基于半胱胺-n-乙酰-l-半胱氨酸-金纳米团簇荧光材料的酸性磷酸酶检测方法

文档序号:1735538 发布日期:2019-12-20 浏览:11次 >En<

阅读说明:本技术 基于半胱胺-n-乙酰-l-半胱氨酸-金纳米团簇荧光材料的酸性磷酸酶检测方法 (Acid phosphatase detection method based on cysteamine-N-acetyl-L-cysteine-gold nanocluster fluorescent material ) 是由 邓豪华 黄开源 陈伟 查代君 孙伟明 于 2019-09-25 设计创作,主要内容包括:本发明公开一种基于半胱胺-N-乙酰-L-半胱氨酸-金纳米团簇荧光材料的酸性磷酸酶检测方法,利用半胱胺-N-乙酰-L-半胱氨酸-金纳米团簇与磷酸吡哆醛的特异性相互作用后,金纳米团簇的荧光受抑制,酸性磷酸酶水解磷酸吡哆醛释放出吡哆醛,解除磷酸吡哆醛对半胱胺-N-乙酰-L-半胱氨酸-金纳米团簇荧光的抑制作用,从而表现出荧光发射光谱强度特征的变化,从而用于酸性磷酸酶的含量检测。酸性磷酸酶检测的线性范围为0.1~5 U/L,检测限为0.05 U/L。本检测方法具有操作简便、耗时短、灵敏度高、特异性强,绿色环保等优点,易于推广使用。(The invention discloses an acid phosphatase detection method based on a cysteamine-N-acetyl-L-cysteine-gold nanocluster fluorescent material, which is characterized in that after specific interaction of cysteamine-N-acetyl-L-cysteine-gold nanoclusters and pyridoxal phosphate is utilized, fluorescence of the gold nanoclusters is inhibited, the pyridoxal phosphate is hydrolyzed by the acid phosphatase to release the pyridoxal phosphate, inhibition of the pyridoxal phosphate on fluorescence of the cysteamine-N-acetyl-L-cysteine-gold nanoclusters is relieved, and change of fluorescence emission spectrum intensity characteristics is shown, so that the detection method is used for content detection of the acid phosphatase, the linear range of detection of the acid phosphatase is 0.1 ~ 5U/L, and the detection limit is 0.05U/L.)

基于半胱胺-N-乙酰-L-半胱氨酸-金纳米团簇荧光材料的酸 性磷酸酶检测方法

技术领域

本发明基于半胱胺-N-乙酰-L-半胱氨酸-金纳米团簇荧光材料,提供一种新型的酸性磷酸酶活力检测方法,属于分析化学和纳米技术领域。

背景技术

众所周知,酸性磷酸酶是一种能够在弱酸性条件下催化单磷酸酯水解的酶。酸性磷酸酶的含量变化是***癌、血栓性静脉炎,戈谢病、佩吉特病、肝炎、甲状旁腺功能亢进和多发性骨髓瘤等疾病诊断的重要指标。因此开发一种快速简便的酸性磷酸酶的检测方法具有重要的临床意义。

荧光分析法因其具有灵敏度高、选择性好、成本低、信号响应时间快、作简单等优点广泛被用于酸性磷酸酶的测定。但是,目前开发的酸性磷酸酶荧光分析法存在不同程度的不足,比如操作步骤繁琐,使用具有毒性的金属离子以及容易受到其他酶的干扰等。因此,开发一种准确、可靠、简便的酸性磷酸酶活力的荧光分析方法仍然十分重要。

金纳米团簇是一种新型的荧光纳米材料,具有斯托克斯位移大,抗漂白能力强,易于修饰等优点,因此受到研究者们的广泛关注。本发明以磷酸吡哆醛为酶底物,以半胱胺和N-乙酰-L-半胱氨酸共同保护的金纳米团簇作为荧光探针,建立了一种新型酸性磷酸酶活力的检测方法。

