Dc/dc转换单元

文档序号:1696490 发布日期:2019-12-10 浏览:34次 >En<

阅读说明:本技术 Dc/dc转换单元 (DC/DC conversion unit ) 是由 佐竹周二 榎本伦人 于 2019-05-31 设计创作,主要内容包括:两个DC/DC转换器(31A和31B)对向车辆的电机供给电力的驱动电池(2)的电源电压进行DC/DC转换,并且将转换的电源电压供给到作为安装于车辆的电气部件的自动操作负载(5)和一般负载(6)。控制单元(34A和34B)控制两个DC/DC转换器(31A和31B)。控制单元(34A和34B)在DC/DC转换开始时使两个DC/DC转换器(31A和31B)中的仅一个DC/DC转换器进行DC/DC转换,并且然后使两个DC/DC转换器(31A和31B)均进行DC/DC转换。(two DC/DC converters (31A and 31B) DC/DC-convert a power supply voltage of a drive battery (2) that supplies electric power to a motor of a vehicle, and supply the converted power supply voltage to an automatic operation load (5) and a general load (6) that are electrical components mounted on the vehicle. A control unit (34A and 34B) controls the two DC/DC converters (31A and 31B). The control unit (34A and 34B) causes only one of the two DC/DC converters (31A and 31B) to perform DC/DC conversion at the start of DC/DC conversion, and then causes both of the two DC/DC converters (31A and 31B) to perform DC/DC conversion.)

DC/DC转换单元

技术领域

本发明涉及一种DC/DC转换单元。

背景技术

近年来,在混合动力车辆和电动车辆中,作为电源,已经提出了设置用于驱动电机的驱动电池和用于将来自驱动电池的输出转换为与除了驱动电机之外的各种电气部件对应的电压的DC/DC转换器。

另外,为了防止在车辆的操作期间对电气部件的电力供给由于DC/DC转换器的故障等而损失,已经提出了设置两个DC/DC转换器的技术(专利文献1)。特别地,当电气部件涉及自动操作时,该技术是有效的技术。

然而,存在当在正常状态下同时开始两个DC/DC转换器的转换时效率降低的问题。

现有技术文献

专利文献

专利文献1:JP 2015-80372 A

发明内容

技术问题

已经鉴于以上背景做出了本发明,并且本发明的目的是提供一种能够提高效率的DC/DC转换单元。

解决问题的方案

根据本发明的第一方面,提供了一种DC/DC转换单元,包括:

两个DC/DC转换器,该两个DC/DC转换器通过DC/DC转换进行向车辆的电机供给电力的驱动电源的电源电压的转换,并且将转换的所述电源电压供给到安装于所述车辆的电气部件;和

控制单元,该控制单元用于控制两个所述DC/DC转换器,

其中,所述控制单元在开始DC/DC转换时使两个所述DC/DC转换器中的仅一个DC/DC转换器进行DC/DC转换,并且然后使两个所述DC/DC转换器均进行DC/DC转换。

此外,在两个所述DC/DC转换器之中,首先开始转换的一个DC/DC转换器可以相比于另一个DC/DC转换器具有当输出电力低时效率变高的输出特性。

此外,可以设置两个所述控制单元,并且两个所述控制单元可以独立地控制两个所述DC/DC转换器。

此外,用于电器部件的两个电源可以分别设置在所述电气部件与两个所述DC/DC转换器的输出之间。

发明的效果

根据上述方面,控制单元在开始DC/DC转换时使两个DC/DC转换器中的仅一个DC/DC转换器进行DC/DC转换,并且然后使两个DC/DC转换器均进行DC/DC转换。从而,当转换开始时的输出电力低时不执行两个DC/DC转换器的转换操作,并且能够提高效率。

附图说明

图1是示出包括本发明的DC/DC转换单元的电源装置的一个实施例的电路图;

图2是示出图1所示的电源装置的进一步细节的电路图;

图3是示出图1所示的两个DC/DC转换器中的各个DC/DC转换器的输出电力与效率之间的关系的曲线图;

图4是示出在对具有图3所示的特性的两个DC/DC转换器进行协调控制和不进行协调控制的效率与各输出电力之间的关系的曲线图;

图5是示出根据另一个实施例的图1所示的两个DC/DC转换器的输出电力与效率之间的关系的曲线图;

