变压器谐振转换器

文档序号:1631808 发布日期:2020-01-14 浏览:18次 >En<

阅读说明:本技术 变压器谐振转换器 (Transformer resonance converter ) 是由 肯尼斯·E·米勒 詹姆斯·R·普拉格 迪麦西·M·津巴 约翰·G·卡斯凯德 艾丽亚·斯劳伯道 于 2018-02-06 设计创作,主要内容包括:一些实施例可包括纳秒脉冲器,该纳秒脉冲器包括:多个固态开关;变压器,具有杂散电感L&lt;Sub&gt;s&lt;/Sub&gt;、杂散电容C&lt;Sub&gt;s&lt;/Sub&gt;和匝数比n;以及具有电阻R的电阻器,所述电阻器串联设置在所述变压器和所述开关之间。在一些实施例中,谐振电路根据以下公式产生Q因子:&lt;Image he="116" wi="209" file="DDA0002225575130000011.GIF" imgContent="drawing" imgFormat="GIF" orientation="portrait" inline="no"&gt;&lt;/Image&gt;以及纳秒脉冲器根据以下公式、从输入电压V&lt;Sub&gt;in&lt;/Sub&gt;产生输出电压V&lt;Sub&gt;out&lt;/Sub&gt;:V&lt;Sub&gt;out&lt;/Sub&gt;=QnV&lt;Sub&gt;in&lt;/Sub&gt;。(Some embodiments may include a nanosecond pulser, comprising: a plurality of solid state switches; transformer with stray inductance L s And a stray capacitor C s And a turns ratio n; and a resistor having a resistance R, the resistor being arranged in series between the transformer and the switch. In some embodiments, the resonant circuit generates the Q factor according to the following equation: And a nanosecond pulser from the input voltage V according to the following formula in Generating an output voltage V out :V out =QnV in 。)

变压器谐振转换器

背景技术

产生具有快速上升时间的高压脉冲具有挑战性。例如,为了实现高压脉冲(例如,大于约10kV)的快速上升时间(例如,小于约50ns),脉冲上升的斜率必须非常陡峭。这种陡峭的上升时间很难产生。这对于以紧凑的方式使用标准电气元件来说尤其困难。另外难以产生具有可变脉冲宽度和/或可变高脉冲重复率且具有快速上升时间的这种高压脉冲。

发明内容

公开了一种用于使用开关电压源和变压器产生高压、高频脉冲的系统和方法,该变压器包括谐振转换器、例如串联谐振转换器。

一些实施例可以包括谐振转换器,该谐振转换器包括DC输入;多个固态开关(其对于我们来说可以包括SPA、基于全桥拓扑的开关功率放大器);变压器,具有杂散电感Ls、杂散电容Cs以及初级与次级匝数比n;总串联电阻R,由杂散串联电路电阻Rs和任意附加串联电阻Ra组成,该附加串联电阻Ra有意地加入以控制Q;二极管整流器,位于变压器的次级侧;以及输出波形滤波器。在一些实施例中,谐振电路具有Q因子,该Q因子根据

Figure BDA0002225575110000011

获得;并且谐振转换器基于以下公式、根据输入电压Vin产生输出电压Vout:Vout=QnVin.。在一些实施例中,从变压器的初级侧测量杂散电感,并且从次级侧测量杂散电容。在一些实施例中,可以包括额外的电容Ca和/或电感La,以产生期望的谐振频率和/或改变电路Q。

一些实施例可以包括谐振转换器电路,该谐振转换器电路具有:变压器,该变压器具有杂散电感Ls以及杂散电容Cs;以及与变压器串联的杂散电阻,其具有电阻Rs。在一些实施例中,谐振电路根据以下公式产生Q因子,其中R是串联杂散电阻Rs和任何额外添加的电阻Ra以及等效串联负载电阻RL之和,C是杂散电容Cs和任何添加的电容Ca以及任何其他杂散电容Cso之和,L是杂散串联电感Ls和任何额外添加的电感La和任何其他杂散串联电感Lso之和。

