一种芳环苄位碳氢键选择性氘代的方法

文档序号:162936 发布日期:2021-10-29 浏览:39次 >En<

阅读说明:本技术 一种芳环苄位碳氢键选择性氘代的方法 (Method for selective deuteration of carbon-hydrogen bond at benzyl position of aromatic ring ) 是由 石航 康麒凯 李运通 于 2021-07-29 设计创作,主要内容包括:本发明公开一种芳环苄位碳氢键选择性氘代的方法。该方法利用金属铑催化剂,对芳环进行η~(6)配位活化,使其能够选择性地在苄位与氘代试剂发生氢氘交换。本发明的方法无需添加强酸或者强碱,使用廉价易得的氘代试剂作为氘源,对于各类带有不同官能团的芳烃均有很好的普适性,并且能够应用于复杂药物分子的后期的选择性氘代,具有很高的应用价值。(The invention discloses a selective deuteration method for carbon-hydrogen bonds at the benzyl position of an aromatic ring. The method utilizes a metal rhodium catalyst to carry out eta on aromatic ring 6 Coordinate activation, enabling it to selectively undergo hydrogen deuterium exchange with the deuterated reagent at the benzylic position. The method disclosed by the invention does not need to add strong acid or strong base, uses a cheap and easily-obtained deuteration reagent as a deuterium source, has good universality on various aromatic hydrocarbons with different functional groups, can be applied to later-stage selective deuteration of complex drug molecules, and has high application value.)

一种芳环苄位碳氢键选择性氘代的方法

技术领域

本发明涉及氢氘交换技术领域,具体涉及一类由普通芳烃出发,苄位碳氢键选择性氘代的方法。

背景技术

由于氘原子的动力学同位素效应,生物体内C–D键比C–H键更加稳定。在药物研发中,往目标分子特定位点,如芳基的苄位引入氘原子,能够显著改变其药代动力学特性(ADME)。此外,氘代化合物在反应机理研究中也有着广泛的应用。

目前,对于合成苄位碳氢键氘代的化合物主要有以下几类方法:

(1)从商业可得的氘代原料出发,通过多步合成得到。该方法通常步骤繁琐,且总体产率不高。

(2)从未被氘标记的原料出发,直接在苄位进行氢氘交换来合成,步骤简单直接。但目前利用该类方法实现苄位碳氢键的氘代的报道较少,且存在较大的局限。其中一种方法是利用强碱(如叔丁醇钾/DMSO)对底物分子的苄位进行攫氢,进而与氘代试剂进行氢氘交换(Hu,Y.;Liang,L.;Wei,W.;Sun,X.;Zhang,X.;Yan,M.Tetrahedron 2015,71,1425;Tie,L.;Shan,X.-H.;Qu,J.-P.;Kang,Y.-B.Org.Chem.Front.2021,DOI:10.1039/d1qo00265a)。该方法底物官能团兼容性较差,仅适用于较为简单的分子。另外一类方法则是使用过渡金属催化剂,如Pd/C,Ru,Ni,Co,Rh,Ir等(Sajiki,H.;Aoki,F.;Esaki,H.;Maegawa,T.;Hirota,K.Org.Lett.2004,6,1485;Neubert,L.;Michalik,D.;Bahn,S.;Imm,S.Neumann,H.;Atzrodt,J.;Derdau,V.;Holla,W.;Beller,M.J.Am.Chem.Soc.2012,134,12239;Heys,J.R.J.Label Compd.Radiopharm 2010,53 716;Palmer,W.N.;Chirik,P.J.ACS Catal.2017,7,5674;Rhinehart,J.L.;Manbeck,K.A.;Buzak,S.K.;Lippa,G.M.;Brennessel,W.W.;Goldberg,K.I.;Jones,W.D.Organometallics 2012,31,1943;Smith,J.D.;Durrant,G.;Ess,D.H.;Gelfand,B.S.;Piers,W.E.Chem.Sci.,2020,11,10705),对苄位碳氢键进行碳金属化后发生氘代。但是由于分子中其他碳氢键的影响,使用过渡金属催化的方式进行苄位氘代往往存在选择性的问题,例如芳环上sp2碳氢键也会被氘代。

综上所述,虽然芳环苄位碳氢键选择性氘代在有机化学和药物化学中具有重要意义,但现有方法存在底物适用性窄,氘代选择性差等问题,限制了它们在复杂分子后期选择性氘代中的应用。

发明内容

针对现有的底物适用性窄,氘代选择性差等不足之处,本发明提供一种在芳环苄位碳氢键选择性氘代的方法。该方法通过η6配位活化实现,具体机理如下所示:芳环和金属铑([Rh])发生η6配位后,其苄位C–H键酸性大大增强。这使得苄位C–H键相比其他位置的C–H键更加容易进行H/D交换,为苄位选择性氘代提供了基础。

本发明的目的通过如下的技术方案来实现:

一种芳环苄位选择性氘代的方法,在氮气氛围中,将原料S1、金属铑催化剂([Rh])、银盐([Ag])混合均匀,然后加入氘代溶剂(solvent),在80~140℃下搅拌使其反应完全,冷却至室温,浓缩,柱层析分离得到化合物S1-d,即苄位氘代产物,具体的反应式如下:

其中,原料S1为芳烃或者芳烃衍生物;

所述的金属铑催化剂为五甲基环戊二烯基二氯化铑二聚体的衍生物;

所述银盐为带有弱配位抗衡银离子的银盐;

所述氘代溶剂为氘代甲醇或者氘代丙酮,且当氘代溶剂为氘代丙酮时,需加入磷酸盐作为无机碱(Base);此时所述原料S1、金属铑催化剂、银盐、无机碱、氘代丙酮的比例为1:(5~10mol%):(10~40mol%):(10~100mol%):(0.5~4mol/L);

当氘代溶剂为氘代甲醇时,此时所述原料S1、金属铑催化剂、银盐、氘代溶剂的比例为1:(5~10mol%):(10~40mol%):(0.5~4mol/L);

所述银盐和金属铑催化剂满足摩尔比为[Ag]/[Rh]=2:1。

优选地,所述原料S1中R基团为氢原子,烷基,芳基或者杂原子,但不局限于这些基团。

优选地,所述的金属铑催化剂为五甲基环戊二烯基二氯化铑二聚体的衍生物,如下所示:

其中催化剂10(cat.10)效果最好。

优选地,所述银盐为AgNTf2、AgOTf、AgSbF6、AgBF4、AgPF6中任意一种或若干种按任意配比的组合,其中AgNTf2效果最佳。

优选地,所述无机碱选自磷酸盐,如磷酸锂、磷酸钠、磷酸银中任意一种或若干种按任意配比的组合,其中磷酸锂最优。

优选地,反应中还加入带有弱配位抗衡银离子的无机盐作为添加剂。

优选地,添加剂为LiNTf2、NaNTf2、KNTf2、LiOTf、NaOTf、KOTf中的任意一种或若干种按任意配比的组合,其中NaNTf2效果最佳。

优选地,原料S1、金属铑催化剂、银盐、无机碱、氘代丙酮的比例为:1:2.5mol%:10mol%:10mol%:1mol/L。

优选地,原料S1、金属铑催化剂、银盐、氘代甲醇的比例为:1:2.5mol%:10mol%:1mol/L。

本发明的有益效果如下:

