ZnO-Ga聚合物闪烁转换屏的制备方法

文档序号:1639779 发布日期:2019-12-20 浏览:14次 >En<

阅读说明:本技术 ZnO-Ga聚合物闪烁转换屏的制备方法 (Preparation method of ZnO-Ga polymer scintillation conversion screen ) 是由 李乾利 杨道龙 张志军 赵景泰 杨云凌 袁瑞 杨雪纯 周玉 于 2019-09-02 设计创作,主要内容包括:本发明公开了一种ZnO-Ga聚合物闪烁转换屏的制备方法,能制备超快ZnO-Ga闪烁转换屏。本发明利用水热反应法制备ZnO-Ga纳米晶,然后主要采用树脂、聚苯乙烯或有机玻璃作为有机体材料,使ZnO-Ga纳米晶通过与有机体材料的结合,制备ZnO-Ga聚合物闪烁体。利用本发明方法获得ZnO-Ga闪烁体没有缺陷发光,慢成分,发光衰减时间在几十纳秒,只有禁带边超快发光,其发光衰减时间达到亚纳秒。同时,其厚度和直径尺寸能根据实际需要方便调控,适应性强,应用广泛。本发明方法不仅制备过程简单、成本低廉、制备周期短,而且具有良好的闪烁发光性能以及能制备出各种尺寸和不同厚度的闪烁转换屏的优势。(The invention discloses a preparation method of a ZnO-Ga polymer scintillation conversion screen, which can be used for preparing an ultrafast ZnO-Ga scintillation conversion screen. The invention utilizes a hydrothermal reaction method to prepare ZnO-Ga nanocrystals, and then mainly adopts resin, polystyrene or organic glass as an organic material, so that the ZnO-Ga nanocrystals are combined with the organic material to prepare the ZnO-Ga polymer scintillator. The ZnO-Ga scintillator obtained by the method has no defect luminescence and slow components, the luminescence decay time is dozens of nanoseconds, only the forbidden band edge emits ultrafast luminescence, and the luminescence decay time reaches subnanoseconds. Meanwhile, the thickness and the diameter of the composite material can be conveniently regulated and controlled according to actual needs, and the composite material is strong in adaptability and wide in application. The method has the advantages of simple preparation process, low cost, short preparation period, good scintillation luminescence property and capability of preparing scintillation conversion screens with various sizes and different thicknesses.)

ZnO-Ga聚合物闪烁转换屏的制备方法

技术领域

本发明涉及一种闪烁材料的制备方法,特别是涉及一种快速响应的ZnO-Ga闪烁转换屏的制备方法,应用于闪烁探测与成像技术领域。

背景技术

闪烁材料使一种通过吸收高能粒子或射线发射紫外或可见光的材料。在高能物理、空间物理、核物理、核医学成像、油井探测、安全检查、工业CT以及生命科学等领域,由闪烁材料组成的闪烁转换屏是实现X射线、γ射线或高能粒子探测与成像的核心器件。评价闪烁屏性能的主要指标包括光产额、衰减时间、空间分辨率、截止本领和辐射硬度等。获得具有亚纳秒量级衰减时间的超快闪烁屏是人们长期以来追求的目标,以期满足未来超快闪烁探测与成像的需求。

ZnO是新型的宽带隙直接跃迁半导体材料,材料内多原胞范围内的激子振子强度耦合增强的效应,使其发光衰减时间往往在亚纳秒级别,是目前为止衰减速度最快的闪烁材料之一。ZnO稳定存在于自然界,无毒,无味,熔点1975℃,密度5.606g/cm3。在室温下带隙宽度为3.37eV,激子束缚能为60meV。ZnO室温下具有优异的光学性能,由于其大的激子束缚能和抗辐射强度,且n型掺杂可提高ZnO的发光性能,如Ga和In,有望用于各类辐射探测。理想的ZnO材料是一种快速、光输出效率高的室温闪烁体,而且具有较GaAs,GaN更强的抗辐照性能,可在强辐射环境下使用,特别是其超短的闪烁衰减时间,一直是核科学研究关注的重点。ZnO材料作为下一代超快闪烁体具有极其重要实用价值。

