具有电极加湿器的家用电器及其加湿控制方法

文档序号:1706548 发布日期:2019-12-13 浏览:34次 >En<

阅读说明:本技术 具有电极加湿器的家用电器及其加湿控制方法 (Household appliance with electrode humidifier and humidification control method thereof ) 是由 杨公增 姜荣伟 王军 于 2019-09-17 设计创作,主要内容包括:本发明属于加湿技术领域,具体涉及一种具有电极加湿器的家用电器及其加湿控制方法。本发明旨在解决现有家用电器中设置的电极式加湿器的适应性差的问题。为此,本发明的家用电器包括控制器,电极加湿器包括储水构件、电导率检测构件和多个加湿电极组,电导率检测构件能够检测储水构件中的水溶液的电导率,多个加湿电极组均设置在储水构件中,并且多个加湿电极组设置成每个加湿电极组既能够单独连通,也能够与其他一个或多于一个的加湿电极组同时连通,控制器设置成能够根据电导率检测构件检测到的储水构件中的水溶液的电导率控制多个加湿电极组的连通情况,以便有效适应不同导电率的水溶液,进而有效提升电极加湿器的适用范围。(The invention belongs to the technical field of humidification, and particularly relates to a household appliance with an electrode humidifier and a humidification control method thereof. The invention aims to solve the problem that an electrode type humidifier arranged in the existing household appliance is poor in adaptability. Therefore, the household appliance comprises the controller, the electrode humidifier comprises a water storage component, an electric conductivity detection component and a plurality of humidification electrode groups, the electric conductivity detection component can detect the electric conductivity of the water solution in the water storage component, the plurality of humidification electrode groups are all arranged in the water storage component, each humidification electrode group can be independently communicated or simultaneously communicated with one or more other humidification electrode groups, and the controller can control the communication conditions of the plurality of humidification electrode groups according to the electric conductivity of the water solution in the water storage component detected by the electric conductivity detection component, so that the electric water humidifier can effectively adapt to the water solutions with different electric conductivities, and the application range of the electrode humidifier is further effectively improved.)

具有电极加湿器的家用电器及其加湿控制方法

技术领域

本发明属于加湿技术领域,具体涉及一种具有电极加湿器的家用电器及其加湿控制方法。

背景技术

随着电器技术的不断发展,越来越多的家用电器走入人们的生活,这也使得人们对各种家用电器的综合性能提出了越来越高的要求。以空调器为例,由于空调器长时间运行制热工况时很容易导致室内湿度过低的问题,并且现有很有用户对于室内环境都有恒温恒湿的需求,因而现有很多空调器都设置有加湿功能。由于电极式加湿器具有加湿速度快、加湿量容易控制等优点,现有很多空调器搭载的加湿器都是电极式加湿器,电极式加湿器通过给电极通电,并且将加湿器的储水箱中的水作为导电介质来对储水箱中的水进行加热,直至沸腾而产生水汽,从而达到加湿效果。正是由于电极式加湿器在加湿过程中需要将储水箱中的水作为导电介质,因而储水箱中的水的电导率也就直接影响着加湿器的加湿效果,鉴于我国各地的水质往往具有较大差别,而水中很多物质的含量都会影响其电导率的大小,进而导致使用单一规格的电极式加湿器往往无法适用于全国各地。

现有电极式加湿器通常设置有三种规格,低电导率电极式加湿器、常规电导率电极式加湿器和高电导率电极式加湿器,但是,由于加湿器在出厂时就已经集成在空调器内部,因而技术人员只能先将常规电导率电极式加湿器设置在空调器内部,当部分用户购买并安装后发现无法正常使用空调器的加湿功能时,再通知维修人员更换其他电导率的电极式加湿器,这种方式不仅会增大维修人员的工作量,而且还会给用户带来不好的体验。为了有效解决这种问题,现有部分空调器开始通过控制储水箱的排水时长和排水间隔来使储水箱中的电导率维持在预设范围内,从而有效保证加湿器的正常工作,但是,这种操作方式不仅控制逻辑复杂,而且还会造成水资源的浪费。

