一种淀粉样蛋白β短肽介导的脑靶向递送系统

文档序号:1644441 发布日期:2019-12-24 浏览:24次 >En<

阅读说明:本技术 一种淀粉样蛋白β短肽介导的脑靶向递送系统 (Brain targeting delivery system mediated by amyloid beta short peptide ) 是由 占昌友 张醉 于 2018-06-14 设计创作,主要内容包括:本发明属药学领域,涉及一种可特异性吸附血浆中载脂蛋白,且能介导药物跨血脑屏障的多肽修饰的复合物和靶向递送系统及其在制备诊断与治疗外周肿瘤、脑肿瘤及其它脑部疾病的制剂中的应用。所述的淀粉样蛋白β(amyloidβ,Aβ)的多肽片段经共价键修饰荧光探针、药物分子和脂质体递药系统,经试验显示,所修饰的递送系统在与血浆蛋白作用形成蛋白冠后,增加其被血管内皮细胞的摄取;所修饰的脂质体递送系统更有效的将药物递送至病灶部位,显著提高药物治疗效果。所述的Aβ多肽经血浆蛋白吸附后,可介导药物跨血脑屏障、靶向肿瘤新生血管和肿瘤细胞,其修饰的药物和递送系统在治疗外周肿瘤、脑部肿瘤及脑内其它疾病时获得更好的治疗效果。(The invention belongs to the field of pharmacy, and relates to a polypeptide modified compound and a targeted delivery system which can specifically adsorb apolipoprotein in blood plasma and mediate a medicament to cross a blood brain barrier, and application of the polypeptide modified compound and the targeted delivery system in preparation of preparations for diagnosing and treating peripheral tumors, brain tumors and other brain diseases. The polypeptide fragment of amyloid beta (amyloid beta, Abeta) modifies a fluorescent probe, a drug molecule and a liposome delivery system through covalent bonds, and experiments show that the modified delivery system increases the uptake of the polypeptide fragment by vascular endothelial cells after the polypeptide fragment reacts with plasma protein to form a protein crown; the modified liposome delivery system can more effectively deliver the drug to the focus part, and obviously improve the therapeutic effect of the drug. After the A beta polypeptide is adsorbed by plasma protein, the A beta polypeptide can mediate a medicine to cross a blood brain barrier and target tumor neovessels and tumor cells, and the modified medicine and a delivery system of the A beta polypeptide can obtain better treatment effect when treating peripheral tumors, brain tumors and other diseases in the brain.)

一种淀粉样蛋白β短肽介导的脑靶向递送系统

技术领域

本发明属药学领域,涉及一种淀粉样蛋白β短肽介导的脑靶向递送系统,尤其涉及一种可特异性吸附血浆中载脂蛋白,且能介导药物跨血脑屏障的多肽修饰的复合物和靶向递送系统及其在制备诊断与治疗外周肿瘤、脑肿瘤及其它脑部疾病的制剂中的应用。

背景技术

现有技术公开了中枢神经系统疾病已成为严重危害人类健康的疾患,但相关新药的研发进展仍十分缓慢,其主要原因之一是所述药物中的绝大部分药物分子难以透过血-脑屏障,而设计可跨血-脑屏障的药物或递药系统乃是目前药物研发领域的重点和难点之一。研究公开了脑靶向递药系统主要利用受体介导方式跨越血脑屏障入脑,但目前的有关药物设计多为侧重于脑靶向分子与血脑屏障上相关受体的结合效率,常忽略了递药系统体内传输过程中体液成分的影响,如:结合血浆蛋白形成蛋白冠可极大影响递药系统的靶向性和体内循环时间,等,因此,导致体外设计的脑靶向递药系统在体内应用中靶向效率欠佳。如何从全新的角度设计脑靶向递药系统,精准调控其在体内传输过程中与相关蛋白或细胞的相互作用,包括血浆蛋白吸附和解离,其他细胞吞噬作用,蛋白降解,免疫反应等,发挥更有效的靶向功能,是当前业内研究的热点。