图6是示出在对具有图5所示的特性的两个DC/DC转换器进行协调控制和不进行协调控制的效率与各输出电力之间的关系的曲线图;

图7是示出根据另一个实施例的图1所示的两个DC/DC转换器的各输出电力与效率之间的关系的曲线图;并且

图8是示出在对具有图7所示的特性的两个DC/DC转换器进行协调控制和不进行协调控制的效率与各输出电力之间的关系的曲线图。

参考标记列表

2 驱动电池(驱动电源)

3 DC/DC转换单元

4A 第一子电池(用于电气部件的电源)

4B 第二子电池(用于电气部件的电源)

5 自动操作负载(电气部件)

6 一般负载(电气部件)

31A、31B DC/DC转换器

34A、34B 控制单元

具体实施方式

在下文中,将参考图1和2描述本发明的实施例。图1所示的电源装置1安装于由电机(未示出)驱动的混合动力车辆、电动车辆等,并且将电力供给到作为电气部件的自动操作负载5和一般负载6。

如该图所示,电源装置1包括作为驱动电源的驱动电池2、DC/DC转换单元3、作为用于电气部件的电源的两个第一子电池4A和两个第二子电池4B、自动操作负载5和一般负载6。

驱动电池2是主电池,其主要目的是为了驱动作为驱动混合动力车辆或电动车辆的动力源的电机。驱动电池2经由将直流转换为交流的逆变器电路(未示出)连接于电机。由于该原因,使用高电压、高容量的电池作为驱动电池2。

DC/DC转换单元3对高压的驱动电池2的电源电压进行DC/DC转换,并且供给到低压的第一子电池4A、第二子电池4B、自动操作负载5和一般负载6。稍后将描述DC/DC转换单元3的细节。

第一子电池4A和第二子电池4B作为子电池的主要目的是驱动除了电机之外的由低电压驱动的电气部件(自动操作负载5、一般负载6)。由于该原因,作为第一子电池4A和第二子电池4B,使用了比驱动电池2电压低和容量小的电池。

另外,第一子电池4A与第二子电池4B分离设置。第一子电池4A由从DC/DC转换单元3输出的电力充电,并且将电力供给到自动操作负载5和一般负载6二者。第二子电池4B由从DC/DC转换单元3输出的电力充电,并且仅将电力供给到自动操作负载5。电力不从第二子电池4B供给到一般负载6。

第一子电池4A和第二子电池4B是具有相同的输出电压的电池。第二子电池4B是辅助电池,用于在发生从DC/DC转换单元3到第一电池4A的充电中断这样的电源异常时继续对至少自动操作负载5供给电力。结果,即使发生上述电源异常,车辆也能够继续自动操作并且返回最近的服务基地。

在本实施例中,第二子电池4B仅将电力供给到自动操作负载5,并且具有比第一子电池4A小的容量。当然,本发明不限于此,第二子电池4B可以被配置为能够将电力供给到自动操作负载5和一般负载6二者,并且第一子电池4A与第二子电池4B的容量可以是相同的。

自动操作负载5由驱动和控制加速器、方向盘和制动器中的至少一者的自动操作所需的电气部件构成。一般负载6由诸如空调和音响这样的不须要自动操作的电气部件构成。

接着,将描述DC/DC转换单元3的细节。DC/DC转换单元3包括:两个DC/DC转换器31A、31B;开关32;存储箱33,该存储箱33容纳这两个DC/DC转换器31A、31B和开关32;以及两个控制单元34A、34B(图2)。

两个DC/DC转换器31A和31B分别是由开关元件、线圈等构成的公知的DC/DC转换器。两个DC/DC转换器31A、31A中的各个DC/DC转换器降低驱动电池2的电源电压,并且将其转换为适于第一子电池4A和第二子电池4B、自动操作负载5以及一般负载6的电压。

第一子电池4A连接于DC/DC转换器31A的输出。第二子电池4B连接于DC/DC转换器31B的输出。

开关32设置在两个DC/DC转换器31A与31B的输出之间。当该开关32接通时,两个DC/DC转换器31A、31B的输出连接,DC/DC转换器31A的输出连接于第二子电池4B,并且DC/DC转换器31B的输出连接于第一子电池4A。当该开关32断开时,两个DC/DC转换器31A、31B的输出互相断开,DC/DC转换器31A的输出与第二子电池4B断开,并且DC/DC转换器31B的输出与第一子电池4A断开。