相应地,本领域需要一种新的具有电极加湿器的家用电器及其加湿控制方法来解决上述问题。

发明内容

为了解决现有技术中的上述问题,即为了解决现有家用电器中设置的电极式加湿器的适应性差的问题,本发明提供了一种具有电极加湿器的家用电器,所述家用电器包括控制器,所述电极加湿器包括储水构件、电导率检测构件和多个加湿电极组,所述电导率检测构件设置成能够检测所述储水构件中的水溶液的电导率,所述多个加湿电极组均设置在所述储水构件中,并且所述多个加湿电极组设置成每个加湿电极组既能够单独连通,也能够与其他一个或多于一个的加湿电极组同时连通,所述控制器设置成能够根据所述电导率检测构件检测到的所述储水构件中的水溶液的电导率来控制所述多个加湿电极组的连通情况。

在上述具有电极加湿器的家用电器的优选技术方案中,所述电极加湿器还包括多个继电器,每个继电器分别与所述多个加湿电极组中的一个电极相连,所述控制器能够通过控制所述多个继电器的通断情况来控制所述多个加湿电极组的连通情况。

在上述具有电极加湿器的家用电器的优选技术方案中,所述电极加湿器还包括与所述储水构件相连的进水管,所述进水管上设置有进水电磁阀。

在上述具有电极加湿器的家用电器的优选技术方案中,所述电极加湿器还包括与所述储水构件相连的排水管,所述排水管上设置有排水电磁阀。

在上述具有电极加湿器的家用电器的优选技术方案中,所述电极加湿器还包括水位检测构件,所述水位检测构件能够检测所述储水构件中的水位高度。

在上述具有电极加湿器的家用电器的优选技术方案中,所述电极加湿器还包括注水盒,所述注水盒设置在所述进水管上,所述电导率检测构件设置在所述注水盒中。

在上述具有电极加湿器的家用电器的优选技术方案中,所述家用电器为空调器。

此外,本发明还提供了一种用于家用电器的加湿控制方法,所述家用电器包括电极加湿器,所述电极加湿器包括储水构件、电导率检测构件和多个加湿电极组,所述电导率检测构件设置成能够检测所述储水构件中的水溶液的电导率,所述多个加湿电极组均设置在所述储水构件中,并且所述多个加湿电极组设置成每个加湿电极组既能够单独连通,也能够与其他一个或多于一个的加湿电极组同时连通,所述加湿控制方法包括:通过所述电导率检测构件获取所述储水构件中的水溶液的电导率;根据所述储水构件中的水溶液的电导率,控制所述多个加湿电极组的连通情况。

在上述用于家用电器的加湿控制方法的优选技术方案中,所述多个加湿电极组包括第一加湿电极组和第二加湿电极组,所述第一加湿电极组的电极面积大于所述第二加湿电极组的电极面积,“根据所述储水构件中的水溶液的电导率,控制所述多个加湿电极组的连通情况”的步骤具体包括:如果所述储水构件中的水溶液的电导率大于或等于第一预设电导率,则控制所述第二加湿电极组连通;如果所述储水构件中的水溶液的电导率小于或等于第二预设电导率,则控制所述第一加湿电极组和所述第二加湿电极组同时连通;如果所述储水构件中的水溶液的电导率大于所述第二预设电导率且小于所述第一预设电导率,则控制所述第一加湿电极组连通。

在上述用于家用电器的加湿控制方法的优选技术方案中,所述家用电器为空调器。

本领域技术人员能够理解的是,在本发明的技术方案中,本发明的家用电器包括控制器,电极加湿器包括储水构件、电导率检测构件和多个加湿电极组,电导率检测构件能够检测储水构件中的水溶液的电导率,多个加湿电极组均设置在储水构件中,并且多个加湿电极组设置成每个加湿电极组既能够单独连通,也能够与其他一个或多于一个的加湿电极组同时连通,控制器设置成能够根据电导率检测构件检测到的储水构件中的水溶液的电导率控制多个加湿电极组的连通情况。本发明通过设置多个加湿电极组,使得控制器能够根据水溶液的电导率的不同来选择不同的连通方式,不同的连通方式所对应的加湿电极组的电极面积也有所不同,以便有效适应不同导电率的水溶液,从而使得电极加湿器能够更好地适用于不同导电率的水溶液,进而有效提升电极加湿器的适用范围,提升用户体验。

