在衬底上沉积的膜的质量改进

文档序号:1676910 发布日期:2019-12-31 浏览:14次 >En<

阅读说明:本技术 在衬底上沉积的膜的质量改进 (Quality improvement of films deposited on substrates ) 是由 P·曼纳 A·B·玛里克 K·莱斯彻基什 S·文哈弗贝克 S·卡玛斯 Z·王 H·张 于 2018-05-29 设计创作,主要内容包括:本公开的实施方式整体涉及一种在小于250摄氏度的温度下处理半导体衬底的方法。在一个实施方式中,所述方法包括:将具有沉积的膜的所述衬底装载到压力容器中;在大于约2巴的压力下将所述衬底暴露于包括氧化剂的处理气体;以及维持所述压力容器处于在所述处理气体的冷凝点与约250摄氏度之间的温度。(Embodiments of the present disclosure generally relate to a method of processing a semiconductor substrate at a temperature of less than 250 degrees celsius. In one embodiment, the method comprises: loading the substrate with the deposited film into a pressure vessel; exposing the substrate to a process gas comprising an oxidant at a pressure greater than about 2 bar; and maintaining the pressure vessel at a temperature between a condensation point of the process gas and about 250 degrees celsius.)

在衬底上沉积的膜的质量改进

背景技术

技术领域

本公开的实施方式整体涉及集成电路的制造,并且特别地涉及改进沉积在半导体衬底上的膜的质量的方法。

相关技术的描述

诸如存储器器件、逻辑器件、微处理器等的半导体器件的形成涉及在半导体衬底上沉积膜。膜用来产生用于制造所述器件的电路。使用常规方法沉积并在高于250摄氏度下处理的材料可能因高温而损伤。然而,在低热预算(诸如低于250摄氏度)内形成的膜通常因较高的孔隙率和较低的密度而具有差的质量。由于此类质量问题,这些膜易于经受较快蚀刻。

因此,需要的是一种改进在低于250摄氏度的温度下沉积在半导体衬底上的膜的质量的方法。

发明内容

本公开的实施方式整体涉及一种在小于250摄氏度的温度下处理半导体衬底的方法。在一个实施方式中,所述方法包括:将具有沉积的膜的所述衬底装载到压力容器中;在大于约2巴的压力下将所述衬底暴露于包括氧化剂的处理气体;以及维持所述压力容器处于在所述处理气体的冷凝点与约250摄氏度之间的温度。

在本公开的另一个实施方式中,所述方法包括:将具有多个衬底的匣装载到压力容器中,每个衬底上沉积有膜;在大于约2巴的压力下将所述多个衬底暴露于包括氧化剂的处理气体;以及维持所述压力容器处于在所述处理气体的冷凝点与约250摄氏度之间的温度。

在本公开的又一个实施方式中,所述方法包括:打开第一阀;在大于约2巴的压力下使包括氧化剂的处理气体流入具有衬底的腔室中,所述衬底中设置有膜;将所述处理气体暴露于所述衬底,其中所述处理气体维持处于高于所述处理气体的冷凝点温度且低于约250摄氏度的温度;关闭所述第一阀;以及打开第二阀以从所述腔室中去除所述处理气体。

附图说明

为了能够详细地理解本公开的上述特征的方式,可以参考实施方式得到上面简要地概述的本公开的更特定的描述,其中一些实施方式在附图中示出。然而,应当注意,附图仅示出了示例性实施方式,并且因此不应视为对本公开的范围的限制,因为本公开可以允许其他等效实施方式。

