压力升至200MPa,保压30s再降压;

(d)对零件素坯排胶处理,除去低温粘结剂,首先以3℃/min的速度升至粘结剂软化点温度80℃,再以2℃/min的升温速度升至170℃,除尽水蒸气,保温1.5h,最后以2℃/min的速度升至700℃,保温2h;

(e)对零件素坯进行第二次真空压力浸渍,与步骤(b)相同;

(f)对零件素坯进行第二次冷等静压处理,升降压速度3MPa/s,压力升至300MPa,保压30s再降压,零件素坯相对密度约为58%~62%;

(g)将零件素坯置于烧结,气氛为1atm的流动氮气气氛烧结炉中,以2℃/min速度升至烧结温度1400℃,保温2h;反应烧结后进行热等静压后处理,温度为1700℃,选用氩气作为HIP气氛,成型压力为300Mpa,保温时间4h;

(h)对Si3N4陶瓷零件进行精密加工,表面处理,提高精度和表面质量,制作的Si3N4陶瓷零件主要以α-Si3N4和β-Si3N4为主,含少量游离硅,氮化率均在90%以上。

性能测试:上述工艺步骤制造的氮化硅(Si3N4)陶瓷负球面零件,微观结构均匀相对密度在99%以上,测量方法参考GB/T3850;硬度(HV10)在1600kgf/mm2,测量方法参考GB/T16534;断裂韧性6.8MPa·m1/2,测量方法参考ASTMF2094;三点抗弯强度1080MPa,测量方法参考GB/T6569,由抗弯强度计算的Weibull模数为12.9。

实施例3

一种氮化硅(Si3N4)陶瓷负球面零件的制造方法,包括以下步骤:

(a)将60g的纯度99.5%以上,粉末粒径为10~25μm的工业硅粉、40g中位粒径为10±0.5μm的α-Si3N4通过球磨混合均匀,然后加入20g粒径为20-50μm双酚A型环氧树脂和4g碳粉,采用三维造型设计软件solidworks设计陶瓷负球面零件的三维数字模型,并用切片分层软件将其转为STL格式导入SLS设备,激光器为50W的CO2激光器,预加热温度为50℃,单层厚度为0.1mm,扫描间距为0.1mm,扫描速度3000mm/s,零件素坯的相对密度为30~35%;

(b)对零件素坯进行第一次真空压力熔渗浸渍,将零件素坯体置入真空箱中,抽真空至150pa,保压45min后注入15%浓度的纳米Si3N4悬浮液淹没零件素坯,在真空状态下继续保持15min,常压静置45min,再往真空压力浸渍器中充入氮气对浸渍液渗压60min,压力200Pa,将零件素坯放入烘箱中于100℃干燥3h,得到一次浸渍处理的零件素坯,将零件素坯使用包套密封包覆后进行抽真空处理;

(c)对零件素坯进行第一次冷等静压处理,升降压速度5MPa/s,压力升至200MPa,保压30s再降压;

(d)对零件素坯排胶处理,除去低温粘结剂,首先以4℃/min的速度升至粘结剂软化点温度80℃,再以2℃/min的升温速度升至170℃,除尽水蒸气,保温1.5h,最后以2℃/min的速度升至700℃,保温2h;

(e)对零件素坯进行第二次真空压力浸渍,与步骤(b)完全相同;

(f)对零件素坯进行第二次冷等静压处理,升降压速度4MPa/s,压力升至300MPa,保压30s再降压,零件素坯相对密度约为58%~62%;

(g)将零件素坯置于烧结,气氛为1atm的流动氮气气氛烧结炉中,以6℃/min速度升至烧结温度1500℃,保温2h;反应烧结后进行热等静压后处理,温度为1700℃,选用氮气作为HIP气氛,成型压力为300Mpa,保温时间4h;

(h)对Si3N4陶瓷零件进行精密加工,表面处理,提高精度和表面质量,制作的Si3N4陶瓷零件主要以α-Si3N4和β-Si3N4为主,含少量游离硅,氮化率均在90%以上。

性能测试:上述工艺步骤制造的氮化硅(Si3N4)陶瓷负球面零件,微观结构均匀相对密度在99%以上,测量方法参考GB/T3850;硬度(HV10)在1520kgf/mm2,测量方法参考GB/T16534;断裂韧性6.2MPa·m1/2,测量方法参考ASTMF2094;三点抗弯强度1020MPa,测量方法参考GB/T6569,由抗弯强度计算的Weibull模数为12.2。

11页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:多孔氮化硅陶瓷零件及其制造方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!