附图说明

图1是本发明的电极加湿器的优选实施例的结构示意图;

图2是本发明的加湿控制方法的优选实施例的步骤流程图。

附图标记:1、进水电磁阀;2、电导率检测构件;3、注水盒;4、水位检测构件;5、第一加湿电极组;6、第二加湿电极组;7、储水构件;8、第一继电器;9、第二继电器;10、第三继电器;11、第四继电器;12、排水电磁阀;13、进水管;14、排水管;15、排气孔。

具体实施方式

下面参照附图来描述本发明的优选实施方式。本领域技术人员应当理解的是,这些实施方式仅仅用于解释本发明的技术原理,并非旨在限制本发明的保护范围。例如,尽管本申请中按照特定顺序描述了本发明的方法的各个步骤,但是这些顺序并不是限制性的,在不偏离本发明的基本原理的前提下,本领域技术人员可以按照不同的顺序来执行所述步骤。此外,还需要说明的是,虽然本优选实施例是以所述家用电器为空调器时为例来对本申请的技术方案进行详细说明,但是,技术人员显然还可以自行设定所述电极加湿器的应用对象;这种具体应用对象的改变并不偏离本发明的基本原理,属于本发明的保护范围。

需要说明的是,在本发明的描述中,除非另有明确的规定和限定,术语“上”、“下”、“左”、“右”、“内”、“外”等指示的方向或位置关系的术语是基于附图所示的方向或位置关系,这仅仅是为了便于描述,而不是指示或暗示所述装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。同时,术语“相连”、“连接”、“连通”也应做广义理解,例如,可以是机械连通,也可以是电连通;可以是直接相连,也可以通过中间媒介间接相连,还可以是两个元件内部的连通。对于本领域技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。此外,术语“第一”、“第二”、“第三”和“第四”仅用于描述目的,而不能理解为指示或暗示相对重要性。

首先参阅图1,该图是本发明的电极加湿器的优选实施例的结构示意图。如图1所示,在本优选实施例中,本发明的空调器包括电极加湿器;需要说明的是,本发明不对所述空调器的具体结构作任何限制,技术人员可以根据实际使用需求自行设定,并且本发明也不对所述电极加湿器的设置位置以及所述电极加湿器与所述空调器之间的连接方式作任何限制,技术人员可以根据实际使用需求自行设定所述电极加湿器的设置位置以及所述电极加湿器与所述空调器之间的连接方式。同时,所述空调器还包括控制器,所述电极加湿器包括储水构件7、电导率检测构件2、第一加湿电极组5和第二加湿电极组6,其中,第一加湿电极组5的电极面积大于第二加湿电极组6的电极面积。具体地,储水构件7用于储存加湿所需的水,电导率检测构件2能够检测储水构件7中的水溶液的电导率,第一加湿电极组5和第二加湿电极组6均设置在储水构件7中,并且第一加湿电极组5和第二加湿电极组6既能够单独连通,也能够同时连通。所述控制器能够通过电导率检测构件2检测储水构件7中的水溶液的电导率,并且所述控制器还能够根据电导率检测构件2的检测数据控制第一加湿电极组5和第二加湿电极组6的连通情况。储水构件7的顶部设置有排气孔15,加湿电极组能够对储水构件7中的水进行加热,直至能够产生水蒸气再通过排气孔15排出,以实现加湿功能。此外,需要说明的是,虽然本优选实施例中的储水构件7的顶部设置有排气孔15;但是,技术人员显然还可以根据实际使用需求自行设定其排气方式,例如,直接将储水构件7的顶部设置为敞口状,只要储水构件7中的水蒸汽能够排出即可。

此外,还需要说明的是,本发明不对所述控制器的具体结构和型号作任何限制,只要所述控制器能够获取电导率检测构件2的检测数据并根据其检测数据控制第一加湿电极组5和第二加湿电极组6的连通情况即可;并且所述控制器可以是所述空调器原有的控制器,也可以是为执行本发明的加湿控制方法而单独设置的控制器,技术人员可以根据实际使用需求自行设定所述控制器的结构和型号。