图1是用于改进在小于250摄氏度的温度下沉积在衬底上的膜的质量的压力容器的简化前视剖视图。

图2A是沉积在半导体衬底上的低质量膜的简化剖视图。

图2B是在执行本文描述的方法之后具有改进的质量的膜的简化剖视图。

图3是改进在小于250摄氏度的温度下沉积在半导体衬底上的膜的质量的方法的框图。

为了便于理解,已经尽可能地使用相同的附图标记标示各图共有的相同元件。设想的是,一个实施方式的要素和/或特征可以有利地并入其他实施方式,而不进一步叙述。

具体实施方式

本公开的实施方式整体涉及一种改进在低于250摄氏度的温度下沉积在半导体衬底上的膜的质量的方法。所述方法修复在低于200摄氏度的温度下沉积的劣质膜的区域。在一些实施方式中,使用可从加利福尼亚州圣克拉拉的应用材料公司(Applied Materials,Inc.,Santa Clara.CA)商购的AvilaTM等离子体增强化学气相沉积腔室(PECVD)腔室来生产膜。在其他实施方式中,可以通过任何化学气相沉积(CVD)或物理气相沉积(PVD)技术来产生膜,包括在由其他制造商生产的腔室中。在本文公开的沉积后退火工艺期间,将膜在高压下暴露于包括氧化剂的处理气体,以增加膜的密度。处理气体深深地渗透到膜层中,以通过氧化工艺降低孔隙率,从而增强沉积在衬底上的膜的密度和质量。出于执行高压退火工艺的目的,利用了批处理腔室,诸如但不限于图1示出且在本文描述的压力容器100。然而,本文描述的方法可等同地应用于设置在单个衬底腔室中的单个衬底。

图1是用于高压退火工艺的压力容器100的简化前视剖视图。压力容器100具有主体110,主体110具有外表面112和封闭处理区域115的内表面113。在诸如在图1中之类的一些实施方式中,主体110具有环形横截面,但是在其他实施方式中,主体110的横截面可以是矩形的或任何闭合形状。主体110的外表面112可以由耐腐蚀钢(CRS)(诸如但不限于不锈钢)制成。主体110的内表面113可以由表现出高耐腐蚀性的镍基钢合金(诸如但不限于)制成。

压力容器100具有门120,门120被配置为将处理区域115可密封地封闭在主体110内,使得当门120打开时可进出处理区域115。高压密封件122用于将门120密封到主体110,以便密封处理区域115以用于进行处理。高压密封件122可以由聚合物制成,诸如但不限于全氟弹性体。冷却通道124在门120上邻近高压密封件122设置,以便在处理期间维持高压密封件122低于高压密封件122的最大安全操作温度。冷却剂(诸如但不限于惰性、介电和/或高性能传热流体)可以在冷却通道124内循环,以将高压密封件122维持处于在约150摄氏度与约250摄氏度之间的温度下。在冷却通道124内的冷却剂的流量由控制器180通过从温度传感器116或流量传感器(未示出)接收的反馈来控制。

压力容器100具有穿过主体110的端口117。端口117具有从中穿过的管道118,管道118耦接到加热器119。管道118的一端连接到处理区域115。管道118的另一端分叉成入口导管157和出口导管161。入口导管157经由隔离阀155流体地连接到气体面板150。入口导管157耦接到加热器158。出口导管161经由隔离阀165流体地连接到冷凝器160。出口导管161耦接到加热器162。加热器119、158和162被配置为将流过管道118、入口导管157和出口导管161的处理气体分别维持处于在处理气体的冷凝点与约250摄氏度之间的温度。加热器119、158和162由电源145供电。

气体面板150被配置为在压力下将包括氧化剂的处理气体提供到入口导管157中以通过管道118传输到处理区域115中。引入处理区域115中的处理气体的压力由耦接到主体110的压力传感器114监测。冷凝器160流体地耦接到冷却流体并被配置为在通过管道118从处理区域115中去除之后冷凝流过出口导管161的气态产物。冷凝器160将气态产物从气相转化为液相。泵170流体地连接到冷凝器160并从冷凝器160中泵出液化产物。气体面板150、冷凝器160和泵170的操作由控制器180控制。

隔离阀155和165被配置为一次仅允许一种流体流过管道118进入处理区域115。当隔离阀155打开时,隔离阀165关闭,使得流过入口导管157的处理气体进入处理区域115,从而防止处理气体流入冷凝器160。另一方面,当隔离阀165打开时,隔离阀155关闭,使得气态产物从处理区域115中去除并流过出口导管161,从而防止气态产物流入气体面板150。

一个或多个加热器140设置在主体110上并被配置为加热在压力容器100内的处理区域115。在一些实施方式中,加热器140设置在主体110的外表面112上,如图1所示,但是在其他实施方式中,加热器140可以设置在主体110的内表面113上。加热器140中的每个可以是电阻线圈、灯、陶瓷加热器、石墨基碳纤维复合材料(CFC)加热器、不锈钢加热器或铝加热器等。加热器140由电源145供电。对加热器140的供电由控制器180通过从温度传感器116接收的反馈来控制。温度传感器116耦接到主体110并监测处理区域115的温度。