在一些实施例中,输出可具有大于5kV、15kV和/或50kV的电压。

在一些实施例中,谐振转换器可以以大于约25kHz或100kHz的频率操作。

在一些实施例中,峰值输出功率与平均输出功率之间的比率大于10倍。

在一些实施例中,杂散电感Ls包括总电路电感的50%以上。

在一些实施例中,输出脉冲具有上升时间,且电压转换速率大于109V/s。

在一些实施例中,谐振转换器包括与其输入在电流方面隔离的输出(例如,浮动输出)。

在一些实施例中,可以在脉冲持续期间以小于10μs的时间尺度调整脉冲输出电压,以使其调整到新的电压输出电平。

在一些实施例中,杂散电容Cs包括总电路谐振电容的50%以上。

在一些实施例中,峰值输出功率大于5kW或大于50kW。

提及本文件中描述的实施例(无论是在此部分还是在其他地方)不意在限制或限定本公开,而是提供示例以帮助理解本公开。在

具体实施方式

部分讨论了另外的实施例,并且提供了进一步的描述。通过查看本说明书或通过实践所呈现的一个或多个实施例,可以进一步理解由各种实施例中的一个或多个提供的优点。

附图说明

图1是根据一些实施例的示例变压器谐振转换器。

图2是根据一些实施例的与开关电路和负载耦接的示例变压器谐振转换器的电路图。

图3是示例谐振转换器的照片。

图4是从根据一些实施例的变压器谐振转换器创建的示例波形。

图5是从根据一些实施例的变压器谐振转换器创建的示例波形。

图6是根据一些实施例的串联谐振电路的理想示例。

图7是根据一些实施例的示例变压器谐振转换器的电路图。

具体实施方式

公开了一种使用开关电压源和变压器来产生高压、高频脉冲的系统和方法,所述开关电压源和变压器与其他部件一起布置成串联谐振转换器或变压器谐振转换器。例如,开关电压源可以包括全桥或半桥拓扑。例如,开关电压源可以包括全桥或半桥开关拓扑。作为另一个例子,开关电压源可以具有附加的输出滤波器元件。例如,开关电压源可以包括全桥拓扑或半桥拓扑。在一些实施例中,开关电压源可以包括开关功率放大器。

例如,变压器谐振转换器可以不包括任何物理电容器和/或电感器。相反,在一些实施例中,变压器谐振转换器可以包括与至少变压器的杂散电容和/或杂散电感串联的电阻器。其他电路元件的杂散电感Lso和/或杂散电容Cso也可以用作谐振转换器的一部分。在一些实施例中,总杂散电感和/或杂散电容可以是小的。例如,在变压器的初级侧测得的杂散电感可小于约3000nH、300nH、30nH、3nH等。作为另一个例子,在变压器的次级侧上测得的杂散电容可以小于约300pF或小于约30pF。可以结合杂散电容和杂散电感(例如与杂散电容和杂散电感并联和/或串联)添加附加电容Ca和电感La

当电路以谐振频率驱动时,谐振转换器通常利用电路的谐振(示例性串联谐振电路如图6所示)。谐振频率可以根据电路元件的总电感和电容确定,例如,根据以下公式确定:

在该示例中,L和C分别表示总有效和/或等效串联电路电感和电容,并且如上所定义,L=Ls+Lso+La,并且C=Cs+Cso+Ca。图6示出了具有电感器620、电容器610和电源605而没有任何电阻的理想化串联谐振电路600。电阻可以在整个电路中以各种形式存在。

当谐振电路以其谐振频率被驱动时,每个电路元件的有效电抗的幅值相等但符号相反。因此,它们相互抵消,剩下的就是电路的实际电阻,无论其是否由杂散电阻和/或电阻元件(包括负载)组成。在一些情况下,该实际电阻可以是铜迹线的电阻和/或与谐振LC部件串联的任何其他电路部件的电阻。无功分量与实际电阻的比率被定义为Q因子,Q因子是无量纲参数,其是对在L或C两端测量时驱动电压将达到的乘数的良好估计。谐振频率和Q因子可以根据以下公式计算:

R是总等效串联/耗散电阻,并且可以包括任何串联杂散电阻Rs以及任何额外添加的电阻Ra以及额外的等效串联负载电阻RL,以及来自开关或其他部件的任何其他电介质或其他耗散损耗。通常的谐振转换器使用离散物理电路部件作为电感器、电容器和/或电阻器,以产生期望的Q因子和谐振频率f。在一些实施例中,可以省略额外的电阻以提高电路效率。在一些实施例中,可以使用某种形式的反馈和控制来将输出电压调节到比电路Q自然设置的值低的值。例如,一种这样的反馈和控制形式可以依赖于开关电压源的脉冲宽度调制。

