一种超高导热、高强度石墨块体材料及其制备方法

文档序号:1690428 发布日期:2019-12-10 浏览:38次 >En<

阅读说明:本技术 一种超高导热、高强度石墨块体材料及其制备方法 (Ultrahigh-heat-conductivity and high-strength graphite block material and preparation method thereof ) 是由 高晓晴 刘占军 于 2019-09-24 设计创作,主要内容包括:本发明涉及一种超高导热、高强度石墨块体材料及其制备方法,属于石墨块体材料及其制备工艺技术领域,解决目前高导热石墨块体材料存在的力学性能偏低问题。采用高纯天然石墨粉为传热增强体、优质中间相沥青为粘结剂、硅-钛-钼三组元为催化石墨化助剂,经高温热压烧结而成。本发明提供的石墨块体材料热导率大于600W/mK,抗弯强度大于50MPa,有望在航天飞行器热防护、核聚变第一壁、高功率密度电子器件等高热流多样化工况领域发挥重大作用。本发明制备方法简单、制备周期短、成品率高、重复性稳定性好,适合大规模生产。(The invention relates to a graphite block material with ultrahigh heat conductivity and high strength and a preparation method thereof, belongs to the technical field of graphite block materials and preparation processes thereof, and solves the problem of low mechanical properties of the conventional graphite block material with high heat conductivity. The high-temperature heat-conducting graphite heat-conducting material is prepared by using high-purity natural graphite powder as a heat-conducting reinforcement, high-quality mesophase pitch as a binder and three components of silicon-titanium-molybdenum as a catalytic graphitization auxiliary agent through high-temperature hot-pressing sintering. The graphite block material provided by the invention has the thermal conductivity of more than 600W/mK and the bending strength of more than 50MPa, and is expected to play an important role in the high heat flow diversified working condition fields of aerospace vehicle thermal protection, nuclear fusion first walls, high-power density electronic devices and the like. The preparation method is simple, short in preparation period, high in yield, good in repeatability and stability and suitable for large-scale production.)

一种超高导热、高强度石墨块体材料及其制备方法

技术领域

本发明属于石墨块体材料及其制备工艺技术领域,具体涉及的是一种超高导热、高强度石墨块体材料及其制备方法。

背景技术

高新技术领域的高热流多样化工况发展,对热管理材料的热量承载和散热提出了很高的要求,既要材料具有高导热、轻质特性,又要材料具有高温承载和优异力学特性。

石墨材料以其超高的理论热导率(单晶石墨理论导热系数高达 2200W/mK,是传统金属热控件的5~12倍)、轻质、低膨胀系数、耐腐蚀、耐高温和易加工等优势成为一种理想的高效热管理材料。但是普通石墨块体导热率远远低于单晶石墨,仅限于 70~150W/mK,材料内部石墨微晶尺寸小、取向度差是导致其热导率受限的主要原因。

为此,各国科研工作者开展了大量提高石墨块体材料导热性能的研发工作,主要开发了高定向热解石墨(由热解炭在应力作用下、3000℃以上高温热处理而得,室温热导率可达1600~2000W/mK)、高结晶度石墨(由高度取向聚酰亚胺薄膜经层叠、压制、炭化、石墨化制得,热导率达1000~1800 W/mK)和热压再结晶石墨(由易石墨化原料加催化石墨化组元热压烧结而成)等超高导热石墨块体材料。高定向热解石墨和高结晶度具有超高热导率,但其制备工艺复杂、制备难度大,成本高及材料表现脆性和弱层间结合力,开发至今未见应用。热压再结晶石墨是近年来开发和应用较为集中的高导热石墨块体材料。

热压再结晶石墨最开始研究采用的原料是普通煅烧焦、普通沥青和硅、钛、锆催化剂,所制备的石墨热导率偏低(<500W/mK)【专利:CN01130543.6】。近年来,科研工作者逐渐认识到天然鳞片石墨高导热性能(面内导热率近1000W/mK)和粘结剂中间相沥青易石墨化特性,通过添加钛-硅二组元催化剂,在2700~3000℃高温热压下制得导热率为600~745 W/mK的超高导热石墨块体材料【专利:CN 200610102224.9】,该材料已于成功应用于我国北斗导航卫星高功率密度器件的热管理装置中,但其偏低的力学性能(抗弯强度20MPa左右)影响着其加工性和应用领域,仅限于用在对材料强度要求不高的一些散热领域。究其原因,适度硅、钛催化组元的添加极大促进了炭基体向石墨结构转化进程,有益于材料传导性能的提升,但硅组元在高温阶段的全部逸出和钛组元在高温阶段的大部分逸出,是热压再结晶石墨力学性能降低的主要原因。赵云等人【Carbon, 2013, 53: 313-20】曾试图通过添加少量短切高导热中间相沥青基炭纤维(4~5mm)来提高其力学性能,结果发现增强效果甚微。