(1)本发明用到的原料大多均为商业可得,操作处理方便,无需特别纯化处理。

(2)本发明操作简便,仅仅需要将所有反应物混合加热即可一步高产率,高氘代率以及高选择性得到目标化合物。

(3)本发明底物官能团兼容性广,能够应用于复杂生物活性分子以及药物分子的后期氘代反应。

具体实施方式

下面根据优选实施例详细描述本发明,本发明的目的和效果将变得更加明白,应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。

下面的实施示例中选取不同种类底物,且详细说明反应的具体操作、反应的具体条件,从不同结构范围更好的说明本发明。产物通过核磁鉴定,手性产物通过超临界液相色谱(SFC)检测。

实施例1

在氮气氛围中,依次向反应瓶中加入原料1(0.2mmol,30.0mg),catalyst 10(0.005mmol,3.5mg),AgNTf2(0.02mmol,7.8mg),Li3PO4(0.02mmol,2.3mg),最后加入acetone-d6(0.2mL)。反应在120℃下搅拌24小时后,冷却至室温,加入内标1,1,2,2-四氯乙烷(0.2mmol,33.6mg)及氘代氯仿(0.5mL),通过核磁氢谱确定目标产物苄位氘代率为86%,核磁收率为99%。1H NMR(500MHz,Chloroform-d)δ7.16(d,J=8.7Hz,2H),6.85(d,J=8.7Hz,2H),3.80(s,3H),2.92–2.80(m,0.14H,86%D),1.28–1.16(m,6H).13C NMR(126MHz,Chloroform-d)δ157.6,127.2,141.0,113.7,55.2,33.2(benzylic carbon of remaining1),32.8(t,J=19.5Hz,benzylic carbon of deuterated 1),24.19–24.08(m,–CH3carbon).

实施例2

在氮气氛围中,依次向反应瓶中加入原料2(0.2mmol,24.0mg),catalyst 1(0.005mmol,3.1mg),AgOTf(0.02mmol,5.1mg),NaOTf(0.2mmol,34.4mg),最后加入methanol-d4(0.2mL)。反应在120℃下搅拌24小时后,冷却至室温,加入内标1,1,2,2-四氯乙烷(0.2mmol,33.6mg)及氘代氯仿(0.5mL),通过核磁氢谱确定目标产物苄位氘代率为50%,核磁收率为99%。1H NMR(500MHz,Chloroform-d)δ7.30–7.26(m,2H),7.23–7.21(m,2H),7.19–7.15(m,1H),2.95–2.86(m,0.50H,50%D),1.26–1.21(m,6H).13C NMR(126MHz,Chloroform-d)δ148.74–148.71(m,aromatic carbon adjacent to benzylic carbon),128.2,126.3,125.6,34.0(benzylic carbon of remaining 2),33.53(t,J=19.5Hz,benzylic carbon of deuterated 2),23.81–23.70(m,–CH3 carbon).

实施例3

在氮气氛围中,依次向反应瓶中加入原料3(0.2mmol,29.7mg),catalyst 11(0.005mmol,3.7mg),AgNTf2(0.02mmol,7.8mg),NaNTf2(0.2mmol,60.6mg),最后加入methanol-d4(0.2mL)。反应在120℃下搅拌24小时后,冷却至室温,加入内标1,1,2,2-四氯乙烷(0.2mmol,33.6mg)及氘代氯仿(0.5mL),通过核磁氢谱确定目标产物苄位氘代率为83%,核磁收率为99%。1H NMR(500MHz,Chloroform-d)δ7.31(d,J=8.3Hz,2H),7.14(d,J=8.3Hz,2H),2.38–2.31(m,0.51H,83%D),1.34(s,6H).13C NMR(126MHz,Chloroform-d)δ148.2,134.8–134.7(m,aromatic carbon adjacent to benzylic methyl carbon),128.7,125.1,34.3,31.4,20.8–19.4(m,benzylic methyl carbon).

实施例4

在氮气氛围中,依次向反应瓶中加入原料4(0.2mmol,26.8mg),catalyst 12(0.01mmol,7.4mg),AgNTf2(0.04mmol,15.6mg),NaNTf2(0.2mmol,60.6mg),最后加入methanol-d4(0.2mL)。反应在120℃下搅拌24小时后,冷却至室温,直接柱层析得到目标产物,收率为85%。通过核磁氢谱确定目标产物苄位氘代率为72%。1H NMR(500MHz,Chloroform-d)δ7.28–7.27(m,2H),7.18–7.13(m,3H),2.48–2.44(m,0.56H,72%D),1.90–1.81(m,1H),0.90(d,J=6.5Hz,6H).13C NMR(126MHz,Chloroform-d)δ141.7–141.6(m,aromatic carbon adjacent to benzylic carbon),129.1,128.0,125.6,45.5(benzyliccarbon of remaining 4),45.2–44.3(m,benzylic carbon of deuterated 4),30.28–29.99(m,–CH carbon),22.38–22.24(m,–CH3 carbon).

实施例5

在氮气氛围中,依次向反应瓶中加入原料5(0.2mmol,33.6mg),catalyst 10(0.005mmol,3.5mg),AgNTf2(0.02mmol,7.8mg),NaNTf2(0.2mmol,60.6mg),最后加入methanol-d4(0.2mL)。反应在120℃下搅拌24小时后,冷却至室温,直接柱层析得到目标产物,收率为81%。通过核磁氢谱确定目标产物苄位氘代率为88%。1H NMR(500MHz,Chloroform-d)δ7.33–7.30(m,4H),7.24–7.22(m,6H),4.02–4.00(m,0.23H,88%D).13C NMR(126MHz,Chloroform-d)δ141.07–141.04(m,aromatic carbon adjacent to benzyliccarbon),128.9,128.4,126.1,41.9–40.9(m,benzylic carbon).

实施例6

在氮气氛围中,依次向反应瓶中加入原料6(0.2mmol,36.4mg),catalyst 26(0.01mmol,8.6mg),AgNTf2(0.02mmol,7.8mg),NaNTf2(0.2mmol,60.6mg),最后加入methanol-d4(0.2mL)。反应在140℃下搅拌48小时后,冷却至室温,直接柱层析得到目标产物,收率为92%。通过核磁氢谱确定目标产物苄位氘代率为90%。1H NMR(500MHz,Chloroform-d)δ7.28–7.25(m,4H),7.22–7.20(m,4H),7.18–7.16(m,2H),4.16–4.12(m,0.10H,90%D),1.64–1.62(m,3H).13C NMR(126MHz,Chloroform-d)δ146.34–146.30(m,aromatic carbon adjacent to benzylic carbon),128.3,127.6,126.0,44.7(benzyliccarbon of remaining 6),44.3(t,J=19.5Hz,benzylic carbon of deuterated 6),21.83–21.71(m,–CH3 carbon).