图1是根据一些实施例的示例变压器谐振转换器100的电路图。在变压器的初级侧160上,谐振转换器100可以包括例如与开关110耦接的DC输入105。在一些实施例中,开关可以包括续流二极管或体二极管。开关110可以以高频打开和关闭,例如以变压器谐振转换器100的谐振频率打开和关闭。

例如,开关110可以是任何类型的固态开关。谐振转换器的初级侧160还可以包括谐振串联电感115和谐振串联电阻120。例如,开关110可以以例如大于50KHz,500kHz,5000KHz的频率产生高频脉冲。

在一些实施例中,开关110可以以小于例如大约40ns、10ns或1ns的开关时间操作。

在一些实施例中,开关110可以包括固态开关。开关100例如可以包括IGBT开关、MOSFET开关、FET开关、GaN开关等。在一些实施例中,开关110可以是高效开关。在一些实施例中,开关110可以是快速开关(例如,以大于100kHz的频率切换),这可以允许具有低纹波的输出。在一些实施例中,脉冲宽度调制(PWM)技术可用于快速控制输出电压,以允许例如当驱动中性束时,例如以数十μs的分辨率来控制束特性。

谐振串联电感115可以包括例如变压器的杂散电感、初级侧160电路的杂散电感和/或物理电感器。谐振串联电感115可以是小的,例如,小于约3000nH、300nH、30nH、3nH等。

谐振串联电阻120可以包括杂散电阻和/或物理电阻器。在一些实施例中,物理电阻器可能降低电路效率,然而,物理电阻器可以允许更快的电路响应时间,和/或可以减少对于用于控制/调节输出电压的反馈和控制环路的需要。

变压器125可包括任何类型的变压器,例如具有一个或多个初级侧绕组和多个次级侧绕组的环形线圈形变压器。作为另一个例子,变压器125可以是具有一个或多个初级侧绕组和多个次级侧绕组的同轴变压器。在一些实施例中,一个或多个初级侧绕组可包括导电片。在一些实施例中,一个或多个次级绕组可包括导电片。

变压器125的次级侧上的电路可以包括谐振串联电容130。谐振串联电容125例如可以包括变压器的杂散电容、和/或次级侧电路和/或电容器的杂散电容。谐振串联电容125可以是小的,例如,小于约1000pF、100pF、10pF等。谐振串联电容125可以与变压器输出并联。电路的次级侧165可以包括整流器135和/或输出滤波器140。

在一些实施例中,初级绕组和/或次级绕组可以包括缠绕在变压器芯的至少一部分周围的单个导电片。导电片可以缠绕在变压器芯的外表面、顶表面和内表面周围。电路板上和/或电路板内部的导电迹线和/或平面可以完成初级匝数,和/或将初级匝数连接到其他电路元件。在一些实施例中,导电片可包括金属片。在一些实施例中,导电片可包括具有特定几何形状的管、管道和/或其他薄壁金属物体的部分。

在一些实施例中,导电片可以终止于电路板上的一个或多个焊盘上。在一些实施例中,导电片可以用两根或更多根导线终止。

在一些实施例中,初级绕组可包括已涂覆在变压器芯的一个或多个外表面上的导电涂料。在一些实施例中,导电片可包括已使用诸如热喷涂、气相沉积、化学气相沉积、离子束沉积、等离子体和热喷涂沉积等沉积技术沉积在变压器芯上的金属层。在一些实施例中,导电片可包括缠绕在变压器芯周围的导电带材料。在一些实施例中,导电片可包括已经电镀在变压器芯上的导体。在一些实施例中,可以使用多个并联的导线代替导电片。

在一些实施例中,绝缘体可以设置或沉积在变压器芯和导电片之间。例如,绝缘体可包括聚合物、聚酰亚胺、环氧树脂等。

整流器135可以包括任何类型的整流器,例如基于二极管的整流器、全桥整流器(例如,如图7所示)、半桥整流器、三相整流器、倍压整流器等。可以使用任何其他类型的整流器。

输出滤波器140可以包括任何类型的滤波器。例如,输出滤波器140可以包括高通滤波器、低通滤波器、带通滤波器等。

一些实施例可以包括具有从初级侧160测量得到的低杂散电感的变压器谐振转换器100。低杂散电感可以包括小于例如大约3000nH、300nH、30nH、3nH等的电感。