本领域技术人员能够理解的是,本发明不对储水构件7的结构和形状作任何限制,技术人员可以根据实际使用需求自行设定储水构件7的结构和形状,只要储水构件7具备储水功能即可。本发明不对电导率检测构件2的具体结构作任何限制,只要电导率检测构件2能够检测储水构件7中的水溶液的电导率即可。此外,虽然本优选实施例中所述的电极加湿器仅包括第一加湿电极组5和第二加湿电极组6;但是,本发明的电极加湿器显然还可以包括更多个电极组,技术人员可以根据实际使用需求自行设定,以使所述控制器能够根据水溶液的电导率的不同来选择不同的连通方式,不同的连通方式所对应的加湿电极组的电极面积也有所不同,以便有效适应不同导电率的水溶液,从而使得所述电极加湿器能够更好地适用于不同导电率的水溶液,进而有效提升所述电极加湿器的适用范围。

进一步地,本发明的电极加湿器还包括第一继电器8、第二继电器9、第三继电器10和第四继电器11;其中,第二继电器9和第三继电器10分别与第一加湿电极组5的两个电极相连,第一继电器8和第四继电器11分别与第二加湿电极组6的两个电极相连,所述控制器能够通过控制第二继电器9和第三继电器10的开闭状态来控制第一加湿电极组5的通断状态,通过控制第一继电器8和第四继电器11的开闭状态来控制第二加湿电极组6的通断状态。需要说明的是,虽然本优选实施例中是通过设置继电器来控制加湿电极组的通断状态;但是,技术人员显然还可以根据实际使用需求自行设定其他控制方式来控制加湿电极组的通断状态。

接着参阅图1,进一步地,所述电极加湿器还包括与储水构件7的下部相连的进水管13和排水管14,所述空调器通过进水管13向储水构件7中注水,通过排水管14向所述电极加湿器的外部排水。需要说明的是,技术人员可以根据实际使用需求自行设定进水管13与储水构件7之间的连接方式以及排水管14与储水构件7之间的连接方式,只要进水管13能够实现注水功能,排水管14能够实现排水功能即可,并且本发明也不对具体注水方式作任何限制。同时,进水管13上设置有进水电磁阀1,所述控制器能够通过控制进水电磁阀1的开闭状态控制进水管13的通断,以便控制其进水情况;需要说明的是,这种控制进水管13通断状态的方式也不是限制性的,技术人员可以根据实际使用需求自行设定。排水管14上设置有排水电磁阀12,所述控制器能够通过控制排水电磁阀12的开闭状态控制排水管14的通断,以便控制其排水情况;需要说明的是,这种控制排水管14通断状态的方式也不是限制性的,技术人员可以根据实际使用需求自行设定。

此外,储水构件7中设置有水位检测构件4,所述控制器还能够通过水位检测构件4检测储水构件7中的水位高度,所述控制器能够在水位高度过低时控制进水电磁阀1开启以通过进水管13向储水构件7中注水,在水位高度过高时控制排水电磁阀12开启以通过排水管14向外排水,从而有效保证储水构件7中的水位始终保持在预设范围内。同时,进水电磁阀1与储水构件7之间还设置有注水盒3,注水盒3将进水管13分隔为两段,并且进水管13中的水在进入注水盒3之后再进入储水构件7中,以便保证水流的稳定流动;并且电导率检测构件2设置在注水盒3中,所述控制器通过检测注水盒3中的水的电导率作为储水构件7中的水的电导率。当然,这种设置方式并不是限制性的,技术人员也可以直接将电导率检测构件2设置在储水构件7中,只要电导率检测构件2能够检测到储水构件7中的水溶液的电导率即可。

下面参阅图2,该图是本发明的加湿控制方法的优选实施例的步骤流程图。如图2所示,基于上述优选实施例中所述的空调器,本发明的加湿控制方法的优选实施例具体包括下列步骤:

S101:获取储水构件中的水溶液的电导率;

S102:根据储水构件中的水溶液的电导率,控制第一加湿电极组和/或第二加湿电极组连通;