实施例7

在氮气氛围中,依次向反应瓶中加入原料7(0.2mmol,39.3mg),catalyst 10(0.005mmol,3.5mg),AgNTf2(0.02mmol,7.8mg),NaNTf2(0.4mmol,121.2mg),最后加入methanol-d4(0.2mL)。反应在140℃下搅拌48小时后,冷却至室温,直接柱层析得到目标产物,收率为92%。通过核磁氢谱确定目标产物苄位氘代率为87%。1H NMR(500MHz,Chloroform-d)δ7.62–7.61(m,2H),7.57–7.55(m,2H),7.47–7.44(m,2H),7.37–7.32(m,3H),3.03–2.95(m,0.13H,87%D),1.33–1.32(m,6H).13C NMR(126MHz,Chloroform-d)δ147.98–147.96(m,aromatic carbon adjacent to benzylic carbon),141.2,138.7,128.7,127.1,127.0,126.9,126.8,33.8(benzylic carbon of remaining 7),33.4(t,J=19.5Hz,benzylic carbon of deuterated 7),24.00–23.90(m,–CH3 carbon).

实施例8

在氮气氛围中,依次向反应瓶中加入原料8(0.2mmol,26.8mg),catalyst 10(0.005mmol,3.5mg),AgNTf2(0.02mmol,7.8mg),NaNTf2(0.2mmol,60.6mg),最后加入methanol-d4(0.4mL)。反应在120℃下搅拌24小时后,冷却至室温,加入内标1,1,2,2-四氯乙烷(0.2mmol,33.6mg)及氘代氯仿(0.5mL),通过核磁氢谱确定目标产物苄位氘代率为80%,核磁收率为99%。1H NMR(500MHz,Chloroform-d)δ7.32–7.27(m,2H),7.19–7.16(m,3H),2.62–2.56(m,0.2H,80%D),1.61–1.57(m,2H),1.25–1.23(m,3H),0.82(t,J=7.4Hz,3H).13C NMR(126MHz,Chloroform-d)δ147.54–147.52(m,aromatic carbon adjacent tobenzylic carbon),128.1,126.9,125.6,41.5(benzylic carbon of remaining 8),41.0(t,J=19.5Hz,benzylic carbon of deuterated 8),31.00–30.89(m,–CH2 carbon),21.62–21.51(m,–CH3 carbon),12.00–11.98(m,–CH3 carbon).

实施例9

在氮气氛围中,依次向反应瓶中加入原料9(0.2mmol,32.5mg),catalyst 10(0.005mmol,3.5mg),AgNTf2(0.02mmol,7.8mg),NaNTf2(0.4mmol,121.2mg),最后加入methanol-d4(0.2mL)。反应在120℃下搅拌24小时后,冷却至室温,直接柱层析得到目标产物,收率为87%。通过核磁氢谱确定目标产物苄位氘代率为66%。1H NMR(500MHz,Chloroform-d)δ7.33–7.30(m,2H),7.24–7.23(m,2H),7.21–7.18(m,1H),2.55–2.49(m,0.34H,68%D),1.91–1.85(m,4H),1.79–1.76(m,1H),1.50–1.38(m,4H),1.33–1.24(m,1H).13C NMR(126MHz,Chloroform-d)δ148.09–148.07(m,aromatic carbon adjacent tobenzylic carbon),128.3,126.82–126.80(m),125.8,44.6(benzylic carbon ofremaining 9),44.1(t,J=19.3Hz,benzylic carbon of deuterated 9),34.47–34.37(m,–CH2 carbon),26.93–26.92(m,–CH2 carbon),26.2.

实施例10

在氮气氛围中,依次向反应瓶中加入原料10(0.2mmol,26.4mg),catalyst 10(0.005mmol,3.5mg),AgNTf2(0.02mmol,7.8mg),NaNTf2(0.2mmol,60.6mg),最后加入methanol-d4(0.2mL)。反应在120℃下搅拌24小时后,冷却至室温,加入内标1,1,2,2-四氯乙烷(0.2mmol,33.6mg)及氘代氯仿(0.5mL),通过核磁氢谱确定目标产物苄位氘代率为87%和48%,核磁收率为99%。1H NMR(500MHz,Chloroform-d)δ7.22–7.12(m,4H),3.21–3.116(m,0.13H,87%D),2.94–2.80(m,1.04H,48%D),2.32–2.27(m,1H),1.63–1.57(m,1H),1.30–1.28(m,3H).13C NMR(126MHz,Chloroform-d)δ148.51–148.43(m,aromaticcarbon adjacent to benzylic carbon),143.65–143.54(m,aromatic carbon adjacentto benzylic carbon),125.8,124.08–124.05(m),122.9,39.14–38.55(m,benzylic–CHcarbon),34.33–34.12(m,benzylic–CH2 carbon),31.11–30.60(m,–CH2 carbon),19.49–19.40(m,–CH3 carbon).

实施例11

在氮气氛围中,依次向反应瓶中加入原料11(0.2mmol,26.4mg),catalyst 10(0.005mmol,3.5mg),AgNTf2(0.02mmol,7.8mg),NaNTf2(0.2mmol,60.6mg),最后加入methanol-d4(0.1mL)。反应在120℃下搅拌24小时后,冷却至室温,直接柱层析得到目标产物,收率为72%。通过核磁氢谱确定目标产物苄位氘代率为81%。1H NMR(500MHz,Chloroform-d)δ7.09–7.04(m,4H),2.77–2.72(m,0.76H,81%D),1.79–1.77(m,4H).13C NMR(126MHz,Chloroform-d)δ137.11–137.06(m,aromatic carbon adjacent to benzyliccarbon),129.1,125.4,29.36–28.29(m,benzylic carbon),23.15–22.94(m,–CH2carbon).

实施例12

在氮气氛围中,依次向反应瓶中加入原料12(0.2mmol,33.2mg),catalyst 21(0.005mmol,4.4mg),AgSbF6(0.02mmol,6.9mg),KNTf2(0.4mmol,127.7mg),最后加入methanol-d4(0.2mL)。反应在80℃下搅拌48小时后,冷却至室温,直接柱层析得到目标产物,收率为86%。通过核磁氢谱确定目标产物苄位氘代率为88%。1H NMR(500MHz,Chloroform-d)δ7.78–7.76(m,2H),7.53–7.51(m,2H),7.38–7.34(m,2H),7.30–7.27(m,2H),3.88–3.85(m,0.24H,88%D).13C NMR(126MHz,Chloroform-d)δ143.14–143.11(m),141.75–141.71(m),126.71,126.66,125.02–125.00(m),119.8,36.89–35.96(m,benzyliccarbon).

