一种晶体硅电池及其导电浆料

文档序号:1720442 发布日期:2019-12-17 浏览:21次 >En<

阅读说明:本技术 一种晶体硅电池及其导电浆料 (Crystalline silicon battery and conductive slurry thereof ) 是由 杨智 魏青竹 倪志春 于 2019-07-31 设计创作,主要内容包括:本发明公开了一种晶体硅电池及其导电浆料,该导电浆料能够匹配晶体硅电池的P型摻杂面的浅结工艺。一种晶体硅电池的导电浆料,按质量百分比计,所述导电浆料包括如下组分:银粉30~90%;有机物载体20~40%;含III族元素的粉末0.5~30%;玻璃粉1~10%。所述含III族元素的粉末为硼粉、镓粉、铟粉、铊粉中的一种或几种的混合物;或,所述含III族元素的粉末为III族元素粉末和铜粉的混合物,所述III族元素粉末为硼粉、镓粉、铟粉、铊粉中的一种或几种的混合物。(The invention discloses a crystalline silicon battery and conductive paste thereof, which can be matched with a shallow junction process of a P-type doping surface of the crystalline silicon battery. The conductive paste for the crystalline silicon battery comprises the following components in percentage by mass: 30-90% of silver powder; 20-40% of an organic carrier; 0.5-30% of powder containing group III elements; 1-10% of glass powder. The powder containing the III group elements is one or a mixture of more of boron powder, gallium powder, indium powder and thallium powder; or the group III element-containing powder is a mixture of group III element powder and copper powder, and the group III element powder is one or a mixture of more of boron powder, gallium powder, indium powder and thallium powder.)

一种晶体硅电池及其导电浆料

技术领域

本发明属于太阳能电池领域,涉及一种晶体硅电池及一种晶体硅电池用的导电浆料。

背景技术

常规的化石燃料日益消耗殆尽,在所有的可持续能源中,太阳能无疑是一种最清洁、最普遍和最有潜力的替代能源。目前,在所有的太阳能电池中,硅太阳能电池是得到大范围商业推广的太阳能电池之一,这是由于硅材料在地壳中有着极为丰富的储量,同时硅太阳能电池相比其他类型的太阳能电池,有着优异的电学性能和机械性能,硅太阳能电池在光伏领域占据着重要的地位。因此,研发高性价比的硅太阳能电池已经成为各国光伏企业的主要研究方向。

现有的晶体硅太阳电池主要以单面太阳电池为主,即只有电池的正面可以吸收太阳光并进行光电转换。其实太阳光还通过反射和散射等方式到达电池片的背面。但传统单面晶体硅电池片的背面被金属铝所覆盖,到达电池片背面的太阳光无法穿透到达硅基体,因此到达电池片背面的太阳光无法被有效吸收。为了进一步提高晶体硅电池对太阳光的吸收,光伏行业逐渐开始开发双面皆可吸收太阳光的晶体硅太阳电池,通常称为晶体硅双面太阳电池。

晶体硅双面电池越来越受到关注,使P型摻杂面(主要为Ⅲ族元素摻杂)的金属化适配浆料成为晶体硅电池浆料新的研发方向。目前应用于P型摻杂面的金属化浆料主要为铝浆和银铝浆。

现行的P型晶体硅双面电池主要为:将传统的背面全覆盖铝层优化为背面局部覆盖的铝层,使到达电池背面的太阳光可以通过未被铝层覆盖的区域被硅基体吸收,产生光生载流子,增加晶体硅太阳电池的光电转换能力。

然而,P型晶体硅电池背面采用铝与硅基体形成金属化欧姆接触,在铝硅合金的接触区域存在较高的载流子复合。这种较高的载流子复合限制了晶体硅太阳电池光电转换效率的进一步提升。为了继续提高晶体硅太阳电池的光电转换效率,可采用载流子选择性结构来降低P型晶体硅双面电池背面金属化区域的载流子复合。

目前在P型晶体硅电池背面制备载流子选择性结构主要包括以下几个步骤:(1)在晶体硅表面生长SiOx氧化硅薄层;(2)在已生长的SiOx氧化硅薄层上沉积Polysilicon多晶硅层;

为了使载流子选择性结构达到降低金属区域复合的效果,需要使金属化区域限制在Polysilicon多晶硅层中,通常沉积的Polysilicon厚度为0.05-0.2um。目前在P型摻杂面适用的浆料主要为铝浆和银铝浆,铝在硅材料内的渗透能力较强,为了和银铝浆等匹配,通常P型摻杂面的摻杂结深在0.5um以上,远大于Polysilicon多晶硅的厚度,无法达到预期的降低金属去复合的效果。