基于现有技术的现状,本申请的发明人拟提供一种淀粉样蛋白β短肽介导的脑靶向递送系统,尤其涉及一种可特异性吸附血浆中载脂蛋白,且能介导药物跨血脑屏障的多肽修饰的复合物和靶向递送系统及其在制备诊断与治疗外周肿瘤、脑肿瘤及其它脑部疾病的制剂中的应用。该多肽修饰的靶向递送系统将通过调控纳米药物在血浆中形成蛋白冠的组分和生物活性,克服传统靶向纳米药物的缺陷,构建可跨血脑屏障,同时靶向血管内皮细胞、肿瘤细胞的Aβ-药物复合物和Aβ修饰的纳米递药系统,实现脑肿瘤的靶向诊断和治疗及其他脑部疾病的药物递送。

发明内容

本发明的目的在于,针对现有技术存在的缺陷,提供一种淀粉样蛋白β短肽介导的脑靶向递送系统,尤其涉及一种可特异性吸附血浆中载脂蛋白,且能介导药物跨血脑屏障的多肽修饰的复合物和靶向递送系统及其在制备诊断与治疗外周肿瘤、脑肿瘤及其它脑部疾病的制剂中的应用。该多肽修饰的靶向递送系统将通过调控纳米药物在血浆中形成蛋白冠的组分和生物活性,克服传统靶向纳米药物的缺陷,构建可跨血脑屏障,同时靶向血管内皮细胞、肿瘤细胞的Aβ-药物复合物和Aβ修饰的纳米递药系统,实现脑肿瘤的靶向诊断和治疗及其他脑部疾病的药物递送。

本发明中,仿生脑内Aβ蛋白以载脂蛋白(如Apoliportein E、Apoliprotein A1和Apoliprotein J)为分子伴侣、经受体介导转运至外周的清除机制,以Aβ(Amyloidβ)蛋白为模板,设计了可特异性结合载脂蛋白脂质结合域的多肽,通过将该多肽修饰在脂质体表面,在体内血液循环过程中特异性吸附血浆中载脂蛋白并保持其生物活性,进而利用载脂蛋白与血脑屏障上多种受体[包括Low-density lipoprotein-related protein 1(LRP-1),Scavenger receptor class B member 1(SRB1)和Low-density lipoprotein-relatedprotein 2(LRP-2)]结合,介导脂质体转运入脑;该多肽修饰的脂质体通过调控纳米药物在血浆中形成蛋白冠的组分和生物活性,能克服传统靶向纳米药物的缺陷,构建可跨血脑屏障,同时靶向血管内皮细胞、肿瘤细胞的Aβ-药物复合物和Aβ修饰的纳米递药系统,实现脑肿瘤的靶向诊断和治疗及其他脑部疾病的药物递送。

本发明中,Aβ多肽以共价键修饰在聚乙二醇-二硬脂酰基磷脂酰乙醇胺(PEG-DSPE)、聚乙二醇-聚乳酸(PEG-PLA)、聚乙二醇-乳酸羟基乙酸共聚物(PEG-PLGA)、聚乙二醇-聚己内酯(PEG-PCL)等材料上,构建Aβ多肽修饰的脂质体、胶束、纳米圆盘、纳米粒等递送系统。

所述的Aβ多肽修饰的纳米递送系统可包载紫杉醇、多西他赛、卡巴他赛、阿霉素、表阿霉素、喜树碱、羟基喜树碱、9-硝基喜树碱、长春新碱、p53激活肽、蜂毒肽、蝎毒肽等抗肿瘤药物;以及,可包载荧光物质,如FAM、近红外染料Cy5、Cy5.5、Cy7、IR820、ICG、DiR、DiD、DiI等。

本发明中,Aβ多肽修饰的药物或探针包括通过马来酰亚胺己肼衍生物反应形成pH敏感腙键,涉及阿霉素、表阿霉素、p53激活肽、多肽毒素等药物、或通过3-(2-吡啶二巯基)丙酸衍生物反应形成二硫键,涉及紫杉醇、多西他赛、卡巴他赛、喜树碱、羟基喜树碱、9-硝基喜树碱、长春新碱、p53激活肽、多肽毒素等药物、或通过稳定化学键连接荧光探针,涉及Fluorescein、Cy5、Cy5.5、Cy7、ICG、IR820。

进一步的,本发明提供了淀粉样蛋白β短肽在制备介导药物分子、荧光探针或递送系统靶向外周肿瘤、脑部肿瘤或脑部其它疾病病灶制剂中的应用,所述的淀粉样蛋白β多肽为特异性吸附血浆中载脂蛋白的淀粉样蛋白β多肽。