尽管目前水热法能够生长出良好的大尺寸的ZnO-Ga晶体,但是由于ZnO-Ga本身的结晶习性导致想要制造出晶体尺寸足够大且性能良好的单晶十分困难。大尺寸的单晶材料生长往往需要特殊昂贵的设备,其不仅需要耐高温、高压,还要特殊的金属以保护内衬不受矿化剂的腐蚀。同时,ZnO-Ga晶体生长过程工艺十分复杂,生长速度缓慢导致生长周期过长,要得到符合要求的晶体不仅需要花费大量时间,甚至数月左右,造价也十分昂贵,废品率高,无法实现产业化生产的要求。另外,ZnO-Ga材料存在严重的自吸收问题,如果直接用大块ZnO-Ga晶体进行闪烁探测与成像,其自身的自吸收将导致其发光效率大大降低。一种消除ZnO自吸收的方法是利用把ZnO做成百微米级的薄片加以使用。但是由于晶体一般都有很大的脆性,导致抛光过程易使晶体碎裂,所以ZnO-Ga晶体加工过程比较困难、且花费成本高。而一般的ZnO-Ga薄膜制备法,例如:磁控溅射法、脉冲激光沉积法等,获得ZnO-Ga薄膜通常在几十纳米到十几微米之间,且闪烁发光性能较差,很难获得高质量百微米量级的ZnO-Ga薄膜。

发明内容

为了解决现有技术问题,本发明的目的在于克服已有技术存在的不足,提供一种ZnO-Ga聚合物闪烁转换屏的制备方法,利用水热反应法制备ZnO-Ga纳米晶,然后主要采用树脂、聚苯乙烯或有机玻璃作为有机体材料,使ZnO-Ga纳米晶通过与有机体材料的结合,制备ZnO-Ga聚合物闪烁体。利用本发明方法获得ZnO-Ga闪烁体没有缺陷发光,慢成分,发光衰减时间在几十纳秒,只有禁带边超快发光,其发光衰减时间达到亚纳秒,质量高。同时,本发明制备的ZnO-Ga聚合物闪烁转换屏的厚度和直径尺寸能根据实际需要方便调控,适应性强,应用广泛。

为达到上述目的,本发明采用如下技术方案:

一种ZnO-Ga聚合物闪烁转换屏的制备方法,包括如下步骤:

1)制备ZnO-Ga纳米晶粉体:

将一定摩尔质量的Ga(NO3)3·xH2O与Zn(NO3)·6H2O和C6H12N14分别溶于去离子水中,混合均匀形成反应物溶液,使Ga(NO3)3、Zn(NO3)和C6H12N14的溶质总摩尔浓度为0.01~0.5mol/L;然后将混合溶液导入水热反应釜中,再把反应釜放入保温箱中,加热到95~150℃,进行6~20h的水热反应,利用水热反应法制备出ZnO-Ga单晶纳米棒;作为本发明优选的技术方案,控制加热到120~150℃,进行12~20h的水热反应,利用水热反应法制备出ZnO-Ga单晶纳米棒;

2)ZnO-Ga纳米晶粉体的多级退火处理:包括如下步骤:

2-1)将在所述步骤1)中通过水热反应法制备好的ZnO-Ga单晶纳米棒在空气中,进行第一次高温退火处理,控制退火温度为500~1000℃,退火处理时间为5~30h;

2-2)然后将在所述步骤2-1)中进行空气退火处理后的ZnO-Ga单晶纳米棒放入氢氩混合气中,进行第二次高温退火处理,控制退火温度为500~1000℃,退火处理时间为1~5h,得到ZnO-Ga单晶纳米棒粉体;

3)ZnO-Ga聚合物闪烁转换屏的制备:

将在所述步骤2-2)中得到的ZnO-Ga单晶纳米棒粉体与有机体材料和固化剂进行混合,控制混合物中ZnO-Ga单晶纳米棒粉体的含量比例为0.1~50wt%;先利用磁力搅拌器,将混合物混合均匀;再利用真空干燥箱,去除混合物中的气泡;然后把混合物填充装入设定内径的模具中,然后连体模具放入干燥箱中,进行固化,然后进行脱模,从而制备出ZnO-Ga聚合物闪烁体;最后把制备好的ZnO-Ga聚合物闪烁体利用线切割机进行切割成薄片,经过抛光后,获得所需厚度的ZnO-Ga聚合物闪烁转换屏。优选得到厚度不低于0.5mm的ZnO-Ga聚合物闪烁转换屏。优选得到直径不低于50mm的圆形的ZnO-Ga聚合物闪烁转换屏。作为本发明优选的技术方案,将在所述步骤2-2)中得到的ZnO-Ga单晶纳米棒粉体与的树脂和固化剂进行混合,控制混合物中ZnO-Ga单晶纳米棒粉体的含量比例为12.5~50wt%。有机体材料优选采用树脂、聚苯乙烯或有机玻璃。