因此开发一种导电浆料,匹配P型摻杂面的浅结工艺,在P型摻杂面的Polysilicon多晶硅层内即可实现良好的欧姆接触尤为重要。

发明内容

针对上述技术问题,本发明旨在提供一种晶体硅电池的导电浆料,其能够匹配晶体硅电池的P型摻杂面的浅结工艺。本发明还提供一种晶体硅电池。

为达到上述目的,本发明采用的一种技术方案如下:

一种晶体硅电池的导电浆料,按质量百分比计,所述导电浆料包括如下组分:

其中,所述含III族元素的粉末包含除铝以外的III族元素中的一种或几种,所述的银粉、含III族元素的粉末及所述玻璃粉分散在所述有机物载体中。

此处,III组元素为除铝以外的III族元素,包括但不限于:硼、镓、铟、铊。

优选地,所述含III族元素的粉末为硼粉、镓粉、铟粉、铊粉中的一种或几种的混合物。

优选地,所述含III族元素的粉末为III族元素粉末和铜粉的混合物,所述III族元素粉末为硼粉、镓粉、铟粉、铊粉中的一种或几种的混合物。

优选地,所述有机物载体为卡必醇、萜品醇、己基卡必醇、特神龙、丁基卡必醇、丁基卡必醇乙酸酯、己二酸二甲酯或二醇醚中的至少一者。

优选地,所述玻璃粉的主要成分为氧化物粉末,包括PbO、B2O3、SiO2、BiO3、ZnO中的一种或几种。

优选地,按质量百分比计,所述导电浆料包括如下组分:

本发明采用的另一种技术方案如下:

一种晶体硅电池,包括正面金属电极、正面钝化减反射层、衬底、氧化物薄层、多晶硅层、背面钝化减反射层及背面金属电极,所述正面减反射层、衬底、氧化物薄层、多晶硅层及所述背面钝化减反射层依次层叠设置,所述背面金属电极穿过所述背面钝化减反射膜而和所述多晶硅层形成欧姆接触,所述多晶硅层中掺杂有III族元素,所述背面金属电极由如上所述的导电浆料制成。

优选地,所述多晶硅层的厚度为0.02~0.2μm。

优选地,所述多晶硅层为硼掺杂多晶硅层。

优选地,所述衬底具有P型硅基体,所述P型硅基体的正面上形成有磷掺杂层,所述正面钝化减反射层形成于所述磷掺杂层上,所述正面金属电极穿过所述正面钝化减反射层而和所述磷掺杂层形成欧姆接触;所述氧化物薄层为形成于所述P型硅基体背面的氧化硅薄层。

本发明采用以上方案,相比现有技术具有如下优点:

本发明的晶体硅电池的导电浆料在保持了导电性能的同时,降低了导电浆料中物质在晶体硅内的渗透深度,使较浅的P型摻杂面结深即可匹配该浆料,并达到良好的欧姆接触效果。

附图说明

为了更清楚地说明本发明的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。

图1为实施例的一种P型晶体硅电池的结构示意图。

其中,1、正面金属电极;2、SiNx层;3、磷掺杂层;4、P型晶体硅基体;5、SiOx层;6、Polysilicon多晶硅层;7、AlOx层;8、SiNx层;9、背面金属电极。

具体实施方式

下面结合附图对本发明的较佳实施例进行详细阐述,以使本发明的优点和特征能更易于被本领域的技术人员理解。在此需要说明的是,对于这些实施方式的说明用于帮助理解本发明,但并不构成对本发明的限定。此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以互相结合。

本发明提供一种晶体硅电池用的导电浆料及晶体硅电池。图1所示为一种P型晶体硅电池,包括正面金属电极1、SiNx层2、磷掺杂层3、P型硅基体层4、SiOx层5、Polysilicon多晶硅层6、AlOx层7、SiNx层8及背面金属电极9。磷掺杂层3通过掺杂形成在硅衬底的P型硅基体层4的正面,而且硅衬底的正面为金字塔形的绒面结构,硅衬底的背面为平面。SiNx2层、磷掺杂层3、P型硅基体层4、SiOx层5、Polysilicon多晶硅层6、AlOx层7及SiNx层8自上至下依次层叠,正面金属电极1穿过SiNx层2而和磷掺杂层3形成欧姆接触,背面金属电极9穿过SiNx层8、AlOx层7而和Polysilicon多晶硅层6形成欧姆接触,Polysilicon多晶硅层6的厚度为0.02~0.2μm,且为硼掺杂多晶硅层。本发明提供的导电浆料具体为晶体硅电池的背面金属电极用的导电浆料。