所述的淀粉样蛋白β多肽以共价键与影像物质X连接制得Aβ-X,用于高表达LRP-1的外周肿瘤、脑肿瘤及脑内其它疾病病灶的示踪;所述的Aβ-X中,X是荧光分子Fluorescein或近红外染料分子Cy5、Cy5.5、Cy7、IR820、ICG、DiR、DiD、DiI;

所述的淀粉样蛋白β片段多肽以共价键与抗肿瘤药物Y连接制得Aβ-Y,用于高表达LRP-1的外周肿瘤、脑肿瘤及脑内其它疾病病灶的靶向干预中;所述的Aβ-Y中,Y是紫杉醇、多西他赛、卡巴他赛、阿霉素、表阿霉素、喜树碱、羟基喜树碱、9-硝基喜树碱或长春新碱小分子抗肿瘤药物;所述的Aβ-Y中,Y是p53激活肽或多肽毒素多肽抗肿瘤药物;

所述的淀粉样蛋白β多肽用共价键与聚乙二醇-Z连接制得的Aβ-聚乙二醇-Z,用于制备纳米递送系统;所述的Aβ-聚乙二醇-Z中,Z是磷脂、聚乳酸(PLA)、乳酸羟基乙酸共聚物(PLGA)或聚己内酯(PCL);

本发明中所述的Aβ-聚乙二醇-磷脂用于制备脂质体递送系统、胶束递送系统或纳米圆盘递送系统;

本发明中所述的Aβ-聚乙二醇-聚乳酸、CTB-聚乙二醇-乳酸羟基乙酸共聚物、CTB-聚乙二醇-聚己内酯,用于制备胶束递送系统和聚合物纳米粒递送系统;

本发明中所述的脂质体递送系统、胶束递送系统、纳米圆盘递送系统或聚合物纳米粒递送系统,用于包载诊断分子,进行高表达LRP-1的外周肿瘤、脑部肿瘤或脑部其它疾病病灶的示踪;所述的递送系统所包载诊断分子是5-羧基荧光素5-FAM或近红外染料Cy5、Cy5.5、Cy7、IR820、ICG、DiR、DiD、DiI;

本发明中所述的纳米粒递送系统、脂质体递送系统、胶束递送系统、聚合物纳米粒递送系统或纳米圆盘递送系统,用于包载抗肿瘤药物,进行高表达LRP-1的外周肿瘤、脑部肿瘤或脑部其它疾病病灶的靶向干预;所包载药物是紫杉醇、多西他赛、卡巴他赛、阿霉素、表阿霉素、喜树碱、羟基喜树碱、9-硝基喜树碱、长春新碱、p53激活肽或多肽毒素。

更具体的,本发明通过下述技术方案实现,

1.制备Aβ多肽修饰的脂质体递送系统

将含半胱氨酸巯基的Aβ多肽与马来酰胺-PEG-DSPE在PH 7.4的磷酸缓冲液中反应,使用8000-10000Da孔径的半透膜透析,冻干产物,制备Aβ-PEG-DSPE备用,

称取一定量的天然磷脂,胆固醇,甲氧基-PEG-DSPE(meo-PEG-DSPE),与Aβ-PEG-DSPE,模型药物或探针分子,溶解于溶媒中,成膜,水化,脂质体挤压器过膜,柱层析除去游离探针分子或药物,制得Aβ多肽修饰的脂质体,动态光散射粒度仪表征其粒径和表面电位。

2.Aβ多肽修饰的递送系统在与血浆共孵育形成蛋白冠后对其结合活性的影响实验,

将Aβ多肽修饰的递送系统与新鲜血浆共孵育一段时间后,用western blot和放射性标记方法检测其与LRP-1受体的结合活性,未与血清孵育的Aβ多肽修饰的递送系统和未修饰Aβ多肽的递送系统作为阴性对照。

3.Aβ多肽修饰对递送系统被血管内皮细胞系统摄取的影响实验,

用血管内皮细胞(如bEND3细胞)在血清孵育前后,分别比较内皮细胞对Aβ多肽修饰的与未修饰的递送系统摄取量。

4.Aβ多肽修饰的递送系统在正常小鼠体内跨BBB能力的评价,

正常小鼠(如昆明种,C57BL/6等),尾静脉注射包载荧光素的递送系统,比较不同时间点小鼠脑内Aβ多肽修饰与未修饰的递送系统的蓄积量。

5.Aβ多肽修饰的递送系统在正常大鼠体内的药代动力学的评价

正常SD大鼠,尾静脉注射荧光素DiI标记的多肽修饰与未修饰的递送系统,在不同的时间点收集血液,分离血浆,通过荧光定量检测血浆中DiI的含量,以评价多肽修饰的递送系统在大鼠体内的药代动力学。