一些实施例可以包括具有从初级侧160测量得到的低杂散电容的变压器谐振转换器100。低杂散电容可以包括小于例如大约1000pF、100pF、10pF等的电容。

一些实施例可以包括可以产生高平均输出功率的变压器谐振转换器100,高平均输出功率例如大于例如大约3kW、100kW、3MW。对于短脉冲串,峰值功率输出例如可能超过30kW、300kW、3MW。一些实施例可以包括产生具有高电压的脉冲的变压器谐振转换器100,例如大于例如5kV、25kV、250kV、2500kV。一些实施例可以包括产生高功率脉冲串操作(highpower burst operation)的变压器谐振转换器100,该高功率脉冲串操作的峰值功率大于变换器的平均操作功率的5倍。在一些实施例中,峰值功率输出可以超过平均输出功率例如5倍、50倍、500倍。

在一些实施例中,变压器谐振转换器100可以产生对于大于例如5kV、30kV、100kV、500kV等的电压具有快速上升时间(例如小于例如大约10μs、1μs、100ns、10ns等)的高压脉冲。

在一些实施例中,变压器谐振转换器100可以产生具有低电压纹波(例如,小于约5%)的输出脉冲。典型的输出电压纹波可以小于例如15%或0.5%。

在一些实施例中,变压器谐振转换器100可以利用脉冲宽度调制来操作,该脉冲宽度调制可以允许更好地控制输出波形和/或允许高效率功率输出。在一些实施例中,变压器谐振转换器可以包括高电压和/或功率输出的实时反馈和控制。在一些实施例中,低杂散电感和/或低杂散电容、和/或高频率操作可以允许该反馈回路是快速的。

在一些实施例中,变压器谐振转换器100可以显著增加系统的总功率密度。例如,变压器谐振转换器100可以与用于高功率雷达系统和/或RF系统的电子管驱动器一起使用。在一些实施例中,变压器谐振转换器100可以增加高功率雷达系统和/或RF系统的总功率密度。功率密度可以超过例如0.5W/cm3、5W/cm3、50W/cm3或500W/cm3

在一些实施例中,变压器谐振转换器100可以包括在具有硬接地参考的标准H桥电源配置中处于低电压的开关部件。例如,这可以消除如脉冲步进调制器中所见的、将每个模块浮动到高电压的要求。

在一些实施例中,变压器谐振转换器可以包括高压部件,其包括高压变压器和整流二极管以及其他高压部件。例如,这些部件可以使用油、灌封或其他方法封装以获得安全的高电压。在一些实施例中,一些部件可以在空气中具有适当的间隔以消除电晕产生、电弧放电和/或跟踪(tracking)。

在变压器谐振转换器的一些实施例中,输出是变压器隔离的,因此相同的系统可以提供浮动或接地参考输出和/或可以配置为提供正极性或负极性。这例如可以允许相同的设计用于具有特定中性束注入设计的各种高压栅格中任意高压栅格,包括例如正离子或负离子提取和加速以及离子和电子抑制栅格。

在一些实施例中,与当前用于较小中性束注入器系统的脉冲步进调制器相比,谐振转换器可产生相同的功率水平,而整个系统尺寸和/或控制复杂性显着降低。

在一些实施例中,由于电源的固有串联谐振行为,谐振转换器对于电弧故障可以是安全的。谐振转换器的串联谐振行为可以具有与负载匹配的供电阻抗(supplyimpedance)。例如,当出现电弧时,这种不匹配会降低在电路的初级侧160中流动的功率,并且次级上的电压可能下降,由此电弧中的电流不能继续增加到对电网造成损坏的点。

在一些实施例中,变压器谐振转换器可以在其输出滤波器组件中存储非常少的能量。例如,该存储的能量可以小于例如大约10J、1.0J或0.1J。高频操作允许该存储的能量最小化。在一些实施例中,最小化该存储的能量可能是重要的。例如,这种能量会在电弧出现时损坏负载部件。

在一些实施例中,变压器谐振转换器可以是模块化的。在一些实施例中,变压器谐振转换器可以容易地缩放到更高的输出功率水平,使其成为大型中性束注入器系统(例如,如在NSTX、DIII-D或ITER中使用的那些)的可能选择。例如,具有变压器谐振转换器的电源可以与串联布置的输出一起被添加,以容易地增加输出电压。类似地,只要高压侧被缩放以考虑增加的电流水平,就可以通过在初级侧上并联地添加单元来增加输出电流。