耦接到致动器(未示出)的匣130被移入和移出处理区域115。匣130具有顶表面132、底表面134和壁136。匣130的壁136具有多个衬底存储槽138。每个衬底存储槽138沿着匣130的壁136均匀地间隔。每个衬底存储槽138被配置为将衬底135保持在其中。匣130可以具有多达五十个用于保持衬底135的衬底存储槽138。匣130提供了有效载体,以用于将多个衬底135传送进出压力容器100和用于在处理区域115中处理多个衬底135。

控制器180控制压力容器100的操作。控制器180控制气体面板150、冷凝器160、泵170、隔离阀155和165以及电源145的操作。控制器180还通信地连接到温度传感器116、压力传感器114和冷却通道124。控制器180包括中央处理单元(CPU)182、存储器184和支持电路186。CPU 182可以是可用于工业环境的任何形式的通用计算机处理器。存储器184可以是随机存取存储器、只读存储器、软盘或硬盘驱动器或其他形式的数字存储。支持电路186常规地耦接到CPU 182并可以包括高速缓存、时钟电路、输入/输出系统、电源等。

压力容器100提供了方便腔室,以执行改进在小于250摄氏度的温度下沉积在多个衬底135上的膜的质量的方法。在操作期间,加热器140被通电以预热压力容器100并维持处理区域115处于低于250摄氏度的温度下。同时,加热器119、158和162被通电以分别预热管道118、入口导管157和出口导管161。

多个衬底135装载在匣130上。当衬底135装载在匣130上时,衬底135中的每个被视为图2A中的半导体衬底200。图2A示出了在衬底135装载到匣130上之前沉积在与衬底135类似的半导体衬底200上的低质量膜的简化剖视图。衬底200具有在小于200摄氏度的温度下沉积在其上的膜210。在一些实施方式中,膜210还可以包括氧化硅、氮化硅或氮氧化硅。在其他实施方式中,膜210还可以包括金属氧化物、金属氮化物或金属氮氧化物。由于在膜210的沟槽220内存在多个孔隙225,因此膜210的质量低。孔隙225是位于膜210的沟槽220内的深处的开放空间并且导致膜210具有低密度。

将压力容器100的门120打开以将匣130移动到处理区域115中。然后,将门120密封地关闭以在压力容器100内提供高压腔室。一旦门120关闭,密封件122确保没有来自处理区域115的压力泄漏。

通过气体面板150将处理气体提供到在压力容器100内的处理区域115中。隔离阀155由控制器180打开,以允许处理气体流过入口导管157和管道118进入处理区域115。以约500sccm与约2000sccm之间的流率引入处理气体,持续在约1分钟与约10分钟之间的时间段。此时,隔离阀165保持关闭。处理气体是在高压下流入处理区域115的氧化剂。施加处理气体的压力逐渐地增加。氧化剂有效地驱使膜210进入更完全的氧化状态,特别地是在沟槽220的较深部分中。在本文描述的实施方式中,处理气体是在约5巴与约35巴之间的压力下的蒸气。然而,在其他实施方式中,可以使用其他氧化剂,诸如但不限于臭氧、氧、过氧化物或含氢氧化物的化合物。当已经由气体面板150释放了足够的蒸气时,隔离阀155由控制器180关闭。

在衬底135的处理期间,处理区域115、以及入口导管157、出口导管161和管道118维持处于一定温度和一定压力,使得处理气体保持气相。处理区域115、以及入口导管157、出口导管161和管道118的温度维持处于高于在所施加的压力下的处理气体的冷凝点但低于250摄氏度的温度。处理区域115、以及入口导管157、出口导管161和管道118维持处于低于在所施加的温度下的处理气体的冷凝压力的压力。对处理气体进行相应地选择。在本文描述的实施方式中,当压力容器维持处于在约150摄氏度与约250摄氏度之间的温度时,在约5巴与约35巴之间的压力下的蒸气是有效处理气体。这确保了蒸气不冷凝成水,冷凝成水可能损害沉积在衬底200上的膜210。