6.Aβ多肽修饰的递送系统在正常小鼠体内的免疫原性的评价

制备含Lipid A的多肽修饰与未修饰的递送系统,腹腔注射于Balb/c小鼠体内,四周内每七天注射一次,在每次注射后第七天眼眶取血,收集血浆冷冻备用。利用ELISA法检测不同时间点在小鼠体内产生针对PEG和Aβ的IgG和IgM含量,评价免疫原性。

7.Aβ多肽修饰的递送系统体内抗肿瘤效果评价

通过荷原位U87神经胶质瘤模型裸鼠尾静脉注射Aβ多肽修饰的递送系统、未修饰多肽的递送系统、游离药物和生理盐水,以模型裸鼠的中位生存期、肿瘤组织细胞凋亡和新生血管密度为指标评价Aβ多肽修饰的递送系统体内抗肿瘤效果。

本发明经试验显示,所述的Aβ多肽介导的药物或递药系统靶向LRP-1高表达的细胞和组织,具有跨生物膜屏障的能力,特别是跨血脑屏障(BBB)的能力,可用于外周肿瘤、脑部肿瘤及其它疾病的靶向诊断和治疗。

本发明实验显示Aβ多肽修饰在递药系统表面,与血浆中的载脂蛋白结合,形成蛋白冠后增加血管内皮细胞的摄取;Aβ多肽可同时介导药物跨血脑屏障、靶向肿瘤新生血管和肿瘤细胞,其修饰的药物和递药系统在治疗外周肿瘤、脑部肿瘤及脑内其它疾病时可获得更好的治疗效果。

附图说明

图1.Aβ多肽修饰的脂质体与血浆蛋白的体外结合鉴定

将Aβ多肽通过化学偶联的方式修饰在脂质体表面得到Aβ-LP,与小鼠血浆混合37℃孵育1h后,高速离心获得含有蛋白冠的脂质体沉淀。经Biorad 4%-20%梯度SDS-PAGE分离,快速银染法得到脂质体吸附的血浆蛋白成分分析(如附图1A所示)。结果发现,相比于甲氧基脂质体,Aβ-LP吸附的血浆蛋白在45KDa(Fraction 1),38KDa(Fraction 2)和25KDa(Fraction 3)处的条带有显著性增加。将两者三处相同位置对应的PAGE胶经LC-MS/MS和western blot结果分析,鉴定三处的蛋白分别是小鼠来源的ApoJ,ApoE和ApoA1。

图2.荧光标记的meo-LP和Aβ-LP在体内吸附血浆功能性载脂蛋白的鉴定

为了验证目标小肽修饰的脂质体在动物体内经全身给药后,仍能吸附相关的目的蛋白,我们将等量的DiI荧光标记的脂质体经尾静脉注射至小鼠体内,1h后取血,分离血浆中的含蛋白冠的脂质体。如附图2A所示,经过western blot方法检测到,相同含量的脂质体在小鼠体内吸附的三种载脂蛋白(ApoJ,ApoE,ApoA1)的含量有显著差异。这一结果证明,相对于普通脂质体,Aβ多肽修饰的脂质体在小鼠体内能够快速并特异性的吸附血浆蛋白中的载脂蛋白。

图3.meo-LP和Aβ-LP吸附血浆蛋白后,与LRP-1受体的结合活性评价

已知Aβ通过与LRP-1的结合从脑内运输到血液循环中,Aβ修饰的脂质体自身能够特异性吸附溶液中的重组蛋白LRP-1(如附图3A所示)。证实Aβ-LS与ApoE预孵育之后,仍保留与LRP-1结合的能力。而附图3E通过ELISA实验证明,血浆孵育之后的Aβ-LP失去竞争Aβ抗体的能力,说明脂质体表明的Aβ与ApoE等血浆蛋白结合之后,其功能域被封闭,从而失去Aβ本身的结合功能。因此,我们认为Aβ-LP经血浆孵育之后,失去了与BBB表面受体结合的作用,因而排除了Aβ-LP通过经典通路RAGE进入血脑屏障的可能性。相反,Aβ-LP表面特异性结合的载脂蛋白如ApoE具有与BBB受体LRP-1结合的活性,成为介导Aβ-LP跨越BBB入脑的有效途径。