图2是根据一些实施例的与负载250耦接的变压器谐振转换器200的电路图。例如,变压器225可以具有任意数量的匝数。例如,变压器可以具有n=1、n=30、n=50、n=100等的匝数比。总串联电感由初级侧260上的电感器电路元件205表示(例如,具有小于约3000nH、300nH、30nH、3nH的电感),其可以主要由变压器的杂散电感Ls组成。总串联电容由次级侧265上的电容器电路元件210(例如,具有小于约1000pF、100pF、10pF等的电容)表示,其可主要由变压器的杂散电容Cs组成。杂散电感205和/或杂散电容210基于变压器的尺寸、类型、材料等和/或变压器的匝数而可以是任意值。在该电路中,主电阻器215可以包括在电路中,与电感器205和/或电容器210串联。在一些实施例中,主电阻器215可以具有小的值,例如,小于3000mΩ、300mΩ、30mΩ、3mΩ。

在该示例中,变压器谐振转换器200包括具有四个开关电路230的开关电路。然而,可以使用任何数量的开关电路。每个开关电路230可以包括具有任何数量的电路元件的固态开关235。固态开关可以包括例如IGBT开关、MOSFET开关、FET开关、GaN开关等。每个开关电路230还可以包括由电路元件240表示的杂散电感和/或由电路元件245表示的杂散电阻。每个开关电路230还可以包括二极管255。

在该示例中,变压器的次级侧还可以包括全桥整流器260、输出滤波器270、负载元件250(例如,在特定示例中,包括86k欧姆的电阻器)、和/或滤波器电阻器280(例如,在特定示例中,包括10k欧姆的电阻器),该滤波器电阻器与外部用户负载电容器285(例如,在特定示例中,包括30pF的电容器)一起动作。例如,在所示的电路中,可以不需要反馈和控制调节。

在任何配置中组合的任何数量的电路元件可以跟随整流器。例如,这些其他元件可以包括电容组件、电感组件和/或电阻滤波器组件、以及/或者外部负载。

在一些实施例中,变压器谐振转换器(例如,变压器谐振转换器100、变压器谐振转换器200、变压器谐振转换器700等)可以产生具有各种特性的脉冲。例如,变压器谐振转换器可以产生电压大于约30kV的脉冲。例如,变压器谐振转换器可以产生电压大于约5kV、25kV、250kV或2500kV的脉冲。例如,变压器谐振转换器可产生这样的脉冲,其具有从电压大于约25kV开始、小于约300μs、30μs、3μs的上升时间或下降时间。例如,变压器谐振转换器可以产生具有可变脉冲宽度的脉冲。例如,变压器谐振转换器可以产生具有可变频率的脉冲。例如,变压器谐振转换器可以产生具有可变电压的脉冲。例如,变压器谐振转换器可以产生用于电介质阻挡放电和/或中性束注入装置的脉冲。例如,变压器谐振转换器可以产生具有任何持续时间的脉冲宽度的脉冲,该脉冲宽度的范围例如从大约1μs到DC。

例如,变压器谐振转换器可产生脉冲重复率大于约1kHz的脉冲,以便在平均功率水平超过几千瓦的情况下连续工作。例如,变压器谐振转换器可以产生脉冲重复频率大于约1kHz、30kHz或1000kHz的脉冲。例如,变压器谐振转换器可以产生功率大于约3kW、100kW或3MW的脉冲。

在一些实施例中,变压器谐振转换器可以容纳在可安装在机架中的外壳中(例如,标准6U外壳,其尺寸大约为10"×17"×28")。在一些实施例中,变压器谐振转换器可以具有高功率密度,例如,功率密度可以超过0.5W/cm3、5W/cm3、50W/cm3、或500W/cm3

在一些实施例中,变压器谐振转换器可包括任何类型的固态开关,例如IGBT、FET、MOSFET、SiC结晶体管、GaN开关等。

图3是包括具有绕组310和多个电阻器305的变压器的示例变压器谐振转换器的照片。多个电阻器305的累积电阻值可以由用于给定Q因子的等式2确定。变压器谐振转换器还包括与散热器耦接的多个固态开关315。例如,在这种情况下,固态开关可以被布置在全桥拓扑中。变压器谐振转换器还包括多个全桥整流二极管320。还可以包括许多其他电路元件。