实施例13

在氮气氛围中,依次向反应瓶中加入原料13(0.2mmol,36.1mg),catalyst 23(0.005mmol,4.5mg),AgOTf(0.02mmol,5.1mg),LiNTf2(0.2mmol,57.4mg),最后加入methanol-d4(0.2mL)。反应在120℃下搅拌24小时后,冷却至室温,直接柱层析得到目标产物,收率为83%。通过核磁氢谱确定目标产物苄位氘代率为92%。1H NMR(500MHz,Chloroform-d)δ7.75–7.74(m,2H),7.50–7.48(m,2H),7.36–7.29(m,4H),3.95–3.91(m,0.08H,92%D),1.50–1.48(m,3H).13C NMR(126MHz,Chloroform-d)δ148.96–148.94(m),140.55–140.49(m),126.9,124.0,119.8,42.4(benzylic carbon of remaining 14),42.0(t,J=19.8Hz,benzylic carbon of deuterated 14),18.1.

实施例14

在氮气氛围中,依次向反应瓶中加入原料14(0.2mmol,36.1mg),catalyst 10(0.01mmol,7.0mg),AgPF6(0.04mmol,10.1mg),KOTf(0.2mmol,37.6mg),最后加入methanol-d4(0.2mL)。反应在120℃下搅拌24小时后,冷却至室温,直接柱层析得到目标产物,收率为83%。通过核磁氢谱确定目标产物苄位氘代率为76%。1H NMR(500MHz,Chloroform-d)δ7.75(d,J=7.7Hz,2H),7.32–7.28(m,2H),7.24–7.22(m,4H),2.87–2.84(m,0.96H,76%D).13C NMR(126MHz,Chloroform-d)δ137.37–137.27(m,aromatic carbonadjacent to benzylic carbon),134.5,128.1,127.4,126.9,123.7,28.93–28.31(m,benzylic carbon).

实施例15

在氮气氛围中,依次向反应瓶中加入原料15(0.2mmol,30.4mg),catalyst 10(0.005mmol,3.5mg),AgNTf2(0.02mmol,7.8mg),Li3PO4(0.02mmol,2.3mg),最后加入acetone-d6(0.2mL)。反应在120℃下搅拌24小时后,冷却至室温,直接柱层析得到目标产物,收率为87%。通过核磁氢谱确定目标产物苄位氘代率为64%。1H NMR(500MHz,Chloroform-d)δ7.22–7.20(m,1H),7.18–7.14(m,1H),6.94–6.91(m,1H),6.86–6.84(m,1H),3.83(s,3H),3.36–3.28(m,0.36H,64%D),1.22–1.20(m,6H).13C NMR(126MHz,Chloroform-d)δ156.74–156.72(m),136.99–136.96(m,aromatic carbon adjacent tobenzylic carbon),126.5,125.98–125.96(m),120.5,110.3,55.3,26.6(s,benzyliccarbon of remaining 17),26.2(t,J=19.8Hz,benzylic carbon of deuterated 17),22.66–22.57(m,–CH3 carbon).

实施例16

在氮气氛围中,依次向反应瓶中加入原料16(0.2mmol,27.2mg),catalyst 10(0.01mmol,7.0mg),AgNTf2(0.04mmol,15.6mg),Li3PO4(0.2mmol,23mg),最后加入acetone-d6(0.2mL)。反应在120℃下搅拌24小时后,冷却至室温,加入内标1,1,2,2-四氯乙烷(0.2mmol,33.6mg)及氘代氯仿(0.5mL),通过核磁氢谱确定目标产物苄位氘代率为70%,核磁收率为99%。1H NMR(500MHz,Chloroform-d)δ7.12–7.10(m,2H),6.85–6.82(m,2H),3.79(s,3H),2.62–2.57(m,0.60H,70%D),1.21–1.19(m,3H).13C NMR(126MHz,Chloroform-d)δ157.1,135.65–135.60(m,aromatic carbon adjacent to benzylic carbon),128.1,113.1,54.5,27.34–26.33(m,benzylic carbon),15.28–15.11(m,–CH3 carbon).

实施例17

在氮气氛围中,依次向反应瓶中加入原料17(0.2mmol,26.8mg),catalyst 10(0.005mmol,3.5mg),AgNTf2(0.02mmol,7.8mg),Li3PO4(0.02mmol,2.3mg),最后加入acetone-d6(0.2mL)。反应在120℃下搅拌24小时后,冷却至室温,加入内标1,1,2,2-四氯乙烷(0.2mmol,33.6mg)及氘代氯仿(0.5mL),通过核磁氢谱确定目标产物苄位氘代率为74%,核磁收率为99%。1H NMR(500MHz,Chloroform-d)δ7.09–7.06(m,1H),7.04–7.02(m,1H),6.84–6.81(m,1H),6.79–6.78(m,1H),4.20–4.16(t,J=5.0Hz,2H),2.80–2.75(m,0.53H,74%D),2.03–1.98(m,2H).13C NMR(126MHz,Chloroform-d)δ154.91–154.87(m),129.8,127.2,122.19–122.08(m,aromatic carbon adjacent to benzylic carbon),120.1,116.7,66.4,24.85–23.98(m,benzylic carbon),22.35–22.15(m,–CH2 carbon).

实施例18

在氮气氛围中,依次向反应瓶中加入原料18(0.2mmol,36.4mg),catalyst 10(0.005mmol,3.5mg),AgNTf2(0.02mmol,7.8mg),Li3PO4(0.02mmol,2.3mg),最后加入acetone-d6(0.2mL)。反应在120℃下搅拌24小时后,冷却至室温,直接柱层析得到目标产物,收率为97%。通过核磁氢谱确定目标产物苄位氘代率为63%。1H NMR(500MHz,Chloroform-d)δ7.21–7.13(m,4H),7.04–6.99(m,4H),4.03–4.00(m,0.75H,63%D).13C NMR(126MHz,Chloroform-d)δ151.94–151.91(m),128.9,127.6,122.9,120.53–120.41(m,aromatic carbon adjacent to benzylic carbon),116.4,27.83–26.96(m,benzyliccarbon).

实施例19

在氮气氛围中,依次向反应瓶中加入原料19(0.2mmol,32.6mg),catalyst 10(0.005mmol,3.5mg),AgNTf2(0.02mmol,7.8mg),Na3PO4(0.02mmol,3.3mg),NaNTf2(0.2mmol,60.6mg),最后加入acetone-d6(0.2mL)。反应在120℃下搅拌24小时后,冷却至室温,直接柱层析得到目标产物,收率为55%。通过核磁氢谱确定目标产物苄位氘代率为52%。1H NMR(500MHz,Chloroform-d)δ7.11–7.06(m,2H),6.71(d,J=9.1Hz,0.13H,93%D),2.91(s,6H),2.85–2.80(m,0.48H,52%D),1.23–1.21(m,3H).13C NMR(126MHz,Chloroform-d)δ148.95–148.90(m),137.21–137.17(m,aromatic carbon adjacent tobenzylic carbon),126.79–126.78(m),112.99–112.52(m,aromatic carbon at orthoposition of NMe2),40.9,33.0(s,benzylic carbon of remaining 22),32.7(t,J=19.2Hz,benzylic carbon of deuterated 22),24.21–24.10(m,–CH3 carbon).