开关32由将在稍后描述的两个控制单元34A、34B二者(图2)控制接通/断开。控制单元34A和34B在正常状态下接通开关32。结果,在正常状态下,第一子电池4A由两个DC/DC转换器31A、31B二者的输出电力充电,并且第二子电池4B也由两个DC/DC转换器31A、31B二者的输出电力充电。

另一方面,当在两个DC/DC转换器31A和31B中的任意一个DC/DC转换器中发生异常时,控制单元34A和34B断开开关32。例如,当在DC/DC转换器31A发生异常时断开开关32时,异常的DC/DC转换器31A与第二子电池4B之间的连接断开。从而,异常的DC/DC转换器31A的输出电压不供给到第二子电池4B和自动操作负载5,并且仅正常的DC/DC转换器31B的输出电压供给到第二子电池4B和自动操作负载5,使得能够继续对自动操作负载5供给电力。

相似地,当在DC/DC转换器31B发生异常时断开开关32时,异常的DC/DC转换器31B与第一子电池4A之间的连接断开。从而,异常的DC/DC转换器31B的输出电压不供给到第一子电池4A、自动操作负载5和一般负载6,并且仅正常的DC/DC转换器31A的输出电压供给到第一子电池4A、自动操作负载5和一般负载6,使得能够继续对自动操作负载5和一般负载6供给电力。

两个DC/DC转换器31A和31B容纳在一个存储箱33中。即,两个DC/DC转换器31A、31B通过一个存储箱33容纳在与外部空间隔开的一个空间中。由于两个DC/DC转换器31A、31B以这种方式容纳在一个存储箱33中,所以能够对于两个DC/DC转换器31A、31B使用通用的冷却系统,使得能够实现成本降低。

作为冷却系统,可以使用能够冷却存储箱33内的温度的公知的冷却系统。作为冷却系统,例如,能够想到设置用于将外部空气吸入到存储箱33内的冷却扇的构造,或者热交换器等设置在存储箱33中的结构。另外,冷却介质可以是液体或气体。

开关32也容纳在一个存储箱33中。因此,通过将开关32设置为靠近DC/DC转换器31A、31B,能够通过将在稍后描述的、控制DC/DC转换器31A、31B的控制单元34A、34B来控制开关32的接通/断开。即,不需要与控制单元34A、34B分离地设置用于控制开关32的接通/断开的控制单元,且能够实现成本降低。

例如,两个控制单元34A、34B由CPU、ROM、RAM等构成的微机构成,并且分别独立地控制两个DC/DC转换器31A和31B。“独立地控制”是指两个控制单元34A、34B中的各个控制单元由不同部分构成,并且是指构成控制单元34A的微机与构成控制单元34B的微机是分离的部分。

通过如此设置两个控制单元34A和34B并且分别独立地控制DC/DC转换器31A和31B,即使控制单元34A和34B中的任意一个控制单元故障,也能够利用另一个控制单元继续相应的DC/DC转换器的操作。因此,能够防止对自动操作负载5的电力供给中断。

控制单元34A进行DC/DC转换器31A的转换控制,控制单元34B进行DC/DC转换器31B的转换控制,从而从DC/DC转换器31A和31B输出期望的输出电压。两个控制单元34A和34B可以容纳在存储箱33内或存储箱33外。

接着,将描述由两个控制单元34A和34B进行的转换控制。两个控制单元34A和34B分别通过包括在两个DC/DC转换器31A和31B中的开关元件的接通/断开控制而控制DC/DC转换器31A和31B的操作。

在本实施例中,两个控制单元34A和34B响应于例如点火开关的接通而开始DC/DC转换器31A和31B的控制,但是不同时开始转换控制,并且执行下面示出的协调控制。在协调控制中,首先,控制单元34B开始DC/DC转换器31B的转换控制。此时,停止DC/DC转换器31A的操作。其后,当DC/DC转换器31B的输出电力变得高到一定程度时,另一个控制单元34A开始DC/DC转换器31A的转换控制。

从而,当转换开始时的输出电力低时,不执行两个DC/DC转换器31A和31B的操作,使得能够提高效率。顺便提及,开始DC/DC转换器31A的转换控制的时机可以是DC/DC转换器31B的输出电压超过阈值的时机,或者可以是当从开始DC/DC转换器31B的控制起过去预定时间的时机。