图4.血管内皮细胞对血浆孵育前后纳米递送系统的摄取

纳米递送系统与血浆共孵育形成蛋白冠后,内皮细胞对其摄取增加。

图5.Aβ多肽修饰的脂质体在小鼠体内的药动学参数和免疫原性评价

Aβ多肽修饰在脂质体表面,未影响其在体内的药动学参数,也未影响脂质体产生的免疫原性(以血液中IgG和IgM为评价指标,如附图5b-c)。

图6.Aβ多肽修饰的脂质体在小鼠体内入脑效率评价

通过体内检测小鼠脑内的荧光素,发现Aβ-LP组跨BBB的量显著高于meo-LP组,说明Aβ可介导递送系统跨血脑屏障。

图7.载阿霉素的脂质体体内抗脑胶质瘤的药效

生理盐水组、DOX组、meo-LP/DOX组、Aβ-LP/DOX组小鼠的中位生存期分别为:27天,31天,33天,50天,Aβ多肽修饰的纳米递送系统可显著延长脑原位瘤模型鼠的中位生存期。

图8.载阿霉素的脂质体对肿瘤组织中新生血管的影响

Aβ多肽修饰的脂质体包载阿霉素组肿瘤组织内的血管密度显著低于未修饰组,说明Aβ多肽可介导递送系统靶向肿瘤新生血管。

图9.载阿霉素的脂质体对胶质瘤细胞凋亡的影响

Aβ多肽修饰的脂质体递送系统组肿瘤组织内细胞凋亡数量显著高于未修饰组,说明Aβ多肽可介导递药系统靶向肿瘤细胞。

图10.安全性评价

Aβ多肽在体外培养的神经细胞系PC12上并未显示出细胞毒性,同时Aβ多肽修饰的脂质体组小鼠脏器的组织切片无明显异常,说明Aβ多肽修饰在脂质体表面并未引起毒副作用。

具体实施方式

通过下述实施例将有助于理解本发明,但本发明不局限于如下描述范围

实施例1 制备脂质体

脂质体meo-LP/DiI和Aβ-LP/DiI的制备:

脂质体meo-LP/DiI的制备:称取制备脂质体的膜材天然磷脂(HSPC):7.85mg胆固醇:3.35mg;mPEG-2000-DSPE:2.78mg;DiI:0.4mg,溶于10mL CHCl3中,40度水浴悬蒸成膜,真空干燥去除有机溶剂,将膜溶于1ml双蒸水中得60度水浴中摇匀水化,在脂质体挤压器经400nm,200nm,100nm孔径挤压得到meo-LP/DiI;

脂质体Aβ-LP/DiI的制备:称取50mg Mal-PEG-DSPE溶于5mL CHCl3中37度成膜,真空干燥半小时后溶于4mL双蒸水中,37度水化,超声以去除大颗粒。称取26mgAβ-Cys蛋白溶于2mL双蒸水中,于上诉膜材料溶液混合,并用1mL双蒸水润洗容器后混合,加入40μL EDTA溶液(500mM,pH8.0),3mL PB溶液(0.1M,pH7.4),室温搅拌反应6h,使之无絮状沉淀。使用8000-10000Da孔径透析膜,蒸馏水中透析48h-72h,得到的溶液冻干制品为Aβ-PEG-DSPE;

称取制备脂质体的膜材HSPC:7.85mg胆固醇:3.35mg;mPEG-2000-DSPE:1.67mg;Aβ-PEG-DSPE:1.82mg;DiI:0.4mg,溶于10ml CHCl3中,40度水浴悬蒸成膜,真空干燥去除有机溶剂,将膜溶于1ml双蒸水中得60度水浴中摇匀水化,在脂质体挤压器经400nm,200nm,100nm孔径挤压得到Aβ-LP/DiI;

脂质体meo-LP/DOX和Aβ-LP/DOX的制备:

脂质体meo-LP/DOX的制备:称取制备脂质体的膜材HSPC:7.85mg胆固醇:3.35mg;mPEG-2000-DSPE:2.78mg,溶于10mL CHCl3中,40度水浴悬蒸成膜,真空干燥去除有机溶剂,将膜溶于1mL硫酸铵溶液(0.32M)中得60度水浴中摇匀水化,在脂质体挤压器经400nm,200nm,100nm孔径挤压得到硫酸铵溶液水化的meo-LP,经S50洗脱柱置换成生理盐水溶剂后,加入阿霉素水溶液混合(药脂比1∶10),经S50层析柱去除未包载阿霉素,得到meo-LP/DOX;

脂质体Aβ-LP/DOX的制备:称取制备脂质体的膜材HSPC:7.85mg胆固醇:3.35mg;mPEG-2000-DSPE:1.67mg;Aβ-PEG-DSPE:1.82mg,其余步骤同上(脂质体meo-LP/DOX的制备),得Aβ-LP/DOX。

实施例2 脂质体在血清中形成蛋白冠后与LRP-1受体的结合活性及其被血管内皮细胞摄取的影响

脂质体在血清中形成蛋白冠的特征:

取C57BL/6小鼠的血清(含蛋白酶抑制剂,以EDTA为抗凝剂,)与脂质体1∶1混合,37℃孵育1h后,15000rpm离心30min,用冷的PBS洗2次后溶于30μL PBS中,以血清做阳性对照,PBS为阴性对照,加入6μL的SDS-PAGE上样缓冲液和3μL的β-巯基乙醇,煮沸10分钟使蛋白变性,用4-20%的聚丙烯酰胺胶使不同分子量的蛋白分离,快速银染试剂盒显色。将PAGE胶中的明显差异条带处(如红色箭头所示)及对照的同一位置处切下,分别用胰蛋白酶消化,重悬于0.1%的甲酸溶液中,LC/MS分析各条带的蛋白组分,实验结果如图1所示;

体内实验实施方法如下:将荧光DiI标记的多肽修饰与未修饰的脂质体通过尾静脉注射到C57BL/6小鼠体内,1h后取血并低速离心分离血浆,蛋白冠分离方法如上述体外实验,通过SDS-PAGE和western blot方法鉴定其在体内吸附的蛋白冠成分,如图2所示。

血清孵育前后Aβ-LP与LRP-1受体的结合活性:

ELISA法检测血清孵育前后Aβ-LP与Aβ抗体的结合活性,以判断Aβ与受体的活性结合域在血浆蛋白相互作用后的变化,检测其吸附的载脂蛋白活性,具体操作如下:ELISA板中每孔加入0.1μg Aβ-Cys蛋白,室温过夜,PBS洗3遍后,用3%的BSA封闭1h,吸去BSA溶液,加入Aβ抗体37℃孵育1h,PBS洗三遍,加入预先与血清或者PBS孵育并梯度稀释的脂质体,在37℃孵育1h,PBS洗三遍,加入相应的辣根过氧化物酶标记的二抗,1h后与TMB显色液反应3-15min,用2M H2SO4终止反应,在450nm波长测其吸光度值,实验结果如图3所示。

Aβ-LP在血清中形成蛋白冠后被血管内皮细胞摄取的影响:

血管内皮细胞bEND3的复苏:将冷冻bEND3细胞,快速融化并转移至预先加有培养液的离心管中,1000r/min离心3min后弃上清,加入含10%FBS的DMEM培养液,轻轻吹打均匀并滴加至培养皿中,混匀。于显微镜下观察细胞形态及生长情况并置于37℃、5%CO2、相对湿度95%的培养箱中培养;

血管内皮细胞bEND3的培养:观察bEND3细胞的生长情况即细胞数量、形态和贴壁情况。吸弃旧培养液,加入新鲜的含10%FBS的DMEM培养液,混匀,在37℃、5%CO2、饱和湿度的培养箱中继续培养,每天观察细胞生长情况,每隔2-3天传代,约10天左右细胞处于对数生长期,可用于体外细胞实验;

血管内皮细胞bEND3传代:吸弃培养液,用PBS冲洗2次,加入0.25%胰酶少许,置培养箱中1min后加入2-3mL培养液终止消化,将该细胞悬液等份分装入数个离心管中,离心后弃去上清液,加入新的培养液后转入培养皿中,置培养箱中培养;

血管内皮细胞bEND3的冻存:细胞实验结束后,冻存细胞以便下次使用,预先配制冻存液(含10%DMSO和90%胎牛血清),于4℃预冷。用胰酶消化细胞后加入预冷的冻存液,用滴管轻轻吹打混匀。在每支冻存管中加入1mL细胞液,密封后标记冻存细胞名称和冻存日期,置-80℃过夜,液氮罐中保存并登记备案;

