一种铸坯生产超低温高强度抗酸容器钢的方法

文档序号:1704394 发布日期:2019-12-13 浏览:17次 >En<

阅读说明:本技术 一种铸坯生产超低温高强度抗酸容器钢的方法 (Method for producing ultralow-temperature high-strength acid-resistant container steel by casting blank ) 是由 郑建平 张丙军 方磊 于 2019-08-14 设计创作,主要内容包括:本发明公开了一种铸坯生产超低温高强度抗酸容器钢的方法,包括(1)炼钢成分确定;(2)加热工艺;(3)出炉轧制工艺;(4)热处理工艺。本发明通过低碳加少量的铬合金化成份设计,配合合理的轧制、淬火加回火热处理工艺生产超低温高强度抗酸容器钢,且力学性能达到技术标准要求,抗酸性能满足NACE-TM2084-2016其实际水平达到:屈服强度≥340MPa,抗拉强度≥480MPa,延伸率≥35%,-60℃,1/4厚度处横向Akv冲击功值均为≥300J,抗HIC性能达到CLR=0%,CTR=0%,CSR=0%;解决了铸坯生产超低温高强度抗酸容器钢低温冲击性能不稳定,抗HIC性能差、焊接性不稳定等技术难点。(The invention discloses a method for producing ultralow-temperature high-strength acid-resistant container steel by casting blanks, which comprises the following steps of (1) determining steel-making components; (2) a heating process; (3) a tapping rolling process; (4) and (4) a heat treatment process. The invention produces the ultralow temperature high strength acid-resistant container steel by low carbon and a small amount of chromium alloying component design and matching with reasonable rolling, quenching and tempering heat treatment processes, the mechanical property reaches the technical standard requirement, and the acid-resistant property meets NACE-TM2084-2016 and the actual level reaches: the yield strength is more than or equal to 340MPa, the tensile strength is more than or equal to 480MPa, the elongation is more than or equal to 35 percent, the Akv impact power value at the 1/4 thickness part is more than or equal to 300J at the temperature of minus 60 ℃, the HIC resistance reaches CLR-0 percent, CTR-0 percent and CSR-0 percent; the technical difficulties of unstable low-temperature impact property, poor HIC resistance, unstable weldability and the like of ultralow-temperature high-strength acid-resistant container steel produced by casting blanks are solved.)

一种铸坯生产超低温高强度抗酸容器钢的方法

技术领域

本发明属于钢铁技术领域,具体涉及一种铸坯生产超低温高强度抗酸容器钢的方法。

背景技术

根据绿色、环保、清洁能源的要求,石油化工、煤化工行业得到迅速发展。但含硫油气对应用于湿H2S环境下的容器类钢种的抗氢致裂纹要求越来越高,且湿H2S环境下引起低温压力容器及管道的腐蚀、氢致开裂事故不断上升。一种铸坯生产超低温高强度抗酸容器钢板成为气体吸收塔、大型气体冷凝器、化工管道等石化低温容器设备制造的重要金属材料,市场需求大,国内采用铸坯生产超低温高强度抗酸容器钢板具有高韧性生产制造方法目前尚未见报道。高强度高韧性抗酸容器钢板具有-60℃低温1/4厚度处冲击值达到≥300J,抗拉强度达到≥480MPa,抗HIC性能达到CLR=0%,CTR=0%,CSR=0%强韧性、高抗HIC酸性性能,为石化抗酸容器制造标志型高端产品,高韧性超低温抗酸容器用钢研制开发对超低温抗酸容器钢市场开发具有指标性引领意义。

目前很多钢厂均在研究高强度抗酸容器钢的生产工艺,但对于采用淬火+回火方式铸坯生产超低温高强度抗酸容器钢板具有高韧性生产制造方法尚未报道,

已公布的专利文献内容中产品在实际工程应用更是微乎其微。CN201510014303.3-一种正火抗酸压力容器钢板及其制造方法。通过合理的成分设计,经过在线控制轧制+正火气雾冷却工艺,得到合理的性能,但该专利采用加Nb+V+Ti微合金成分设计,且得到的冲击值仅为-20℃,且冲击功为纵向还是横向未明确。CN201810494189.2-一种特厚抗酸容器钢板的生产方法,采用合理的成分设计,通过正火工艺,得到合理的性能,但该专利采用添加Cu+Ni组合设计,且采用的坯料是模铸,成材率低,生产成本高,且低温冲击值只公布了-20℃冲击值,单值出现97J富余量较低。另外文献:热处理方式对中碳抗酸容器钢性能的影响,采用合理的成分设计,通过研究TMCP、正火和正火加回火对中碳抗酸容器钢各项性能的影响,得到正火与正火加回火钢板冲击韧性韧脆转变温度在-40℃~-50℃之间。同样工艺,抗酸结果出现波动性比较大,影响工艺固化。