S103:如果储水构件中的水溶液的电导率小于或等于第二预设电导率,则控制第一加湿电极组和第二加湿电极组同时连通;

S104:如果储水构件中的水溶液的电导率大于第二预设电导率且小于第一预设电导率,则控制第一加湿电极组连通;

S105:如果储水构件中的水溶液的电导率大于或等于第一预设电导率,则控制第二加湿电极组连通。

进一步地,在步骤S101中,所述控制器能够通过电导率检测构件2检测注水盒3中的水溶液的电导率,由于注水盒3中的水溶液与储水构件7中的水溶液相同,即能够检测储水构件7中的水溶液的电导率。需要说明的是,技术人员也可以直接将电导率检测构件2设置在储水构件7中,以便直接检测储水构件7中的水溶液的电导率,这种检测方式并不是限制性的,只要所述控制器能够检测到储水构件7中的水溶液的电导率即可。

进一步地,在步骤S102中,所述控制器能够根据储水构件7中的水溶液的电导率控制第一加湿电极组5和/或第二加湿电极组6连通;需要说明的是,本发明不对其具体控制方式作任何限制,所述控制器既可以通过判断储水构件7中的水溶液的电导率所处的电导率范围以控制第一加湿电极组5和/或第二加湿电极组6的连通情况,也可以通过预设函数来判断储水构件7中的水溶液的导电情况以控制第一加湿电极组5和/或第二加湿电极组6的连通情况,即技术人员可以根据实际使用需求自行设定其具体控制方式,只要该控制方式中采用储水构件7中的水溶液的电导率作为基础参数以控制第一加湿电极组5和/或第二加湿电极组6的连通情况就属于本发明的保护范围。本领域技术人员能够理解的是,虽然本优选实施例中仅说明了所述电极加湿器包括两个电极组的控制方式,但是,技术人员显然还可以实际使用需求自行设置更多个电极组,并根据储水构件7中的水溶液的电导率控制多个电极组的通断情况,以使不同电导率范围对应不同的连通方式即可。

具体而言,在本优选实施例中,如果所述控制器判断出储水构件7中的水溶液的电导率小于或等于所述第二预设电导率,则说明储水构件7中的水溶液的电导率偏小;在此情形下,所述控制器控制第一继电器8、第二继电器9、第三继电器10和第四继电器11全部闭合,即控制第一加湿电极组5和第二加湿电极组6同时连通,以便在水溶液的电导率偏小的情况下也能够正常加湿。如果所述控制器判断出储水构件7中的水溶液的电导率大于所述第二预设电导率且小于所述第一预设电导率,则说明储水构件7中的水溶液的电导率处于正常范围内;在此情况下,所述控制器控制第二继电器9和第三继电器10闭合,第一继电器8和第四继电器11保持断开,即控制第一加湿电极组5连通,以便有效保证所述电极加湿器的加湿能力。如果所述控制器判断出储水构件7中的水溶液的电导率大于或等于所述第一预设电导率,则说明储水构件7中的水溶液的电导率偏大;在此情形下,所述控制器控制第一继电器8和第四继电器11闭合,第二继电器9和第三继电器10保持断开,即控制第二加湿电极组6连通,以便在水溶液的电导率偏大的情况下也能够正常加湿,进而最大程度地保证用户体验。此外,还需要说明的是,技术人员需要根据第一加湿电极组5和第二加湿电极组6的电极面积自行设定所述第一预设电导率和所述第二预设电导率的具体数值,这种具体数值的改变并不偏离本发明的基本原理。

最后需要说明的是,上述实施例均是本发明的优选实施方案,并不作为对本发明保护范围的限制。本领域技术人员在实际使用本发明时,可以根据需要适当添加或删减一部分步骤,或者调换不同步骤之间的顺序。这种改变并没有超出本发明的基本原理,属于本发明的保护范围。

至此,已经结合附图描述了本发明的优选实施方案,但是,本领域技术人员容易理解的是,本发明的保护范围显然不局限于这些具体实施方式。在不偏离本发明的原理的前提下,本领域技术人员可以对相关技术特征作出等同的更改或替换,这些更改或替换之后的技术方案都将落入本发明的保护范围之内。

10页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:家用加湿器以及加湿系统

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!