用于转子叶片和壳体的密封系统

文档序号:1713169 发布日期:2019-12-13 浏览:27次 >En<

阅读说明:本技术 用于转子叶片和壳体的密封系统 (Sealing system for rotor blades and casing ) 是由 弗朗西斯·拉德鲁 托尔斯滕·舒尔茨 于 2018-03-21 设计创作,主要内容包括:在转子叶片(120)和壳体(1”)之间的陶瓷密封系统。通过在涡轮机转子叶片上组合小孔隙度的氧化锆层(11)实现寿命长的密封系统,所述小孔隙度的氧化锆层与大孔隙度的陶瓷层系统(15’,15”)相对置。壳体(1”)具有金属基底(7)、金属增附层(10)和厚的、外部的陶瓷层(15’,15”),该陶瓷层基于氧化锆,尤其具有≥14%的孔隙度。(a ceramic sealing system between the rotor blades (120) and the casing (1&#39;). A long-life sealing system is achieved by combining a low-porosity zirconia layer (11) on the turbine rotor blade, which lies opposite a high-porosity ceramic layer system (15&#39; ). The housing (1 &#39;) has a metal base (7), a metal adhesion promoter layer (10) and a thick, outer ceramic layer (15&#39; ) based on zirconium oxide, in particular having a porosity of 14% or more.)

用于转子叶片和壳体的密封系统

技术领域

本发明涉及一种涡轮机转子叶片和壳体的陶瓷密封系统。

背景技术

为了优化在固定式燃气轮机之内的径向缝隙使用所谓的“Abradable Coatings”(耐磨层),所述耐磨层在其热膨胀方面应当屈服于涡轮机转子叶片尖部的机械阻力并且被磨损,以至于在陶瓷覆层之内产生沟槽。

通常在陶瓷上的、所述转子叶片的转子叶片材料被磨损。

在飞行器驱动机构中时常将叶片尖部用cBN(立方氮化硼)覆层,以便实现到磨合层上的磨损作用。cBN是非常硬的材料,这良好地适合于磨损陶瓷层。然而其不是非常耐温的(在1273K的温度下已经借助于氧分解),以至于其对于接触的时间点未知的固定式燃气轮机而言是不适合的,因为所述材料先燃烧。

固定式燃气轮机的其他制造商使用所谓的“工程表面(engineered surfaces)”。所述层具有倾斜于流动方向引入磨合层中的凹陷槽,所述凹陷槽会使埋入变得容易。但是,这具有如下结果,在凹陷棱边处的涡流或压力损失造成对机械性能的不利影响。

发明内容

因此,本发明的目的是解决上述问题。

所述目的通过根据权利要求1的密封系统实现。

在从属权利要求中列举其他有利的措施,其可以任意地彼此组合,以实现其他优点。

附图说明

附图1、2和3示出本发明的实施例,图4和5示出涡轮机叶片和燃气轮机。

附图和说明仅描述本发明的实施例。

具体实施方式

图1示出第一实施例,其中涡轮机转子叶片120作为用于转子120的构件与定子,即壳体1’(图1)、1”、1”’(图2、3)相对置。

涡轮机叶片120作为转子120的部分通常在基底中具有镍基或钴基的超合金并且在叶片平台和叶片翼面25上具有相应的保护层(图2、3)。其是基于NiCoCrAlY、铝化物或铝化铂的金属的增附层和/或防腐蚀层,分别具有位于其上的陶瓷层或陶瓷层系统(图1、2、3),尤其具有至少300μm的陶瓷层的层厚度。

同样,在叶片翼面25上,可以存在两层的陶瓷层系统,如位于下方的部分稳定的氧化锆层,所述氧化锆层具有位于其上的完全稳定的氧化锆层作为分段的或不分段的外层,或者存在具有尤其基于氧化锆的陶瓷连接层的烧绿石层。

与定子1’(图1)、1”、1”’(图2、3)直接相对置的涡轮机叶片尖部99不设有护板。在此本发明涉及另一方向,其中在那施加具有较小孔隙度,总体上<8%,尤其<6%的孔隙度的部分稳定的氧化锆层,所述氧化锆层具有50μm和150μm之间的有利的层厚度(图1、2、3)。

氧化锆层11与叶片型面上的陶瓷层的区别尤其在于层数、孔隙度(至少10%区别)或成分(至少10%或其他稳定剂)。

在壳体1’上的相对置的层系统4’同样具有基底7,所述基底具有优选基于NiCoCrAlY的金属结合层10。NiCoCrAlY层优选具有180μm至300μm的层厚度。