实施例20

在氮气氛围中,依次向反应瓶中加入原料23(0.2mmol,40.5mg),catalyst 11(0.005mmol,3.7mg),AgNTf2(0.02mmol,7.8mg),Li3PO4(0.02mmol,2.3mg),NaNTf2(0.2mmol,60.6mg),最后加入acetone-d6(0.2mL)。反应在120℃下搅拌24小时后,冷却至室温,直接柱层析得到目标产物,收率为77%。通过核磁氢谱确定目标产物苄位氘代率为76%。1H NMR(500MHz,Chloroform-d)δ7.28(t,J=7.4Hz,2H),7.23(t,J=7.7Hz,2H),7.19(d,J=7.3Hz,1H),7.15(d,J=7.4Hz,2H),7.10(d,J=8.3Hz,2H),3.93–3.91(m,0.48H,76%D).13C NMR(126MHz,Chloroform-d)δ140.53–140.46(m,aromatic carbon adjacentto benzylic carbon),139.56–139.49(m,aromatic carbon adjacent to benzyliccarbon),131.9,130.2,128.8,128.55,128.54,126.3,41.22–40.38(m,benzylic carbon).

实施例21

在氮气氛围中,依次向反应瓶中加入原料21(0.2mmol,49.0mg),catalyst 10(0.005mmol,3.5mg),AgBF4(0.02mmol,3.8mg),LiOTf(0.2mmol,31.2mg),最后加入methanol-d4(0.2mL)。反应在120℃下搅拌24小时后,冷却至室温,直接柱层析得到目标产物,收率为98%。通过核磁氢谱确定目标产物苄位氘代率为87%。1H NMR(500MHz,Chloroform-d)δ7.71(d,J=7.5Hz,1H),7.63(d,J=1.9Hz,1H),7.58(d,J=8.1Hz,1H),7.50–7.45(m,2H),7.37–7.34(m,1H),7.31–7.28(m,1H),3.83–3.80(m,0.26H,87%D).13CNMR(126MHz,Chloroform-d)δ145.11–145.08(m),142.76–142.72(m,aromatic carbonadjacent to benzylic carbon),140.72–140.67(m,aromatic carbon adjacent tobenzylic carbon),129.8,128.22–128.20(m),127.1,126.9,125.0,121.0,120.4,119.9,36.69–35.93(m,benzylic carbon).

实施例22

在氮气氛围中,依次向反应瓶中加入原料22(0.2mmol,48.5mg),catalyst 10(0.005mmol,3.5mg),AgNTf2(0.02mmol,7.8mg),NaNTf2(0.2mmol,60.6mg),最后加入methanol-d4(0.2mL)。反应在120℃下搅拌24小时后,冷却至室温,直接柱层析得到目标产物,收率为90%。通过核磁氢谱确定目标产物苄位氘代率为83%和59%。1H NMR(500MHz,Chloroform-d)δ7.71(d,J=7.5Hz,1H),7.63(d,J=1.9Hz,1H),7.58(d,J=8.1Hz,1H),7.50–7.45(m,2H),7.37–7.34(m,1H),7.31–7.28(m,1H),3.83–3.80(m,0.26H,87%D).13CNMR(126MHz,Chloroform-d)δ145.11–145.08(m),142.76–142.72(m,aromatic carbonadjacent to benzylic carbon),140.72–140.67(m,aromatic carbon adjacent tobenzylic carbon),129.8,128.22–128.20(m),127.1,126.9,125.0,121.0,120.4,119.9,36.69–35.93(m,benzylic carbon).

实施例23

在氮气氛围中,依次向反应瓶中加入原料23(0.2mmol,30.0mg),catalyst 10(0.005mmol,3.5mg),AgNTf2(0.02mmol,7.8mg),NaNTf2(0.2mmol,60.6mg),最后加入methanol-d4(0.2mL)。反应在120℃下搅拌24小时后,冷却至室温,直接柱层析得到目标产物,收率为59%。通过核磁氢谱确定目标产物苄位氘代率为64%。1H NMR(500MHz,Chloroform-d)δ7.30–7.27(m,2H),7.20–7.175(m,3H),3.39(t,J=6.4Hz,2H),3.35(s,3H),2.70–2.65(m,0.72H,64%D),1.91–1.86(m,2H).13C NMR(126MHz,Chloroform-d)δ141.97–141.90(m,aromatic carbon adjacent to benzylic carbon),128.5,128.3,125.8,71.93–71.90(m),58.6,32.31–31.43(m,benzylic carbon),31.26–31.10(m).

实施例24

在氮气氛围中,依次向反应瓶中加入原料24(0.2mmol,40.5mg),catalyst 10(0.01mmol,7.0mg),AgNTf2(0.04mmol,15.6mg),Ag3PO4(0.02mmol,8.4mg),NaNTf2(0.2mmol,60.6mg),最后加入acetone-d6(0.2mL)。反应在120℃下搅拌24小时后,冷却至室温,直接柱层析得到目标产物,收率为99%。通过核磁氢谱确定目标产物苄位氘代率为70%。1H NMR(500MHz,Chloroform-d)δ7.82–7.78(m,4H),7.50–7.48(m,2H),7.44–7.41(m,4H),7.25–7.24(m,2H),7.17–7.13(m,3H),4.06–4.02(m,2H),2.74–2.69(m,0.60H,70%D),2.04–2.00(m,2H).13C NMR(126MHz,Chloroform-d)δ140.95–140.88(m,aromatic carbonadjacent to benzylic carbon),132.1(d,J=2.9Hz),131.9,131.5(d,J=10.2Hz),130.8,128.4(d,J=13.2Hz),128.3,125.9,64.1(d,J=6.0Hz),32.01–30.90(m,benzyliccarbon).

实施例25

在氮气氛围中,依次向反应瓶中加入原料25(0.2mmol,44.0mg),catalyst 10(0.005mmol,3.5mg),AgNTf2(0.02mmol,7.8mg),Li3PO4(0.02mmol,2.3mg),最后加入acetone-d6(0.2mL)。反应在120℃下搅拌24小时后,冷却至室温,直接柱层析得到目标产物,收率为95%。通过核磁氢谱确定目标产物苄位氘代率为77%和85%。1H NMR(500MHz,Chloroform-d)δ7.19(d,J=7.9Hz,2H),7.09(d,J=8.0Hz,2H),3.72–3.67(m,0.15H,85%D),3.65(s,3H),2.45–2.41(m,0.47H,77%D),1.87–1.79(m,1H),1.49–1.48(m,3H),0.89(d,J=6.7Hz,6H).13C NMR(126MHz,Chloroform-d)δ175.2,140.49–140.42(m,aromaticcarbon adjacent to benzylic carbon),137.71–137.65(m,aromatic carbon adjacentto benzylic carbon),129.3,127.1,51.9,44.99–44.04(m,containing two benzyliccarbons),30.12–29.96(m),22.32–22.29(m),18.57–18.46(m).