当观察到膜具有期望的密度时,处理完成,如通过测试膜的湿法蚀刻速率以及电泄漏和击穿特性来验证。然后,打开隔离阀165,以使处理气体从处理区域115通过管道118和出口导管161流入冷凝器160中。处理气体在冷凝器160中冷凝成液相。然后,通过泵170去除液化处理气体。当完全地去除液化处理气体时,隔离阀165关闭。然后,断开加热器140、119、158和162的电源。然后,打开压力容器100的门120,以从处理区域115移除匣130。当从匣130卸下衬底135时,衬底135中的每个被视为图2B中的半导体衬底200。图2B是沉积在衬底200上的高质量膜210的简化剖视图。高质量膜210的沟槽230没有孔隙,并且因此膜210具有低孔隙率和高密度。

图3是根据本公开的一个实施方式的改进在低于250摄氏度的温度下沉积在半导体衬底上的膜的质量的方法的框图。方法300通过将匣上的一个或多个衬底装载到压力容器中开始于框310处。在一些实施方式中,衬底具有沉积在其上的氧化硅、氮化硅或氮氧化硅的膜。在其他实施方式中,衬底具有沉积在其上的金属氧化物、金属氮化物或金属氮氧化物的膜。在一些实施方式中,可以将多个衬底放置在匣上并装载到压力容器中。在其他实施方式中,可以省略匣。

在框320处,在大于约2巴的压力下将一个或多个衬底暴露于包括氧化剂的处理气体。在一些实施方式中,处理气体是氧化剂,包括以下项中的一种或多种:臭氧、氧、水蒸气、重水、过氧化物、含氢氧化物的化合物、氧同位素(14、15、16、17、18等)和氢同位素(1、2、3)或它们的某种组合。过氧化物可以是呈气相的过氧化氢。在一些实施方案中,氧化剂包括氢氧根离子,诸如但不限于水蒸气或呈蒸气形式的重水。在一些实施方式中,在约5巴至约35巴之间的压力下将一个或多个衬底暴露于蒸气,其中压力从约5巴逐渐地增加到约35巴。在一些实施方案中,以约500sccm的流率引入蒸气,持续约1分钟的时间段。

在框330处,维持压力容器处于在处理气体的冷凝点与约250摄氏度之间的温度,同时将其上有膜的衬底暴露于处理气体。在使用在约5巴至约35巴之间的压力下的蒸气的实施方式中,压力容器的温度维持在约150摄氏度与约250摄氏度之间。

在高压下施加包含氧化剂的处理气体允许来自处理气体的高浓度的氧化物质深深地渗透到膜的沟槽中,使得氧化物质可更彻底地氧化膜。在压力容器内的高压驱使氧化物质扩散到其中更多孔隙区域所位于的更深沟槽中。与在工艺之前的膜的质量相比,可通过将膜的湿法蚀刻速率降低约三分之二来验证所形成的处理的膜的质量。也可通过测试诸如击穿电压、漏电流等电性能来验证处理的膜的质量。对于在低于250摄氏度的相对低的温度下执行的工艺,膜质量的改进基本上类似于在大气压下在500摄氏度下执行的工艺。此外,在约150摄氏度与约250摄氏度之间完成膜的高压蒸气退火所需的时间为约30分钟,这使得所述工艺比在大气压下在500摄氏度下执行的常规蒸气退火工艺相对更快。

与在大气压下的常规蒸气退火工艺相比,在高压下施加处理气体提供优点。由于氧化物质向膜中的扩散和渗透深度差,因此在大气压下的常规蒸气退火工艺是不充分的。常规蒸气退火工艺一般不会将氧化物质深深地驱使到膜层中。因此,本文的公开内容有利地证明在低于250摄氏度的温度下生产沉积在半导体衬底上的高质量膜的有效方法。通过在热预算内生产高质量膜,所述方法能够在膜上创建电路,以制造期望的应用的下一代半导体器件。

尽管前述内容针对的是本公开的特定实施方式,但是应当理解,这些实施方式仅是本发明的原理和应用的说明。因此,应当理解,在不脱离由所附权利要求书限定的本发明的精神和范围的情况下,可以对示例性实施方式做出多种修改以得到其他实施方式。

11页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:于未事先图样化的基板上电器互连的电路元件

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!

技术分类