在金属增附层10上施加厚的、外部的部分稳定的氧化锆层13。

在层系统4’上的所述陶瓷层13是部分稳定的氧化锆层,其具有>8%的孔隙度,尤其大于10%的孔隙度和至少1300μm的层厚度。

所述陶瓷层13的孔隙度明显更高并且处于18%±4%。

所述部分稳定(图1、2、3)优选通过氧化钇实现,然而也可以通过其他稳定剂如氧化钙、氧化镁、Yb2O3或Gd2O3实现,其中氧化钇的份额优选为8%。

陶瓷层13的层厚度优选为1400μm±10%。

在图2中示出另一实施例,其中涡轮机转子叶片120在叶片翼面25、叶片平台和在尖部99上的氧化锆覆层11上具有相同的保护覆层。

而壳体1”作为层壳体4”具有两层的陶瓷覆层15’、15”,同样在基底7和金属增附层10上,如在图1中所描述的。

然而使用陶瓷连接层15’、18’(图3),所述陶瓷连接层具有优选18%±4%的孔隙度,然而仅具有最大500μm,尤其300μm至500μm的层厚度。陶瓷连接层15’、18’(图3)是部分稳定的氧化锆层。

作为较厚的、至少双倍厚的外部的陶瓷层15”使用完全稳定的氧化锆层15”。

所述稳定优选通过氧化钇实现,然而也可以通过其他稳定剂实现(图1、2、3)。

氧化钇的稳定剂份额为20%至48%。

厚的外部的陶瓷层15”、18”(图2、3)的层厚度优选为1000μm。

在图3中示出本发明的另一实施例。

在陶瓷层18’、18”上的陶瓷层系统4”’同样是两层的并且同样具有陶瓷连接层18’,如在图2中所描述。

而厚的、外部的陶瓷层18”然而是部分稳定的,尤其具有氧化钇,尤其8%的氧化钇。稳定同样可以通过其他稳定剂实现。

然而,外部的陶瓷层18”的孔隙度优选为24%±3%。

改良一方面是转子叶片尖部99借助耐高温的和相稳定的材料的增强。

陶瓷层是所谓的均匀度高的多孔层。

图4以立体视图示出流体机械的转子叶片120或导向叶片130,其沿着纵轴线121延伸。

流体机械可以是飞行器的或用于发电的发电厂的燃气轮机、蒸汽轮机或压缩机。

叶片120、130沿着纵轴线121依次跟随地具有固定区域400、邻接于其的叶片平台403以及叶片翼面406和叶片尖部415。

作为导向叶片130,叶片130可以在其叶片尖部415上具有另外的平台(未示出)。

在固定区域400中形成叶片根部183,所述叶片根部用于将叶片120、130固定在轴或圆盘上(未示出)。

叶片根部183例如构成为锤头。作为杉树根部或燕尾根部的其他设计方案是可能的。

叶片120、130对于流过叶片翼面406的介质具有入流棱边409和出流棱边412。

在传统的叶片120、130中,在所有区域400、403、406中叶片120、130例如使用实心的金属原料,尤其超合金。

这种超合金例如从EP 1 204 776 B1、EP 1 306 454、EP 1 319 729 A1、WO 99/67435或WO 00/44949中已知。

叶片120、130在此可以通过铸造法,也借助于定向凝固,通过锻造法,通过铣切法或其组合制成。

将具有一个或多个单晶结构的工件用作为机器的构件,所述构件在运行中承受高的机械的、热的和/或化学的负荷。

这种单晶的工件的制成例如通过由熔液定向凝固来进行。在此涉及铸造法,其中液态金属合金凝固成单晶结构,也就是说凝固成单晶的工件,或者定向凝固。

在此,树枝状晶体沿着热流定向并且要么形成杆状结晶的颗粒结构(柱状,也就是说在工件的整个长度上伸展并且在此根据普遍的语言惯用法被称作为定向凝固的颗粒)要么形成单晶结构,也就是说整个工件由唯一的晶体构成。在这些方法中,必须避免到球状的(多晶的)凝固的转变,因为通过无定向的生长必定构成横向的和纵向的晶界,所述晶界消除了定向凝固的或单晶的构件的良好特性。

如果共同探讨的是定向凝固的结构,那么由此不仅意味着不具有晶界或者最多具有小角度晶界的单晶体,而且意味着如下杆状晶体结构,其具有沿纵向方向伸展的晶界,然而不具有横向的晶界。其次提到的晶体结构也涉及定向凝固的结构(directionallysolidified structures)。

这种方法从US-PS 6,024,792和EP 0 892 090 A1中已知。

同样,叶片120、130可具有防腐蚀或氧化的覆层,例如(MCrAlX;M是如下组的至少一种元素:铁(Fe)、钴(Co)、镍(Ni),X是活性元素并且表示钇(Y)和/或硅和/或稀土的至少一种元素,或者是铪(Hf))。这种合金从EP 0 486 489 B1、EP 0 786 017 B1、EP 0 412 397B1或EP 1 306 454 A1中已知。