发明内容

本发明旨在提供一种超高导热、高强度、易加工石墨块体材料的制备方法,解决目前高导热石墨块体材料存在的力学性能偏低问题。

本发明的设计构思为:选用高纯度天然鳞片石墨粉为传热增强体、优质中间相沥青为粘结剂、硅-钛-钼三组元为催化石墨化助剂,经高温热压烧结制得超高导热、高强度石墨块体材料。本发明通过高温热压应力石墨化和三组元不同温区催化石墨的协同作用来促进材料内部微晶的石墨化结构转变,达到提高材料热导率的效果;通过高温区碳化钼稳定存在来达到增强材料力学性能的目的。

本发明通过以下技术方案予以实现。

一种超高导热、高强度石墨块体材料,所述石墨块体材料包括传热增强体、粘结剂和助剂,所述传热增强体为天然鳞片石墨粉,所述粘结剂为中间相沥青,所述助剂为硅-钛-钼三组元催化石墨化添加助剂;石墨块体材料的原料组成及其重量百分比含量为:天然鳞片石墨粉55~70wt%,中间相沥青10~20wt%,硅粉2~5wt%,钛粉2~10wt%,钼粉10~20wt%,各原料组成的重量百分比之和为100%。

进一步地,所述天然鳞片石墨粉的平均粒径为100~500μm。

进一步地,所述天然鳞片石墨的纯度≥99%;所述中间相沥青的软化点为230~300℃,粒径≤100μm;所述硅粉的纯度≥99%,粒径≤10μm;所述钛粉的纯度为≥99%,粒径≤10μm;所述钼粉的纯度为≥99% 粒径≤10μm。

一种超高导热、高强度石墨块体材料的制备方法,包括以下步骤:

S1、原料混合

本发明采用“干混”+“湿混”的方法来保证不同密度、不同颗粒大小的原材料均匀混合:按石墨块体材料的原料组成及其重量百分比含量称取原料,首先,将中间相沥青粉、硅粉、钛粉和钼粉放入三维混料机中干混2~5小时,转速为30~50转/分,制得干混料留待后步使用;其次,向蒸馏水中加入表面活性剂,将天然鳞片石墨粉边搅拌边加入混合液中制成糊状料留待后步使用,其中天然鳞片石墨粉的平均粒径为100~500μm,天然鳞片石墨粉与水的质量比为1:10~15;再次,将制得的干混料与糊状料加入球磨机中进行球磨混合3~5h,球磨机转速为50~80转/分;最后,将球磨混合后的物料在烘箱中干燥除去水分,获得混匀干料;

S2、热压烧结

将步骤S1中所制混匀干料放入石墨化装置中进行热压成型,石墨化装置由室温升温至2700~ 3000℃,升温时间为:6~10小时,热压升温过程中逐渐加压,压力为:1~40MPa,终温下恒温恒压压制10~60min,制得超高导热、高强度石墨块体材料。

进一步地,所述步骤S1中表面活性剂为甲基纤维素、羟乙基纤维素、聚乙烯醇中的一种或者几种的混合,蒸馏水中加入表面活性剂后表面活性剂溶液的浓度不大于5%。

进一步地,制得超高导热、高强度石墨块体材料的密度为2.2~2.6g/cm3,面向热导率为600~800W/mK,抗弯强度为50~70MPa。

本发明具有如下有益效果:

1、本发明方法具有制备工艺简单、制备周期短、成品率高、重复性稳定性好,可做大尺寸、适合规模生产等特点。

2、本发明提供的制备技术,在保持材料超高导热的同时,有效提高了材料的力学性能。

3、通过本发明技术制备的石墨块体材料密度为2.2~2.6g/cm3,面向热导率为600~800W/mK,抗弯强度为50~70MPa。这一高导高强材料有望在航天飞行器热防护、核聚变第一壁、高功率密度电子器件等高热流多样化工况领域发挥重大作用。

具体实施方式

下面结合实施例对本发明作进一步的详细描述,但本发明的保护范围不局限于实施例。

实施例1

步骤1:首先将天然鳞片石墨、中间相沥青、硅粉、钛粉和钼粉按质量比为65:15:2:5:13称好。将中间相沥青粉、硅粉、钛粉和钼粉放入三维混料机中干混1小时,制得干混料。将平均粒径为100μm的天然鳞片石墨加入到甲基纤维素浓度为5%的蒸馏水溶液中(天然鳞片石墨与水的质量比为1:10),高速搅拌1小时,制成糊状料。然后将上述所制干混料和糊状料置入球磨机中进行球磨混合3h,之后放入烘箱中干燥,获得混匀干料。