实施例26

在氮气氛围中,依次向反应瓶中加入原料26(0.2mmol,38.8mg),catalyst 10(0.005mmol,3.5mg),AgNTf2(0.02mmol,7.8mg),Li3PO4(0.02mmol,2.3mg),NaNTf2(0.2mmol,60.6mg),最后加入acetone-d6(0.2mL)。反应在120℃下搅拌24小时后,冷却至室温,直接柱层析得到目标产物,收率为91%。通过核磁氢谱确定目标产物苄位氘代率为85%。1H NMR(500MHz,Chloroform-d)δ7.21–7.17(m,1H),7.15–7.13(m,1H),6.89–6.83(m,2H),3.81(s,3H),3.66(s,3H),2.95–2.90(m,0.31H,85%D),2.61–2.60(m,2H).13C NMR(126MHz,Chloroform-d)δ173.8,157.4,129.9,128.74–128.67(m,aromatic carbonadjacent to benzylic carbon),127.6,120.4,110.1,55.1,51.4,33.95–33.82(m),26.07–25.14(m,benzylic carbon).

实施例27

在氮气氛围中,依次向反应瓶中加入原料27(0.2mmol,44.0mg),catalyst 10(0.005mmol,3.5mg),AgNTf2(0.02mmol,7.8mg),NaNTf2(0.2mmol,60.6mg),最后加入methanol-d4(0.2mL)。反应在120℃下搅拌24小时后,冷却至室温,直接柱层析得到目标产物,收率为93%。通过核磁氢谱确定目标产物苄位氘代率为76%。1H NMR(500MHz,Chloroform-d)δ7.28–7.25(m,2H),7.20–7.15(m,3H),5.73(s,1H),3.05(t,J=7.0Hz,2H),2.66–2.60(m,0.48H,76%D),2.17(t,J=7.6Hz,2H),1.97–1.93(m,2H),1.80–1.69(m,1H),0.89(d,J=6.8Hz,6H).13C NMR(126MHz,Chloroform-d)δ172.8,141.43–141.37(m,aromatic carbon adjacent to benzylic carbon),128.4,128.3,125.9,46.7,35.90–35.85(m),35.12–34.39(m,benzylic carbon),28.4,27.19–27.03(m),20.00.

实施例28

在氮气氛围中,依次向反应瓶中加入原料28(0.2mmol,35.0mg),catalyst 10(0.01mmol,7.0mg),AgNTf2(0.04mmol,15.6mg),Li3PO4(0.02mmol,2.3mg),NaNTf2(0.2mmol,60.6mg),最后加入acetone-d6(0.2mL)。反应在120℃下搅拌24小时后,冷却至室温,直接柱层析得到目标产物,收率为77%。通过核磁氢谱确定目标产物苄位氘代率为91%。1H NMR(500MHz,Chloroform-d)δ7.35–7.32(m,2H),7.27–7.25(m,1H),7.25–7.21(m,2H),3.74(d,J=9.7Hz,1H),3.62–3.52(m,0.09H,91%D),3.40(d,J=9.7Hz,1H),2.90(s,3H),2.80(d,J=16.8Hz,1H),2.54(d,J=16.8Hz,1H).13C NMR(126MHz,Chloroform-d)δ173.9,142.42–142.38(m,aromatic carbon adjacent to benzylic carbon),128.8,127.0,126.6,56.62–56.56(m),38.73–38.66(m),37.0(s,benzylic carbon of remaining33),36.7(t,J=20.3Hz,benzylic carbon of deuterated 33),29.5.

实施例29

在氮气氛围中,依次向反应瓶中加入原料29(0.2mmol,55.1mg),catalyst 10(0.01mmol,7.0mg),AgNTf2(0.04mmol,15.6mg),Li3PO4(0.02mmol,2.3mg),NaNTf2(0.2mmol,60.6mg),最后加入acetone-d6(0.2mL)。反应在120℃下搅拌24小时后,冷却至室温,直接柱层析得到目标产物,收率为79%。通过核磁氢谱确定目标产物苄位氘代率为60%。1H NMR(500MHz,Chloroform-d)δ7.69(d,J=8.2Hz,2H),7.28–7.24(m,4H),7.21–7.18(m,1H),7.08–7.07(m,2H),4.66(t,J=6.1Hz,1H),3.20–3.17(m,2H),2.76–2.72(m,0.81H,60%D),2.41(s,3H).13C NMR(126MHz,Chloroform-d)δ143.3,137.67–137.60(m,aromatic carbon adjacent to benzylic carbon),136.8,129.6,128.7,128.6,127.0,126.7,44.17–44.06(m),35.72–34.88(m,benzylic carbon),21.5.

实施例30

在氮气氛围中,依次向反应瓶中加入原料30(0.2mmol,50.2mg),catalyst 10(0.005mmol,3.5mg),AgNTf2(0.02mmol,7.8mg),Li3PO4(0.02mmol,2.3mg),NaNTf2(0.2mmol,60.6mg),最后加入acetone-d6(0.2mL)。反应在120℃下搅拌24小时后,冷却至室温,直接柱层析得到目标产物,收率为94%。通过核磁氢谱确定目标产物苄位氘代率为72%。1H NMR(500MHz,Chloroform-d)δ7.83–7.80(m,2H),7.71–7.68(m,2H),7.29–7.24(m,4H),7.22–7.19(m,1H),3.92–3.91(m,2H),3.00–2.95(m,0.56H,72%D).13C NMR(126MHz,Chloroform-d)δ168.1,137.93–137.85(m,aromatic carbon adjacent to benzyliccarbon),133.8,132.0,128.8,128.5,126.6,123.1,39.20–39.07(m),34.53–33.54(m,benzylic carbon).

实施例31

在氮气氛围中,依次向反应瓶中加入原料31(0.2mmol,29.8mg),catalyst 10(0.005mmol,3.5mg),AgNTf2(0.02mmol,7.8mg),NaNTf2(0.2mmol,60.6mg),HOTf(0.24mmol,36.0mg),最后加入methanol-d4(0.2mL)。反应在120℃下搅拌24小时后,冷却至室温,直接柱层析得到目标产物,收率为85%。通过核磁氢谱确定目标产物苄位氘代率为68%。1H NMR(600MHz,Chloroform-d)δ7.28–7.25(m,2H),7.21–7.18(m,1H),7.15–7.13(m,2H),5.96(s,3H),3.37–3.31(m,1H),2.66–2.59(m,0.65H,68%D),2.02–1.97(m,1H),1.85–1.80(m,1H),1.31(d,J=6.6Hz,3H).13C NMR(126MHz,Chloroform-d)δ139.58–139.42(m,aromaticcarbon adjacent to benzylic carbon),128.7,128.1,126.5,119.4(q,J=320.4Hz),49.3,35.92–35.77(m),31.37–30.53(m,benzylic carbon),18.1.