图4是从根据一些实施例的变压器谐振转换器创建的示例波形。在这个例子中,输出电压大于30kV,上升时间约为4s,平顶宽度约为12μs。

图5是从根据一些实施例的变压器谐振转换器创建的另一示例波形。该波形由图2所示的开关谐振转换器产生。在此示例中,变压器谐振转换器的输入电压为600V,输出脉冲为30kV。在这个例子中,上升时间约为5μs,平顶宽度约为20μs。根据谐振转换器的调制,这些波形可能有额外的上升、平顶和下降。该波形示出一个典型的输出脉冲;各种其他输出脉冲也是可能的。在一些实施例中,变压器谐振转换器的输出的高功率密度、功率、频率、上升时间和/或电压可以是唯一的。例如,这些属性可以通过使用具有低杂散电容和/或低杂散电感的变压器(和/或电路)来实现,该变压器允许在高频下操作,并且允许使用以高功率、非常快的转换时间操作的固态开关。

图7是根据一些实施例的示例变压器谐振转换器700的电路图。在该示例中,变压器705与谐振转换器拓扑耦接和/或是谐振转换器拓扑的一部分,其中变压器705具有n的阶跃电压,n表示变压器705的初级绕组的匝数与次级绕组的匝数之比。在该变压器中,杂散电感Ls由电感器715表示,和/或杂散电容Cs由变压器的电容器720表示。这些杂散元件被用作谐振转换器700的一部分。还可以将其他电路元件的杂散电感Lso和杂散电容Cso与杂散电感Ls715和电容Cs720结合使用以实现期望的谐振频率f和Q。电阻器710表示可以包括在变压器的初级侧上的附加电阻Ra。一旦已知变压器的杂散电感Ls和杂散电容Cs,并且已知总电感和电容,即使它们仅由杂散元件组成,也可以选择电阻(例如Rpri),以使用例如等式(2)产生给定的Q因子。在此示例中,变压器次级上的电压可通过以下公式计算:

Vout=QnVc(3).

因此,变压器次级上的电压可以由变压器通过谐振转换器将n倍乘以Q倍来加速。

在一些变压器谐振转换器中,变压器和/或其他电路元件的总杂散电感和总杂散电容保持较低,例如,以产生高频谐振振荡电压、以及具有快速上升时间和/或快速下降上升时间的输出电压。例如,电路可以以高频切换,例如,以大于50kHz、500kHz、5MHz的频率切换。例如,变压器和/或其他电路元件的低总杂散电感和低总杂散电容也可以保持较低以产生快速整流上升时间,例如快于100μs、10μs、1μs。

在一些实施例中,可以从变压器的次级侧测量杂散电容。或者,可以从变压器的初级侧测量杂散电容,其等于变压器次级侧上的电容乘以匝数比n的平方。

在一些实施例中,可以从变压器的初级侧测量杂散电感。或者,可以从变压器的次级侧测量杂散电感,其等于变压器初级侧的电感乘以匝数比n的平方。

在一些实施例中,可以从变压器的次级侧测量总等效串联电容。或者,可以从变压器的初级侧测量总等效串联电容,其等于变压器次级侧上的总等效串联电容乘以匝数比n的平方。

在一些实施例中,可以从变压器的初级侧测量总等效串联电感。或者,可以从变压器的次级侧测量总等效串联电感,其等于变压器初级侧上的总等效串联电感乘以匝数比n的平方。

术语“基本上”是在指所述值的5%至15%以内,或在制造公差范围内。

本文阐述了许多具体细节以提供对所要求保护的主题的透彻理解。然而,本领域技术人员将理解,可以在没有这些具体细节的情况下实践所要求保护的主题。在其他情况下,没有详细描述本领域普通技术人员已知的方法、设备或系统,以免模糊所要求保护的主题。

本文中“适应于”或“配置为”的使用意味着开放且包容性的语言,其不排除适于或配置为执行附加任务或步骤的装置。另外,“基于”的使用意味着开放和包容性,因为“基于”一个或多个所述条件或值的过程、步骤、计算或其他动作在实践中可以基于附加条件或超出所述的价值。这里包括的标题、列表和编号仅是为了便于解释而不是限制性的。

虽然已经针对本发明的具体实施方式详细描述了本发明的主题,但是应当理解,本领域技术人员在对前述内容理解后,可以容易地获得对这些实施例的改变、变化和等同物。因此,应该理解的是,本公开内容是出于示例而非限制的目的而给出的,其并不排除对本发明主题的这些修改、变化和/或添加,这对于本领域普通技术人员而言是显而易见的。

16页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:机动车和用于机动车的变流器装置

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!

技术分类