步骤2:将步骤1所制混匀干料装入石墨化装置中,再放入热压装置中进行热压成型。经6小时升温至3000℃,终温压力40MPa,恒温恒压30min。自然降温至室温出炉,制得密度为2.38g/cm3、面向热导率为680W/mK、抗弯强度为70MPa的石墨块体材料。

实施例2

步骤1:首先将天然鳞片石墨、中间相沥青、硅粉、钛粉和钼粉按质量比为65:10:5:5:15称好。将中间相沥青粉、硅粉、钛粉和钼粉放入三维混料机中干混2小时,制得干混料。将平均粒径为300μm的天然鳞片石墨加入到羟乙基纤维素浓度为3%的蒸馏水溶液中(天然鳞片石墨与水的质量比为1:15),高速搅拌2小时,制成糊状料。然后将上述所制干混料和糊状料置入球磨机中进行球磨混合4h,之后放入烘箱中干燥,获得混匀干料。

步骤2:将步骤1所制混匀干料装入石墨化装置中,再放入热压装置中进行热压成型。经8小时升温至2900℃,终温压力40MPa,恒温恒压15min。自然降温至室温出炉,制得密度为2.43g/cm3、面向热导率为725W/mK、抗弯强度为64MPa的石墨块体材料。

实施例3

步骤1:首先将天然鳞片石墨、中间相沥青、硅粉、钛粉和钼粉按质量比为70:10:3:5:12称好。将中间相沥青粉、硅粉、钛粉和钼粉放入三维混料机中干混3小时,制得干混料。将平均粒径为500μm的天然鳞片石墨加入到羟乙基纤维素浓度为1.5%的蒸馏水溶液中(天然鳞片石墨与水的质量比为1:15),高速搅拌3小时,制成糊状料。然后将上述所制干混料和糊状料置入球磨机中进行球磨混合5h,之后放入烘箱中干燥,获得混匀干料。

步骤2:将步骤1所制混匀干料装入石墨化装置中,再放入热压装置中进行热压成型。经7小时升温至2950℃,终温压力35MPa,恒温恒压45min。自然降温至室温出炉,制得密度为2.29g/cm3、面向热导率为800W/mK、抗弯强度为52MPa的石墨块体材料。

实施例4

步骤1:首先将天然鳞片石墨、中间相沥青、硅粉、钛粉和钼粉按质量比为60:12:2:6:20称好。将中间相沥青粉、硅粉、钛粉和钼粉放入三维混料机中干混5小时,制得干混料。将平均粒径为300μm的天然鳞片石墨加入到羟乙基纤维素浓度为3%的蒸馏水溶液中(天然鳞片石墨与水的质量比为1:15),高速搅拌1小时,制成糊状料。然后将上述所制干混料和糊状料置入球磨机中进行球磨混合4h,之后放入烘箱中干燥,获得混匀干料。

步骤2:将步骤1所制混匀干料装入石墨化装置中,再放入热压装置中进行热压成型。经10小时升温至3000℃,终温压力40MPa,恒温恒压25min。自然降温至室温出炉,制得密度为2.53g/cm3、面向热导率为765W/mK、抗弯强度为67MPa的石墨块体材料。

实施例5

步骤1:首先将天然鳞片石墨、中间相沥青、硅粉、钛粉和钼粉按质量比为55:15:2:8:20称好。将中间相沥青粉、硅粉、钛粉和钼粉放入三维混料机中干混4小时,制得干混料。将平均粒径为300μm的天然鳞片石墨加入到聚乙烯醇浓度为3%的蒸馏水溶液中(天然鳞片石墨与水的质量比为1:15),高速搅拌2小时,制成糊状料。然后将上述所制干混料和糊状料置入球磨机中进行球磨混合4h,之后放入烘箱中干燥,获得混匀干料。

步骤2:将步骤1所制混匀干料装入石墨化装置中,再放入热压装置中进行热压成型。经7小时升温至2700℃,终温压力38MPa,恒温恒压60min。自然降温至室温出炉,制得密度为2.43g/cm3、面向热导率为637W/mK、抗弯强度为72MPa的石墨块体材料。

以上所述仅为本发明的优选实施例而并不用于限制本发明,在实施例技术方案中对单个或者多个技术参数进行同等替换形成新的技术方案,同样都在本发明要求保护的范围内;对于本领域的技术人员来说,本发明可以进行各种更改和变化。凡在本发明的精神和原则之内所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

6页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:基于石墨烯聚酰亚胺复合海绵前驱体导热薄膜的制备方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!