发明内容

发明目的:针对现有技术存在的,本发明提供一种铸坯生产超低温高强度抗酸容器钢的方法,该方法通过低碳加少量的铬合金化成份设计,配合合理的轧制、淬火加回火热处理工艺生产超低温高强度抗酸容器钢,且力学性能达到技术标准要求,抗酸性能满足NACE-TM2084-2016其实际水平达到:屈服强度≥340MPa,抗拉强度≥480MPa,延伸率≥35%,-60℃,1/4厚度处横向Akv冲击功值均为≥300J,抗HIC性能达到CLR=0%,CTR=0%,CSR=0%。该方法成功解决了铸坯生产超低温高强度抗酸容器钢低温冲击性能不稳定,抗HIC性能差、焊接性不稳定等技术难点。

技术方案:为了实现上述目的,如本发明所述一种铸坯生产超低温高强度抗酸容器钢的方法,包括如下步骤:

(1)炼钢成分确定:按重量百分比计成分为C:0.12-0.14,Si:0.2-0.3,Mn:0.8-1.0,P≤0.008,S≤0.001,Cr:0.30-0.35,Nb:<0.01,V:<0.01,Ti:<0.01,Alt:0.050-0.07,Ceq=C+Mn/6+(Cr+Mo+V)/5+(Cu+Ni)/15≤0.35,余量为Fe及不可避免的杂质;

(2)加热工艺:加热温度1220-1240℃,铸坯均热温度:1207-1213℃,均热时间51-57min,出钢温度介于1180-1200℃,在炉时间为260-360分钟;优选:在炉时间:280-357min,出钢温度:1188-1197℃

(3)出炉轧制工艺:出炉就轧制即为Ⅰ阶段轧制,中间待温后(Ⅰ阶段和Ⅱ阶段之间就是待温)开始轧制即为Ⅱ阶段开轧,轧完即为Ⅱ阶段终轧;Ⅱ阶段开轧温度:840-880℃,待温坯厚度控制在≥3.0h(h代表产品厚度,单位:mm),Ⅱ阶段终轧温度820-860℃,轧后自然冷却;

(4)热处理工艺:淬火温度:890-900℃,升温速率:1.3±0.1min/mm;回火温度:680-700℃,升温速率:2.0±0.1min/mm。

作为优选,,步骤(1)所述炼钢成分按重量百分比计成分为:C:0.12,Si:0.25,Mn:0.81,P:0.007,S:0.0006,Cr:0.32,Nb:0.002,V:0.002,Ti:0.0039,Alt:0.052,Ceq=C+Mn/6+(Cr+Mo+V)/5+(Cu+Ni)/15=0.32,余量为Fe及不可避免的杂质。

作为优选,步骤(1)所述炼钢成分按重量百分比计成分为:C:0.12,Si:0.25,Mn:0.83,P:0.008,S:0.001,Cr:0.35,Nb:0.002,V:0.002,Ti:0.0032,Alt:0.061,Ceq=C+Mn/6+(Cr+Mo+V)/5+(Cu+Ni)/15=0.34,余量为Fe及不可避免的杂质。

作为优选,步骤(1)所述炼钢成分按重量百分比计成分为:C:0.14,Si:0.3,Mn:1.0,P:0.006,S:0.0009,Cr:0.32,Nb:0.002,V:0.002,Ti:0.0040,Alt:0.07,Ceq=C+Mn/6+(Cr+Mo+V)/5+(Cu+Ni)/15=0.35,余量为Fe及不可避免的杂质。

作为优选,步骤(2)所述铸坯根据成品厚度,采用大压缩比7.5-8倍,即铸坯选用260mm厚度坯料。

作为优选,钢板Ⅱ阶段轧完后板形较差,需要在800-820℃进行在线预矫,保证原始板形。

由于超低温高强度抗酸容器钢板因轧制需要采用高温大压下,钢板轧后板形较差,需要在800-820℃进行在线预矫,保证原始板形。在坚持低成本生产要求的基础上,确保淬火能淬透,在成分设计中采用提高淬透性的Cr元素,以便提高心部冷却速度,从而可以获得更多的淬火硬相组织,高温结束轧制,解决减少生产需高轧制力等设备的要求。