本发明与现有技术相比较,具有如下显而易见的突出实质性特点和显著优点:

1.本发明方法利用水热反应法制备ZnO-Ga纳米晶,然后主要采用树脂、聚苯乙烯或有机玻璃作为有机体材料,使ZnO-Ga纳米晶通过与有机体材料的结合,制备ZnO-Ga聚合物闪烁体,然后利用线切割机切割成薄片,并再加以抛光,即获得ZnO-Ga聚合物闪烁转换屏,制备方法过程简单、成本低廉、制备周期短,易于实现,适合推广应用;

2.本发明方法制备的ZnO-Ga聚合物闪烁转换屏具有良好的闪烁发光性能,本发明方法能制备出各种尺寸和不同厚度的闪烁转换屏的优势;

3.本发明方法采用ZnO-Ga纳米晶粉体的多级退火处理;首先通过空气退火,提高ZnO-Ga纳米晶粉体的结晶性能;再通过氢氩混合气退火,提高其超快成分(禁带边)发光,降低其慢成分(缺陷)发光;从而实现ZnO-Ga纳米晶粉体闪烁性能优化,得到闪烁性能优异的ZnO-Ga单晶纳米棒粉体。

附图说明

图1为本发明实施例一方法制备的ZnO-Ga单晶纳米棒粉体的SEM图。

图2为本发明实施例一方法制备的ZnO-Ga单晶纳米棒粉体的XRD图。

图3为本发明实施例一方法制备的ZnO-Ga聚合物闪烁转换屏的实物图。

图4为本发明实施例一方法制备的ZnO-Ga聚合物闪烁转换屏的透过率谱。

图5为本发明实施例一方法制备的ZnO-Ga聚合物闪烁转换屏的X射线激发发射谱。

图6为本发明实施例一方法制备的ZnO-Ga聚合物闪烁转换屏的发光衰减时间谱。

图7为本发明实施例二方法制备的ZnO-Ga单晶微米棒粉体的SEM图。

图8为本发明实施例二方法制备的ZnO-Ga聚合物闪烁转换屏的实物图。

图9为本发明实施例四方法制备的ZnO-Ga聚合物闪烁转换屏的实物图。

图10为本发明实施例五方法制备的ZnO-Ga聚合物闪烁转换屏的实物图。

具体实施方式

以下结合具体的实施例子对上述方案做进一步说明,本发明的优选实施例详述如下:

实施例一:

在本实施例中,一种ZnO-Ga聚合物闪烁转换屏的制备方法,包括如下步骤:

1)制备ZnO-Ga纳米晶粉体:

取1.1780g的化学式为Zn(NO3)2·6H2O的六水硝酸锌和0.0102g的化学式为Ga(NO3)3·xH2O的水合硝酸镓放入80ml的去离子水中,常温下搅拌30min;然后,取0.5608g化学式为C6H12N4的六亚甲基四胺放入80ml的去离子水中,常温下搅拌30min;把制备好的两种溶液依次倒入水热反应釜中,把反应釜密封好,放入真空干燥箱中,加热到120℃,保温12小时,进行水热反应;待降到室温后取出沉淀,反复用去离子水洗涤5遍后,即得到ZnO-Ga单晶纳米棒;

2)ZnO-Ga纳米晶粉体的多级退火处理:包括如下步骤:

2-1)将在所述步骤1)中通过水热反应法制备好的ZnO-Ga单晶纳米棒在空气中,进行第一次高温退火处理,控制退火温度为1000℃,退火处理时间为10h;

2-2)将在所述步骤2-1)中进行空气退火处理后的ZnO-Ga单晶纳米棒放入氢氩混合气中,继续进行第二次高温退火处理,采用氢气退火处理,控制退火气氛Ar:H2的体积比为80:20,控制退火温度为800℃,退火处理时间为2h;待退火后的粉体降到室温,取出即得到闪烁性能发光优异的ZnO-Ga单晶纳米棒粉体,参见图1和图2,图1为本实施例方法制备的ZnO-Ga单晶纳米棒粉体的SEM图;图2为本实施例方法制备的ZnO-Ga单晶纳米棒粉体的XRD图,从图中可见本实施例方法制备的ZnO-Ga单晶纳米棒粉体微观形貌为单晶纳米棒,颗粒形状均匀;