通过模拟确认以上效果。图3是示出DC/DC转换器31A和31B中的各个DC/DC转换器的输出电力与效率之间的关系的曲线图。两个DC/DC转换器31A和31B具有相同的输出电力对功率特性。如该图所示,在输出电力低时,DC/DC转换器31A和31B的效率低,并且随着输出电力增加,效率突然提高。然后,当输出电力变高到一定程度时,效率随着输出电力增加而逐渐降低。

在控制单元34A和34B执行具有以上特性的DC/DC转换器31A和31B的协调控制的情况下,并且在控制单元34A和34B不执行协调控制的情况下(即,在同时开始控制单元31A和31B的两个DC/DC转换的控制的情况下),模拟效率与输出电力之间的关系。结果如图4所示。从图中清晰地看出,通过进行协调控制,能够提高当输出电力低时的效率。

根据以上实施例,两个DC/DC转换器31A和31B的输出电力对效率特性是相同的,但是本发明不限于此。例如,如图5和7所示,两个DC/DC转换器31A与31B的输出电力对效率特性可以是不同的。图6是示出当对具有图5所示的特性的DC/DC转换器31A和31B进行协调控制和不进行协调控制时的效率相对于各输出电力的关系的曲线图。此外,图8是示出当对具有图7所示的特性的DC/DC转换器31A和31B进行协调控制和不进行协调控制时的效率相对于各输出电力的关系的曲线图。如图5和7所示,与DC/DC转换器31A相比,当输出电力低时,DC/DC转换器31B具有高效率,但是当输出电力高时的效率低。

在该情况下,当控制单元34A和34B首先开始当输出电力低时有效率的DC/DC转换器31B的转换控制并且稍后开始当输出电力高时有效率的DC/DC转换器31A的转换控制时,能够进一步提高当输出电力低时的效率,如图6和8所示。

另外,两个控制单元34A和34B互相监视。当两个控制单元34A和34B中的任意一个控制单元检测到两个控制单元34A和34B中的另一个控制单元的故障时,所述一个控制单元判定在DC/DC转换器31A或31B的某一者中发生异常,并且断开开关32。控制单元34A监视从其自身输出到DC/DC转换器31A的控制信号和从控制单元34B输出到DC/DC转换器31B的控制信号,并且当没有从任一者输出信号时,断开开关32。

同样地,控制单元34B也监视从其自身输出到DC/DC转换器31B的输出信号和从控制单元34A输出到DC/DC转换器31A的控制信号,并且当再没有从任一者输出信号时,断开开关32。

当控制单元34A故障时,不从DC/DC转换器31A输出期望的输出电压。在本实施例中,当控制单元34A故障时,控制单元34A和34B能够断开开关32并且断开异常的DC/DC转换器31A。能够通过来自正常的DC/DC转换器31B的输出电压继续对第二子电池4B和自动操作负载5供给电力。

此外,当控制单元34B故障时,控制单元34A和34B能够断开开关32并且断开异常的DC/DC转换器31B。能够通过来自正常的DC/DC转换器31A的输出继续对第一子电池4A、自动操作负载5和一般负载6供给电力。

顺便提及,根据上述实施例,两个DC/DC转换器31A和31B容纳在一个存储箱33中,但是本发明不限于此。两个DC/DC转换器31A和31B可以容纳在分离的存储箱中。

此外,根据上述实施例,DC/DC转换器31A和31B分别由两个控制单元34A和34B独立地控制,但是本发明不限于此。两个DC/DC转换器31A和31B可以由一个控制单元控制。

此外,根据上述实施例,开关32容纳在存储箱33中,但是本发明不限于此。开关32可以设置在存储箱33外。

此外,根据上述实施例,电源装置1设置有第一子电池4A和第二子电池4B这两个子电池,但是本发明不限于此。可以仅设置第一子电池4A。

此外,根据上述实施例,控制单元34A和34B首先开始DC/DC转换器31B的转换控制,并且然后开始DC/DC转换器31A的转换控制,但是本发明不限于此。可以首先开始DC/DC转换器31A的转换控制,并且其后可以开始DC/DC转换器31B的转换控制。

需要理解的是,本发明不限于以上实施例。即,能够在不背离本发明的主旨的情况下做出各种修改。

12页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种钢轨电压能量转换电源装置

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!

技术分类