将合适密度的bEND3接种于6孔板中,置于细胞培养箱中培养过夜,将荧光素DiI标记的脂质体(血清孵育的及未与血清孵育的)分别用不含血清的DMEM培养基稀释50倍,每孔加入1ml,与细胞共孵育4h,将培液吸出,快速用PBS洗两遍,胰酶消化细胞,含血清的培养基终止消化,离心,并用PBS洗一遍,最后细胞分散于300μL的PBS中,流式细胞仪测定摄取包载DiI脂质体的阳性细胞百分率和荧光强度(激发波长555nm,发射波长570nm)。实验结果如图4所示;

Aβ多肽对体内药动学参数及免疫原性的影响:

SD大鼠,每组3只,通过尾静脉注射meo-LP/DiI和Aβ-LP/DiI,分别在给药前,5min,30min,1h,2h,4h,8h,12h和24h后,尾部取血(肝素抗凝),血样分离上清,并用正常大鼠血清梯度稀释血浆中的DiI,利用荧光分光光度计进行定量(激发波长555nm,发射波长570nm),实验结果如图5a所示,腹腔注射载Lipid A的meo-LP和Aβ-LP于Balb/c小鼠,每7天注射一次,每次注射后第七天取血备用,利用ELISA法检测不同时间点在小鼠体内产生针对PEG和Aβ的IgG和IgM含量,实验结果如图5b-c所示。

实施例3 Aβ多肽修饰的脂质体可跨越BBB

体内实验证实荧光素DiI标记的Aβ多肽修饰的脂质体(DiI-Aβ-LP)可跨越血脑屏障:

将荧光标记的Aβ-LP(磷脂含量10mg/mL,DiI含量0.4mg/mL),尾静脉注射到C57BL/6小鼠体内(10μL/g),1h后,用***麻醉小鼠,取出脑组织,在4%的多聚甲醛中固定24h,30%蔗糖脱水,OCT包埋,冰冻切片,DAPI染细胞核,CD31抗体标记血管,置于显微镜下观察并拍照,荧光素DiI标记的甲氧基脂质体作对照,按相同步骤处理,实验结果如图6所示。

实施例4 载阿霉素的Aβ-LP在体内的药效学实验

原位瘤模型鼠的中位生存期:

脑胶质瘤裸鼠模型的建立:取对数生长期的U87细胞,消化细胞并计数,用适量的PBS缓冲液悬浮,每只裸鼠接种6×105个细胞(分散于5μL PBS缓冲液中),实验前将裸鼠用7%水合氯醛麻醉后,用脑立体定位仪固定,将悬浮细胞接种于纹状体部位(即前囟向前0.6mm,向右1.8mm,纵深3mm),定期观察手术后裸鼠的状态;

将原位脑瘤模型裸鼠随机分成4组(n=13),分别在第7、9、11、13、15天记录小鼠体重,尾静脉注射200μL生理盐水,阿霉素,meo-LP-DOX,Aβ-LP/DOX,单次阿霉素的注射剂量为2mg/kg,记录模型裸鼠的生存时间,实验结果如图7所示。

载阿霉素的Aβ-LP抑制肿瘤中新生血管和促肿瘤细胞凋亡实验:

原位脑胶质瘤模型鼠在给药完成后的第18天,水合氯醛麻醉,分离脑组织,多聚甲醛固定,脱水,石蜡包埋切片。通过CD31抗体的免疫荧光染色观察检测对新生血管的抑制效果,采用末端脱氧核苷酸转移酶(TDT)介导的dUTP缺口末端标记法(Terminaldeoxynucleotidyl Transferase-mediated dUTP nick end labeling,TUNEL)检测肿瘤细胞的凋亡程度,通过共聚焦荧光显微镜观察并拍照,实验结果如图8,9所示。

安全性评价:将梯度浓度的Aβ-Cys与神经细胞系PC12共培养,评价其在体外培养条件下的细胞毒性,同时将原位瘤药效学试验的各给药组小鼠的心、肝、脾、肺、肾组织解剖后固定于4%多聚甲醛的PBS溶液中,石蜡包埋切片,进行HE染色,在显微镜下观察并拍照,实验结果如图10所示。

15页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种磁性抗菌纳米系统及其制备方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!

技术分类