3)ZnO-Ga聚合物闪烁转换屏的制备:

分别称量1g的ZnO-Ga纳米棒粉体和5g环氧树脂,将二者先后加入50ml的烧杯中,加入搅拌子,用磁力搅拌仪搅拌20min后,称量2g固化剂倒入烧杯中,放在磁力搅拌仪上继续搅拌40min;之后将烧杯放入真空干燥箱内抽真空15min,取出,将混合液倒入内径为25mm的模具中;模具内预先抹好凡士林,便于后面样品的取出;再放入真空干燥箱内抽真空10min;取出,放在预先设定好温度为50℃干燥箱内固化5h,用压力机进行脱模。将ZnO-Ga聚合物放在木板上,用石蜡封牢ZnO-Ga聚合物的四周,冷却5min左右,使石蜡***。打开金刚石线切机的电源,将整个部件放在切割机的切割位置,固定好螺丝,调整切割位置,设定切割速度为0.5mm/min和切割厚度0.55mm。切割完毕后将塑闪薄片取出,用酒精清洗;先用3000目的砂纸抛光10min,之后用5000、10000目的砂纸各抛光10min至薄片的表面光滑无切痕且厚度为0.5mm,即可获得厚度为0.5mm的ZnO-Ga聚合物闪烁转换屏,即为ZnO-Ga塑料闪烁转换屏。

本实施例将ZnO-Ga单晶纳米棒粉体与有机体材料和固化剂进行混合,先利用磁力搅拌器,将混合物混合均匀;再利用真空干燥箱,去除混合物中的气泡;然后把混合物填充装入设定内径的模具中,然后连体模具放入干燥箱中,进行固化,然后进行脱模,从而制备出ZnO-Ga聚合物闪烁体;最后把制备好的ZnO-Ga聚合物闪烁体利用线切割机进行切割成薄片,经过抛光后,获得所需厚度的ZnO-Ga聚合物闪烁转换屏,参见图3~图6。图3为本实施例方法制备的ZnO-Ga聚合物闪烁转换屏的实物图。图4为本实施例方法制备的ZnO-Ga聚合物闪烁转换屏的透过率谱。图5为本实施例方法制备的ZnO-Ga聚合物闪烁转换屏的X射线激发发射谱。图6为本实施例方法制备的ZnO-Ga聚合物闪烁转换屏的发光衰减时间谱。从图中可知,本实施例方法制备的ZnO-Ga塑料闪烁转换屏的大于300nm波长的光透过率高,尤其是大于400nm波长的光透过率在78%以上。本实施例方法制备的ZnO-Ga塑料闪烁转换屏的仪器响应时间短,利用本实施例方法获得ZnO-Ga闪烁体没有缺陷发光,慢成分,发光衰减时间在50纳秒以内,只有禁带边超快发光,其发光衰减时间达到亚纳秒。

实施例二:

本实施例与实施例一基本相同,特别之处在于:

在本实施例中,一种ZnO-Ga聚合物闪烁转换屏的制备方法,包括如下步骤:

1)制备ZnO-Ga纳米晶粉体:

取9.424g的化学式为Zn(NO3)2·6H2O的六水硝酸锌和0.0818g的化学式为Ga(NO3)3·xH2O的水合硝酸镓放入80ml的去离子水中,常温下搅拌30min;然后,取4.486g化学式为C6H12N4的六亚甲基四胺放入80ml的去离子水中,常温下搅拌30min;把制备好的两种溶液依次倒入水热反应釜中,把反应釜密封好,放入真空干燥箱中,加热到120℃,保温12小时,进行水热反应;待降到室温后取出沉淀,反复用去离子水洗涤5遍后,即得到ZnO-Ga单晶微米棒粉体;

2)ZnO-Ga晶粉体的多级退火处理:包括如下步骤:

2-1)将在所述步骤1)中通过水热反应法制备好的ZnO-Ga单晶微米棒粉体在空气中,进行第一次高温退火处理,控制退火温度为1000℃,退火处理时间为10h;

2-2)将在所述步骤2-1)中进行空气退火处理后的ZnO-Ga单晶微米棒粉体放入氢氩混合气中,继续进行第二次高温退火处理,采用氢气退火处理,控制退火气氛Ar:H2的体积比为80:20,控制退火温度为800℃,退火处理时间为2h;待退火后的粉体降到室温,取出即得到闪烁性能发光优异的ZnO-Ga单晶纳米棒粉体,参见图7,本实施例方法制备的ZnO-Ga单晶纳米棒粉体微观形貌为单晶纳米棒,颗粒形状均匀;