实施例32

在氮气氛围中,依次向反应瓶中加入原料32(0.2mmol,54.6mg),catalyst 10(0.005mmol,3.5mg),AgNTf2(0.02mmol,7.8mg),Li3PO4(0.02mmol,2.3mg),NaNTf2(0.2mmol,60.6mg),最后加入acetone-d6(0.2mL)。反应在120℃下搅拌24小时后,冷却至室温,直接柱层析得到目标产物,收率为83%。通过核磁氢谱确定目标产物苄位氘代率为78%。1H NMR(500MHz,Chloroform-d)δ7.68–7.63(m,3H),7.22–7.17(m,3H),7.07(d,J=6.2Hz,1H),6.96(t,J=7.4Hz,1H),3.91–3.89(m,2H),2.89–2.84(m,0.45H,78%D),2.36(s,3H).13C NMR(126MHz,Chloroform-d)δ144.0,142.00–141.94(m,aromatic carbonadjacent to benzylic carbon),134.0,131.71–131.58(m),129.6,127.7,127.3,125.09–125.07(m),123.6,114.9,49.88–49.73(m),27.81–27.03(m,benzylic carbon),21.5.

实施例33

在氮气氛围中,依次向反应瓶中加入原料33(0.2mmol,50.5mg),catalyst 10(0.01mmol,7.0mg),AgNTf2(0.04mmol,15.6mg),NaNTf2(0.2mmol,60.6mg),最后加入methanol-d4(0.2mL)。反应在120℃下搅拌24小时后,冷却至室温,直接柱层析得到目标产物,收率为82%。通过核磁氢谱确定目标产物苄位氘代率为72%。1H NMR(500MHz,Chloroform-d)δ7.54(d,J=8.0Hz,2H),7.32–7.27(m,4H),7.24–7.21(m,1H),7.18–7.16(m,2H),3.00–2.98(m,2H),2.96–2.91(m,0.57H,72%D).Quantitative 13C NMR(151MHz,Chloroform-d)δ145.7(s,1C),141.02–140.95(m,1C),128.8(s,2C),128.4(s,5C),126.1(s,1C),125.26–125.18(m,2C),124.4(m,J=271.8Hz,1C,–CF3 carbon),37.63–37.49(m,1C,benzylic carbon adjacent to 4-CF3C6H4–group),37.25–36.49(m,benzylic carbonadjacent to phenyl group,containing 0.07undeuterated C,0.47mono-deuterated C,0.46di-deuterated C,70%D).19F NMR(471MHz,Chloroform-d)δ-62.3.

实施例34

在氮气氛围中,依次向反应瓶中加入原料34(0.2mmol,32.8mg,>99/1 e.r.),catalyst 10(0.005mmol,3.5mg),AgNTf2(0.02mmol,7.8mg),Li3PO4(0.02mmol,2.3mg),最后加入acetone-d6(0.2mL)。反应在120℃下搅拌24小时后,冷却至室温,直接柱层析得到目标产物,收率为90%。通过核磁氢谱确定目标产物苄位氘代率为62%。通过SFC确定产物e.r.值为97/3,SFC条件为:OD-3 column,MeOH/CO2=5:95,1.5mL/min,210nm,tmajor=0.914min,tminor=1.103min;1H NMR(500MHz,Chloroform-d)δ7.31–7.28(m,2H),7.24–7.19(m,3H),3.30–3.23(m,0.38H,62%D),2.69–2.64(m,1H),2.60–2.55(m,1H),1.34–1.28(m,3H).13C NMR(126MHz,Chloroform-d)δ178.4,145.44–145.40(m,aromatic carbonadjacent to benzylic carbon),128.5,126.69–126.67(m),126.5,42.57–42.48(m),36.13–35.58(m,benzylic carbon),21.83–21.72(m).

实施例35

在氮气氛围中,依次向反应瓶中加入原料35(0.2mmol,32.8mg,>99/1 e.r.),catalyst 10(0.005mmol,3.5mg),AgNTf2(0.02mmol,7.8mg),Li3PO4(0.02mmol,2.3mg),最后加入acetone-d6(0.2mL)。反应在120℃下搅拌24小时后,冷却至室温,直接柱层析得到目标产物,收率为90%。通过核磁氢谱确定目标产物苄位氘代率为70%。通过SFC确定产物e.r.值为98.6/1.4,SFC条件为:OD-3 column,MeOH/CO2=1:99 to 5:95,1.0mL/min,215nm,tmajor=1.686min,tminor=2.442min;1H NMR(500MHz,Chloroform-d)δ7.31–7.28(m,2H),7.20–7.17(m,3H),3.28(s,3H),3.31–3.20(m,2H),2.90–2.83(m,0.30H,70%D),1.88–1.80(m,2H),1.27–1.26(m,3H).13C NMR(126MHz,Chloroform-d)δ146.95–146.91(m,aromatic carbon adjacent to benzylic carbon),128.3,126.96–126.94(m),125.9,70.8,58.5,37.95–37.85(m),36.4(s,benzylic carbon of remaining 41),35.97(t,J=19.5Hz,benzylic carbon of deuterated 41),22.25–22.13(m).

实施例36

在氮气氛围中,依次向反应瓶中加入原料36(0.2mmol,50.2mg,97.5/2.5 e.r.),catalyst 10(0.005mmol,3.5mg),AgNTf2(0.02mmol,7.8mg),Li3PO4(0.02mmol,2.3mg),NaNTf2(0.2mmol,60.6mg),最后加入acetone-d6(0.2mL)。反应在120℃下搅拌24小时后,冷却至室温,直接柱层析得到目标产物,收率为92%。通过核磁氢谱确定目标产物苄位氘代率为70%。通过SFC确定产物e.r.值为95/5,SFC条件为:OD-3 column,MeOH/CO2=3:97,1.5mL/min,210nm,tminor=1.690min,tmajor=1.903min;1H NMR(500MHz,Chloroform-d)δ7.80–7.78(m,2H),7.68–7.66(m,2H),7.52–7.50(m,2H),7.34–7.31(m,2H),7.27–7.25(m,1H),5.59–5.55(m,0.25H,75%D),1.94–1.92(m,3H).13C NMR(126MHz,Chloroform-d)δ168.1,140.24–140.18(m,aromatic carbon adjacent to benzylic carbon),133.8,131.9,128.4,127.62–127.60(m),127.40–127.38(m),123.1,49.6(s,benzylic carbon ofremaining 42),49.3(t,J=21.3Hz,benzylic carbon of deuterated 42),17.46–17.36(m).

实施例37

在氮气氛围中,依次向反应瓶中加入原料37(0.2mmol,44.2mg),catalyst 10(0.02mmol,14.0mg),AgNTf2(0.08mmol,31.2mg),Li3PO4(0.02mmol,2.3mg),最后加入acetone-d6(0.2mL)。反应在120℃下搅拌24小时后,冷却至室温,直接柱层析得到目标产物,收率为90%。通过核磁氢谱确定目标产物苄位氘代率为57%。1H NMR(500MHz,Chloroform-d)δ6.60(s,0.11H,89%D),6.49(s,2H,89%D),6.16(s,1H),4.95–4.86(m,1H),4.06–3.97(m,2H),3.68(t,J=9.0Hz,1H),3.49(t,J=8.4Hz,1H),2.26–2.19(m,2.60H,57%D).13C NMR(126MHz,Chloroform-d)δ160.5,157.98–157.94(m),139.30–139.11(m),123.36–122.86(m),112.30–111.80(m),74.9,67.8,42.5,21.20–20.28(m).