密度优选为95%的理论密度。

在MCrAlX层(作为中间层或作为最外侧的层)上形成进行保护的氧化铝层(TGO=thermal grown oxide layer:热生长氧化层)。

优选地,层成分具有Co-30Ni-28Cr-8Al-0.6Y-0.7Si或Co-28Ni-24Cr-10Al-0.6Y。除了这些基于钴的保护覆层以外,优选也使用镍基保护层如Ni-10Cr-12Al-0.6Y-3Re或Ni-12Co-21Cr-11Al-0.4Y-2Re或Ni-25Co-17Cr-10Al-0.4Y-1.5Re。

在MCrAlX上还可以存在隔热层,所述隔热层优选是最外部的层,并且例如由ZrO2、Y2O3-ZrO2构成,也就是说所述隔热层不通过氧化钇和/或氧化钙和/或氧化镁稳定、部分稳定或完全稳定。

隔热层覆盖整个MCrAlX层。

通过适合的覆层法如例如电子束蒸镀(EB-PVD)在隔热层中产生杆状的晶粒。

可考虑其他覆层法,例如大气等离子喷涂(APS)、LPPS、VPS或CVD。隔热层可以具有多孔的、具有微小裂纹或宏观裂纹的晶粒以改善耐热冲击性。因此,隔热层优选比MCrAlX层更多孔。

再处理(Refurbishment:整修)意味着,构件120、130在其装入后必要时必须去除保护层(例如通过喷砂)。随后进行腐蚀层和/或氧化层或腐蚀产品和/或氧化产品的移除。必要时也还修理在构件120、130中的裂缝。随后进行构件120、130的再覆层并且重新使用构件120、130。

叶片120、130可以空心地或实心地构成。如果叶片120、130应被冷却,那么其是空心的并且必要时还具有薄膜式冷却孔418(虚线表明)。

图5示例性地以纵向局部剖面示出燃气轮机100。

燃气轮机100在内部具有围绕旋转轴线102转动地支承的转子103,所述转子具有轴101,所述转子也称作为涡轮机转子。

沿着转子103依次跟随有吸入壳体104、压缩机105、例如环面式的燃烧室110,尤其环形燃烧室,所述燃烧室具有多个同轴设置的燃烧器107、涡轮机108和废气壳体109。

环形燃烧室110与例如环形的热气通道111连通。在此,例如四个相继连接的涡轮机级112形成涡轮机108。

每个涡轮机级112例如由两个叶片环形成。沿工作介质113的流动方向观察,在导向叶片排115的热气通道111中跟随有由转子叶片120形成的排125。

导向叶片130在此固定在定子143的内壳体138上,而转子叶片120的排125例如借助于涡轮机盘133安装在转子103上。

在转子103上耦联有发电机或作功机械(未示出)。

在燃气轮机100运行期间,由压缩机105通过吸入壳体104吸入空气135并且压缩。在压缩机105的涡轮机侧的端部上提供的被压缩的空气被引导至燃烧器107并且在那与燃烧剂混合。混合物随后在燃烧室110中燃烧以形成工作介质113。工作介质113从那里沿着热气通道111流过导向叶片130和转子叶片120。在转子叶片120上,工作介质113以传输冲量的方式减压,以至于转子叶片120驱动转子103并且所述转子驱动耦联于其的作功机械。

承受热的工作介质113的构件在燃气轮机100运行期间承受热负荷。沿工作介质113的流动方向观察的第一涡轮机级112的导向叶片130和转子叶片120在为环形燃烧室110加衬的隔热元件旁边承受最多的热负荷。

为了承受住在那存在的温度,所述涡轮机级可以借助于冷却剂冷却。

同样,构件的基底可以具有定向结构,也就是说所述基底是单晶的(SX结构)或仅具有纵向定向的晶粒(DS结构)。

作为用于构件的材料,尤其用于涡轮机叶片120、130和燃烧室110的构件的材料,例如使用铁基、镍基或钴基的超合金。

这种超合金例如从EP 1 204 776 B1、EP 1 306 454、EP 1 319 729 A1、WO 99/67435或WO 00/44949中已知。

同样地,叶片120、130可以具有防腐蚀的覆层(MCrAlX;M是如下组中的至少一种元素:铁(Fe)、钴(Co)、镍(Ni),X是活性元素并且表示钇(Y)和/或硅、钪(Sc)和/或稀土的至少一种元素,或者是铪)。这种合金从EP 0 486 489 B1、EP 0 786 017 B1、EP 0 412 397 B1或EP 1 306 454A1中已知。

在MCrAlX上还可以存在隔热层,并且例如由ZrO2、Y2O3-ZrO2构成,也就是说所述隔热层不通过氧化钇和/或氧化钙和/或氧化镁稳定、部分稳定或完全稳定。

通过适合的覆层法例如电子束蒸镀(EB-PVD)在隔热层中产生杆状的晶粒。

导向叶片130具有朝向涡轮机108的内壳体138的导向叶片根部(在此没有示出)并且具有与导向叶片根部相对置的导向叶片顶部。导向叶片顶部朝向转子103并且固定在定子143的固定环140上。

11页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:三轴发动机的涡轮框架和轴承布置

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!