此外,由于实验钢要获取高强度,高韧性及高抗HIC性能,钢板需要采用高温大压下模式进行控轧,为改善减轻铸坯低倍质量影响,本发明采用大压缩比7.5-8倍,即选用260mm厚度坯料,且均热温度控制在1200℃左右,考虑合金溶解需要时间,在炉时间适当延长,确保坯料钢温整体均匀,避免出现“红黑”相间的钢温。

作为优选,步骤(3)所述出炉轧制采用二阶段展宽轧制,且Ⅰ阶段轧制道次形变率≥15%,Ⅱ阶段道次形变率≥13%。

由于成品厚度为33.35mm,在轧制过程中为避免出现心部偏析,影响强度和和冲击韧性值,故采用二阶段展宽轧制方法,且Ⅰ阶段轧制道次形变率≥15%,Ⅱ阶段道次形变率≥13%,确保表面到心部组织足够细小。

其中,步骤(4)所述热处理结束后,淬火和回火后得到贝氏体和铁素体组织,晶粒尺寸控制在8μm-12μm,晶粒度控制在10级。

本发明所述的铸坯生产超低温高强度抗酸容器钢的方法生产的钢板,力学性能达到以下水平:屈服强度≥340MPa,抗拉强度≥480MPa,延伸率≥35%,-60℃,1/4厚度处横向Akv冲击功值均为≥300J,抗HIC性能达到CLR=0%,CTR=0%,CSR=0%。

针对抗酸容器服役条件苛刻,抗HIC性能优良直接决定抗酸容器开发技术成功与否的关键衡量指标之一。由于影响HIC性能最直接的是裂纹敏感性,反映到钢板上就是金相组织,不能出现带状组织如珠光体组织。本发明采用低磷低硫炼钢成分设计降低夹杂物含量,同时添加高淬透性Cr合金,降低轧机设备升级,通过大压缩比及道次形变率等TMCP轧制技术,消除偏析带,结合合理的热处理工艺,将传统的铁素体+珠光体调整为贝氏体+铁素体金相组织,从而提高抗HIC性能,使得抗HIC性能达到最优即CLR=0%,CTR=0%,CSR=0%。采用本发明方法应用到工业化大生产中,使用性能优良。

考虑到超低温容器钢板不仅要求较高的强度和超低温韧性性能,尤其是抗酸性能的提高非常重要,还要求有良好的焊接性能,所有的要求均要易于生产且成本较低。因此,本发明针对采用铸坯生产超低温高强度抗酸容器钢的化学成分和生产工艺进行了研究,设计了一种铸坯生产超低温高强度抗酸容器钢生产方法。

有益效果:与现有技术相比,本发明具有如下优点:

(1)本发明通过中碳+低锰+铬合金化成份设计,且碳当量Ceq=C+Mn/6+(Cr+Mo+V)/5+(Cu+Ni)/15≤0.35,配合合理的控轧、淬火+回火工艺生产超低温高强度抗酸容器钢,高温结束轧制对轧机轧制力要求不高,生产工序简单、成本低廉;

(2)本发明方法采用合理的控轧工艺生产超低温高强度抗酸容器钢,通过最优的淬火+回火热处理工艺,各力学性能指标均达到技术标准要求,其实际的生产水平达到:屈服强度≥340MPa,抗拉强度≥480MPa,延伸率≥35%,-60℃,1/4厚度处横向Akv冲击功值均为≥300J,抗HIC性能达到CLR=0%,CTR=0%,CSR=0%;

(3)本发明方法成功解决了铸坯生产超低温高强度抗酸容器钢低温冲击性能不稳定,抗HIC性能差、焊接性不稳定等技术难点;