实施例38

在氮气氛围中,依次向反应瓶中加入原料38(0.2mmol,86.7mg),catalyst 10(0.005mmol,3.5mg),AgNTf2(0.02mmol,7.8mg),Li3PO4(0.02mmol,2.3mg),NaNTf2(0.2mmol,60.6mg),最后加入acetone-d6(0.2mL)。反应在120℃下搅拌24小时后,冷却至室温,直接柱层析得到目标产物,收率为50%。通过核磁氢谱确定目标产物苄位氘代率为79%。1H NMR(500MHz,Chloroform-d)δ7.09(s,4H),5.67(s,1H),4.35(s,4H),2.60–2.52(m,0.86H,79%D),2.19–2.17(m,2H),2.08(s,6H),1.94(s,3H),1.56(t,J=7.0Hz,1H),1.31–1.26(m,10H),0.88(t,J=6.9Hz,3H).13C NMR(126MHz,Chloroform-d)δ170.8,170.1,140.72–140.69(m,aromatic carbon adjacent to benzylic carbon),138.30–138.26(m,aromatic carbon adjacent to benzylic carbon),128.5,128.2,64.6,58.2,35.50–34.98(m,benzylic carbon),33.68–33.54(m),31.9,31.55–31.39(m),29.5,29.29–29.22(m),29.02–28.39(m,benzylic carbon),24.1,22.6,20.8,14.1.

实施例39

在氮气氛围中,依次向反应瓶中加入原料39(0.2mmol,65.5mg),catalyst 10(0.01mmol,7.0mg),AgNTf2(0.04mmol,15.6mg),Li3PO4(0.02mmol,2.3mg),NaNTf2(0.2mmol,60.6mg),最后加入acetone-d6(0.2mL)。反应在120℃下搅拌24小时后,冷却至室温,直接柱层析得到目标产物,收率为88%。通过核磁氢谱确定目标产物苄位氘代率为52%。1H NMR(500MHz,Chloroform-d)δ7.17(d,J=8.2Hz,1H),7.00(d,J=8.1Hz,1H),6.90(s,1H),5.44(s,0.5H,50%D),3.25–3.21(m,1H),3.11–3.07(m,1H),2.93–2.80(m,1H),2.29(d,J=13.0Hz,1H),1.96(s,3H),1.89–1.64(m,4H),1.42–1.35(m,4H),1.23–1.21(m,9H),0.93(s,3H).13C NMR(126MHz,Chloroform-d)δ170.06–169.98(m),147.19–147.13(m,aromatic carbon adjacent to benzylic carbon),145.66–145.62(m,aromatic carbonadjacent to benzylic carbon),134.76–134.67(m,aromatic carbon adjacent tobenzylic carbon),126.93–126.91(m),124.12–123.84(m),123.8,49.76–49.65(m),45.11–45.08(m),38.3,37.4,37.2,36.1,33.39–32.80(m,benzylic–CH carbon),30.13–29.29(m,benzylic–CH2 carbon),25.24–25.22(m),23.96–23.81(m),23.55–23.50(m),18.9,18.78–18.68(m),18.6.

实施例40

在氮气氛围中,依次向反应瓶中加入原料40(0.2mmol,56.8mg),catalyst 10(0.005mmol,3.5mg),AgNTf2(0.02mmol,7.8mg),Li3PO4(0.02mmol,2.3mg),NaNTf2(0.2mmol,60.6mg),最后加入acetone-d6(0.2mL)。反应在120℃下搅拌24小时后,冷却至室温,直接柱层析得到目标产物,收率为93%。通过核磁氢谱确定目标产物苄位氘代率为66%和53%。1H NMR(500MHz,Chloroform-d)δ7.20(d,J=8.6Hz,1H),6.71(d,J=8.5Hz,0.90H,10%D),6.64–6.61(m,0.82H,18%D),3.77(s,3H),2.90–2.86(m,0.94H,53%D),2.50–2.47(m,1H),2.39–2.37(m,1H),2.27–2.22(m,0.34H,66%D),2.17–2.10(m,0.89H,11%D),2.06–1.93(m,3H),1.62–1.41(m,6H),0.90(s,3H).13C NMR(126MHz,Chloroform-d)δ220.82–220.78(m),157.51–157.47(m),137.69–137.59(m,aromatic carbon adjacent tobenzylic carbon),131.97–131.86(m,aromatic carbon adjacent to benzyliccarbon),127.33–126.15(m),113.8,111.91–111.47(m),55.10–55.04(m),50.3,47.90–47.80(m),43.87–43.20(m,benzylic–CH carbon),38.27–38.18(m),35.77–35.24(m,-deuterated carbon of carbonyl group),31.5,29.58–29.08(m,benzylic–CH2carbon),26.46–26.25(m),25.84–25.73(m),21.67–21.39(m),13.76–13.31(m).

实施例41

在氮气氛围中,依次向反应瓶中加入原料41(0.2mmol,115.4mg),catalyst 10(0.005mmol,3.5mg),AgNTf2(0.02mmol,7.8mg),Li3PO4(0.02mmol,2.3mg),NaNTf2(0.2mmol,60.6mg),最后加入acetone-d6(0.2mL)。反应在120℃下搅拌24小时后,冷却至室温,直接柱层析得到目标产物,收率为90%。通过核磁氢谱确定目标产物苄位氘代率为70%。1H NMR(600MHz,Chloroform-d)δ7.35(d,J=8.2Hz,1H),7.18(dd,J=8.3,2.2Hz,1H),7.07–7.05(m,3H),6.82–6.81(m,2H),5.28(t,J=9.4Hz,1H),5.20(t,J=9.7Hz,1H),5.05(t,J=9.6Hz,1H),4.32–4.25(m,2H),4.14(dd,J=12.4,2.3Hz,1H),4.03–3.96(m,2.60H,70%D),3.81–3.78(m,1H),2.07(s,3H),2.05(s,3H),1.99(s,3H),1.70(s,3H),1.39(t,J=7.0Hz,3H).13C NMR(126MHz,Chloroform-d)δ170.7,170.3,169.4,168.7,157.5,139.02–138.95(m,aromatic carbon adjacent to benzylic carbon),135.1,134.5,130.98–130.92(m,aromatic carbon adjacent to benzylic carbon),129.8,125.9,114.5,79.4,76.1,74.1,72.5,68.4,63.3,62.2,38.20–37.24(m,benzylic carbon),20.7,20.59,20.58,20.2,14.8.

22页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种集成余热制冷的煤制天然气和甲醇多联产系统及方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!