结合下面的实施例对本发明的导电浆料进行详细描述。

实施例1

按重量取银粉62份、硼粉5份及玻璃粉5份,并分散于卡必醇28份中,制得导电浆料。

实施例2

按重量取银粉50份、硼粉10份及玻璃粉5份,并分散于卡必醇40份中,制得导电浆料。

实施例3

按重量取银粉90份、硼粉30份及玻璃粉10份,并分散于卡必醇20份中,制得导电浆料。

实施例4

按重量取银粉70份、硼粉0.5份及玻璃粉1份,并分散于卡必醇30份中,制得导电浆料。

实施例5

按重量取银粉62份、硼粉2.5份、铜粉2.5份及玻璃粉5份,并分散于卡必醇28份中,制得导电浆料。

实施例6

按重量取银粉62份、镓粉5份及玻璃粉5份,并分散于卡必醇28份中,制得导电浆料。

对比例1

按重量取银粉62份、铝粉5份、玻璃粉5份,并分散于卡必醇28份中,制得导电浆料。

分别采用实施例1、5、6及对比例1制得的导电浆料作为图1所示的P型晶体硅电池的背面金属电极的浆料,按照如下工艺分别制得50片P型晶体硅电池:

(1)准备一组P型单晶硅片(50片),将P型晶体硅片进行制绒,硅片表面形成金字塔绒面,制绒溶液采用KOH、制绒添加剂和去离子水的混合溶液,KOH的体积浓度为3%,制绒时间800秒;

(2)制绒后的P型晶体硅片,在其单面形成水膜,用链式传输,水膜面向上,以漂浮的方式通过HF、HNO3、H2SO4和去离子水的混合溶液,其中HF溶液30L,HNO3溶液230L,H2SO4溶液60L,去离子水200L,溶液温度16℃,传输带速2m/s;

(3)利用LPCVD在P型硅片背面生长SiOx薄层;

(4)利用LPCVD在P型硅片背面沉积Polysilicon多晶硅层;

(5)利用硼扩散管对P型硅片背面Polysilicon多晶硅层进行掺杂,掺杂源为携带BBR3的N2,其中携BBR3的N2流量150sccm,不携源氮气流量30SLM,氧气流量为600sccm,通源时间25min,温度900℃;

(6)利用链式清洗机,在硼掺杂面形成水膜,以漂浮的方式通过HF和去离子水的混合溶液,HF体积浓度5%,传输速度2m/s;

(7)利用磷扩散管对P型硅片正面进行掺杂,掺杂源为携带POCl3的N2,其中携POCl3的N2流量100sccm,不携源氮气流量5SLM,氧气流量600sccm,通源时间30min,温度880℃;

(8)利用链式清洗机,在磷掺杂面形成水膜,以漂浮的方式通过HF和去离子水的混合溶液,HF体积溶度5%,传输速度1.8m/s;

(9)将硅片放置在KOH碱性溶液中,KOH体积浓度3%,反应时间600秒;

(10)将硅片放置在HF溶液中,HF溶液浓度5%,反应时间300秒;

(11)将硅片放置在HNO3溶液中,HNO3溶液浓度67%,反应时间300秒;

(12)将硅片放置在HF溶液中,HF溶液浓度5%,反应时间300秒;

(13)将硅片放置在HNO3溶液中,HNO3溶液浓度67%,反应时间300秒;

(14)利用原子层沉积法(ALD)在硅片的硼掺杂面沉积AlOx层,AlOx层厚度6nm;

(15)在硅片的背面和正面分别沉积SiNx层,SiNx层厚度90nm,折射率2.05;

(16)在硅片的硼扩散面印刷导电浆料(实施例1、5、6或对比例1制得的导电浆料),进行烘干工艺,烘干温度300℃;

(17)在硅片的磷扩散面印刷银浆,进行烧结工艺,烧结最高温度900℃。

使用电池测试仪测定上述制得的五组电池片的开路电压,对各组的开路电压计算平均值,结果如表1所示。

表1

测试项目 实施例1 实施例5 实施例6 对比例1
开路电压 676mV 673mV 675mV 656mV

表1的测试数据表明,本发明的P型晶体硅电池,由于背面金属电极采用的导电浆料中,通过银粉、III族元素和玻璃粉的协同配合,在保持了导电性能的同时,降低了导电浆料中物质在晶体硅内的渗透深度,使较浅的P型摻杂面结深即可匹配该浆料,并达到良好的欧姆接触效果,因而具有较高的开路电压。

上述实施例只为说明本发明的技术构思及特点,是一种优选的实施例,其目的在于熟悉此项技术的人士能够了解本发明的内容并据以实施,并不能以此限定本发明的保护范围。凡根据本发明的原理所作的等效变换或修饰,都应涵盖在本发明的保护范围之内。

8页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种太阳能HIT电池用附着性强的低温导电银浆及其制备方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!

技术分类