3)本步骤与实施例一相同。

本实施例方法制备的ZnO-Ga塑料闪烁转换屏的仪器响应时间短,利用本实施例方法获得ZnO-Ga闪烁体没有缺陷发光,慢成分,发光衰减时间在50纳秒以内,只有禁带边超快发光,其发光衰减时间达到亚纳秒,参见图8。

实施例三:

本实施例与前述实施例基本相同,特别之处在于:

在本实施例中,一种ZnO-Ga聚合物闪烁转换屏的制备方法,包括如下步骤:

1)制备ZnO-Ga纳米晶粉体:

取1.1780g的化学式为Zn(NO3)2·6H2O的六水硝酸锌和0.0102g的化学式为Ga(NO3)3·xH2O的水合硝酸镓放入80ml的去离子水中,常温下搅拌30min;然后,取0.5608g化学式为C6H12N4的六亚甲基四胺放入80ml的去离子水中,常温下搅拌30min;把制备好的两种溶液依次倒入水热反应釜中,把反应釜密封好,放入真空干燥箱中,加热到150℃,保温20小时,进行水热反应;待降到室温后取出沉淀,反复用去离子水洗涤5遍后,即得到ZnO-Ga单晶纳米棒;

2)ZnO-Ga纳米晶粉体的多级退火处理:包括如下步骤:

2-1)将在所述步骤1)中通过水热反应法制备好的ZnO-Ga单晶纳米棒在空气中,进行第一次高温退火处理,控制退火温度为500℃,退火处理时间为30h;

2-2)将在所述步骤2-1)中进行空气退火处理后的ZnO-Ga单晶纳米棒放入氢氩混合气中,继续进行第二次高温退火处理,采用氢气退火处理,控制退火气氛Ar:H2的体积比为80:20,控制退火温度为1000℃,退火处理时间为1h;待退火后的粉体降到室温,取出即得到闪烁性能发光优异的ZnO-Ga单晶纳米棒粉体,本实施例方法制备的ZnO-Ga单晶纳米棒粉体微观形貌为单晶纳米棒,颗粒形状均匀;

3)ZnO-Ga聚合物闪烁转换屏的制备:

分别称量7g的ZnO-Ga纳米棒粉体和5g聚苯乙烯,将二者先后加入50ml的烧杯中,加入搅拌子,用磁力搅拌仪搅拌20min后,称量2g固化剂倒入烧杯中,放在磁力搅拌仪上继续搅拌40min;之后将烧杯放入真空干燥箱内抽真空15min,取出,将混合液倒入内径为25mm的模具中;模具内预先抹好凡士林,便于后面样品的取出;再放入真空干燥箱内抽真空10min;取出,放在预先设定好温度为50℃干燥箱内固化5h,用压力机进行脱模。将ZnO-Ga聚合物放在木板上,用石蜡封牢ZnO-Ga聚合物的四周,冷却5min左右,使石蜡***。打开金刚石线切机的电源,将整个部件放在切割机的切割位置,固定好螺丝,调整切割位置,设定切割速度为0.5mm/min和切割厚度0.55mm。切割完毕后将塑闪薄片取出,用酒精清洗;先用3000目的砂纸抛光10min,之后用5000、10000目的砂纸各抛光10min至薄片的表面光滑无切痕且厚度为0.5mm,即可获得厚度为0.5mm的ZnO-Ga聚合物闪烁转换屏,即为ZnO-Ga聚苯乙烯闪烁转换屏。

本实施例方法制备的ZnO-Ga聚苯乙烯闪烁转换屏的仪器响应时间短,利用本实施例方法获得ZnO-Ga闪烁体没有缺陷发光,慢成分,发光衰减时间在50纳秒以内,只有禁带边超快发光,其发光衰减时间达到亚纳秒。

实施例四:

本实施例与前述实施例基本相同,特别之处在于:

在本实施例中,一种ZnO-Ga聚合物闪烁转换屏的制备方法,包括如下步骤:

1)本步骤与实施例一相同;

2)本步骤与实施例一相同;

3)ZnO-Ga聚合物闪烁转换屏的制备:

分别称量1g的ZnO-Ga纳米棒粉体和5g环氧树脂,将二者先后加入50ml的烧杯中,加入搅拌子,用磁力搅拌仪搅拌20min后,称量2g固化剂倒入烧杯中,放在磁力搅拌仪上继续搅拌40min;之后将烧杯放入真空干燥箱内抽真空15min,取出,将混合液倒入内径为25mm的模具中;模具内预先抹好凡士林,便于后面样品的取出;再放入真空干燥箱内抽真空10min;取出,放在预先设定好温度为50℃干燥箱内固化5h,用压力机进行脱模。将ZnO-Ga聚合物放在木板上,用石蜡封牢ZnO-Ga聚合物的四周,冷却5min左右,使石蜡***。打开金刚石线切机的电源,将整个部件放在切割机的切割位置,固定好螺丝,调整切割位置,设定切割速度为0.5mm/min,分别设定切割进程为0.9mm、1.4mm和2.4mm,得到厚度约为0.55mm、1.05mm和2.05mm的薄片,切割完毕后将塑闪薄片取出,用酒精清洗;先用3000目的砂纸抛光10min,之后用5000、10000目的砂纸各抛光10min,至薄片的表面光滑无切痕且厚度分别为0.50mm、1.00mm和2.00mm即可。即可获得对应厚度的ZnO-Ga聚合物闪烁转换屏,即为ZnO-Ga塑料闪烁转换屏,参见图9。

本实施例将ZnO-Ga单晶纳米棒聚合物切成厚度不同的薄片,薄片厚度分别为0.5mm、1.0mm、2.0mm。

本实施例方法制备的ZnO-Ga塑料闪烁转换屏的仪器响应时间短,利用本实施例方法获得ZnO-Ga闪烁体没有缺陷发光,慢成分,发光衰减时间在50纳秒以内,只有禁带边超快发光,其发光衰减时间达到亚纳秒。

实施例五:

本实施例与前述实施例基本相同,特别之处在于:

在本实施例中,一种ZnO-Ga聚合物闪烁转换屏的制备方法,包括如下步骤:

1)本步骤与实施例一相同;

2)本步骤与实施例一相同;

3)ZnO-Ga聚合物闪烁转换屏的制备:

分别称量4g的ZnO-Ga纳米棒粉体和20g环氧树脂,将二者先后加入50ml的烧杯中,加入搅拌子,用磁力搅拌仪搅拌20min后,称量8g固化剂倒入烧杯中,放在磁力搅拌仪上继续搅拌40min;之后将烧杯放入真空干燥箱内抽真空15min,取出,将混合液倒入内径为50mm的模具中;模具内预先抹好凡士林,便于后面样品的取出;再放入真空干燥箱内抽真空10min;取出,放在预先设定好温度为50℃干燥箱内固化5h,用压力机进行脱模。将ZnO-Ga聚合物放在木板上,用石蜡封牢ZnO-Ga聚合物的四周,冷却5min左右,使石蜡***。打开金刚石线切机的电源,将整个部件放在切割机的切割位置,固定好螺丝,调整切割位置,设定切割速度为0.5mm/min和切割厚度0.55mm。切割完毕后将塑闪薄片取出,用酒精清洗;先用3000目的砂纸抛光10min,之后用5000、10000目的砂纸各抛光10min至薄片的表面光滑无切痕且厚度为0.5mm,即可获得厚度为0.5mm并且直径为50mm的ZnO-Ga聚合物闪烁转换屏,即为ZnO-Ga塑料闪烁转换屏,参见图10。

本实施例制备ZnO-Ga单晶纳米棒聚合物使用的模具内径为50mm,做出的聚合物闪烁转换屏的直径为50mm。本实施例方法制备的ZnO-Ga塑料闪烁转换屏的仪器响应时间短,利用本实施例方法获得ZnO-Ga闪烁体没有缺陷发光,慢成分,发光衰减时间在50纳秒以内,只有禁带边超快发光,其发光衰减时间达到亚纳秒。

上面对本发明实施例结合附图进行了说明,但本发明不限于上述实施例,还可以根据本发明的发明创造的目的做出多种变化,凡依据本发明技术方案的精神实质和原理下做的改变、修饰、替代、组合或简化,均应为等效的置换方式,只要符合本发明的发明目的,只要不背离本发明ZnO-Ga聚合物闪烁转换屏的制备方法的技术原理和发明构思,都属于本发明的保护范围。

14页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种管束集冷却回路辐照装置及其循环方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!