(4)本发明方法成功解决了在四辊单机架可逆的5000mm轧机生产线能够生产高强度、高韧性、高抗HIC酸性性能超低温容器钢。

总体而言本发明通过低碳+低锰+0.3%Cr且碳当量Ceq≤0.35合金化成份设计采用铸坯生产超低温高强度抗酸容器钢,经过淬火+回火热处理后,力学性能达到技术标准要求,超低温高强度抗酸容器钢板具有-60℃,1/4厚度横向冲击功Akv≥300J,抗拉强度≥480MPa良好强韧性性能和抗HIC性能达到CLR=0%,CTR=0%,CSR=0%,良好的抗酸性能,产品成为气体吸收塔、化工管道、储气容器等石化低温容器设备制造的重要金属材料,高强度、高韧性、高抗HIC腐蚀性能特定低温容器用钢研制开发对低温抗酸容器钢市场开发具有指标性引领意义。

附图说明

图1为回火温度:695℃,升温速率:2.0min/mm,加热时间:107min,回火后钢板1/4厚度金相组织照片,图1回火组织为回火贝氏体+铁素体组织,且钢板1/4厚度处晶粒尺寸控制在8μm-12μm,晶粒度控制在10级;

图2为HIC检测试样示意图。

具体实施方式

以下结合附图和实施例对本发明作进一步说明。

实施例1-3

超低温高强度抗酸容器钢化学成分实际重量百分比

实施例1化学成分

实施例2化学成分

实施例3化学成分

余量为Fe及不可避免的杂质;

(2)加热工艺

由于实验钢要获取高强度,高韧性及高抗HIC性能,钢板需要采用高温大压下模式进行控轧,为改善减轻铸坯低倍质量影响,加热时采用大压缩比7.5-8倍,即选用260mm厚度坯料,且均热温度控制在1200℃左右,考虑合金溶解需要时间,在炉时间适当延长,确保坯料钢温整体均匀,避免出现“红黑”相间的钢温。

(3)出炉轧制工艺,轧后自然冷却

由于成品厚度为33.35mm,在轧制过程中为避免出现心部偏析,影响强度和和冲击韧性值,故采用二阶段展宽轧制方法,且Ⅰ阶段轧制道次形变率≥15%,Ⅱ阶段道次形变率≥13%,确保表面到心部组织足够细小。

由于超低温高强度抗酸容器钢板因轧制需要采用高温大压下,钢板轧后板形较差,需要在800-820℃进行在线预矫,保证原始板形。在坚持低成本生产要求的基础上,确保淬火能淬透,同时在成分设计中采用提高淬透性的Cr元素,以便提高心部冷却速度,从而可以获得更多的淬火硬相组织,高温结束轧制,解决减少生产需高轧制力等设备的要求。

(4)淬火工艺

回火工艺

图1即为实施例2后试样1/4厚度处的金相组织,图2为实施例2后,HIC性能检测试样。图1是采用此生产方法得到细小晶粒及良好强韧性匹配金相组织,图2是通过HIC检验后,试样没有裂纹,抗HIC性能优异。

试验例1

对本发明实施例1-3制备的超低温高强度抗酸容器钢经测试,其各项性能如下所示。

力学性能

抗酸性能

通过中碳低锰加少量的铬金化成份设计,且碳当量Ceq=C+Mn/6+(Cr+Mo+V)/5+(Cu+Ni)/15≤0.35,配合合理的控制轧轧、淬火+回火工艺生产超低温高强度抗酸容器钢,通过最优的淬火+回火热处理工艺,各力学性能指标均达到技术标准要求,其实际的生产水平达到:屈服强度≥340MPa,抗拉强度≥480MPa,延伸率≥35%,-60℃,1/4厚度处横向Akv冲击功值均为≥300J,抗HIC性能达到CLR=0%,CTR=0%,CSR=0%;本发明所获得的这些强度、塑性、横向冲击韧性、抗酸性能指标均达到技术标准要求,同时也满足了中东国际某大型石油化工项目所要求的力学性能设计标准。由于超低温高韧性及抗酸性能要求高,在实际工业生产过程中,为避免在生产过程中不能满足大压下轧制要求,易造成原始晶粒尺寸粗大,甚至出现混晶现象,从而严重影响强度和低温冲击韧性相匹配的力学性能,故对轧制设备和淬火机冷却能力及精度要求较高。通过中碳加淬透性较高的铬合金元素成分设计,利用横纵向展宽轧制坯料设计方法,高温结束轧制工艺,从而弥补了满足常规轧制生产线因装备能力有限而不能够生产高强度、高韧性、高焊接稳定性、高抗HIC性能的超低温抗酸容器钢。

10页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种改进的牙轮用钢淬火工艺

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!