发明内容

鉴于上述的现有技术中的不足,本发明的目的在于提供一种基于半胱胺-N-乙酰-L-半胱氨酸-金纳米团簇的酸性磷酸酶荧光检测方法。其中包括利用半胱胺-N-乙酰-L-半胱氨酸-金纳米团簇与磷酸吡哆醛的强烈光致电子转移作用,猝灭金纳米团簇的荧光,酸性磷酸酶催化水解磷酸吡哆醛释放出吡哆醛,恢复金纳米团簇的荧光,从而实现对酸性磷酸酶的快速、灵敏检测,并且用于实际样品的检测。

为了实现上述检测方法的目的,本发明采用以下技术方案:

一种基于半胱胺-N-乙酰-L-半胱氨酸金纳米团簇的酸性磷酸酶的检测方法。其特征是金纳米团簇和磷酸吡哆醛的特异性作用,其中包括利用磷酸吡哆醛与半胱胺-N-乙酰-L-半胱氨酸-金纳米团簇的强烈光致电子转移作用,抑制金纳米团簇的荧光,以及利用酸性磷酸酶催化磷酸吡哆醛释放出吡哆醛,恢复金纳米团簇荧光,以测定酸性磷酸酶的活力;所述金纳米团簇由以下步骤制得:将0.75 mL浓度为30 mmol/L的半胱胺和0.25 mL 浓度为30mmol/L的 N-乙酰-L-半胱氨酸预先混合,加入8 mL超纯水混匀,随后加入1 mL浓度为20mmol/L氯金酸,置于90℃水浴中孵育1.5 h,取出离心去除大颗粒的纳米粒子,用截留分子量为3500的透析袋,在双蒸水中透析24 h,得到半胱胺和N-乙酰-L-半胱氨酸共同保护的金纳米团簇溶液。制备过程中使用的所有玻璃器皿均经过王水浸泡,并用双蒸水彻底清洗,晾干。

所述的一种基于半胱胺-N-乙酰-L-半胱氨酸金纳米团簇的酸性磷酸酶的检测方法,其特征是能根据荧光光谱的最大发射波长590 nm处荧光强度变化来判断酸性磷酸酶的活力。

所述的一种基于半胱胺-N-乙酰-L-半胱氨酸金纳米团簇的酸性磷酸酶的检测方法,其特征是将0.2 mL浓度为25 μmol/L的磷酸吡哆醛溶液和0.2 mL不同浓度的酸性磷酸酶溶液加入到1.45 mL pH 5.0,50 mmol/L醋酸盐缓冲液中,混匀后置于37℃水浴锅中反应30 min;结束后,将0.15 mL所制得的金纳米团簇溶液与上述反应液混合,而后测定溶液在激发波长为425 nm、最大发射波长为590 nm处的荧光发射强度值(F590),每组平行测定三次;设置不含酸性磷酸酶对照组,并计算实验组与对照组之间的荧光发射强度F590的差值(△F);在0.1~5 U/L范围内,酸性磷酸酶与活力荧光强度差值△F呈线性关系,检测限为0.05 U/L。

本发明一种基于半胱胺-N-乙酰-L-半胱氨酸-金纳米团簇检测血清中酸性磷酸酶含量的方法,其特征是包括如下步骤:用pH 5.0,50 mmol/L醋酸盐缓冲液将人血清稀释20倍,得到样品溶液,将0.2 mL浓度为25 μmol/L的磷酸吡哆醛溶液和0.2 mL样品溶液加入到1.45 mL pH 5.0,50 mmol/L醋酸盐缓冲液中,混匀后置于37℃水浴锅中反应30 min;结束后,将0.15 mL金纳米团簇溶液与上述反应液混合,而后测定溶液在激发波长为425 nm 、最大发射波长为590 nm处的荧光发射强度值(F590);设置对照组,并计算实验组与对照组之间的荧光发射强度F590的差值(△F),以获得人血清样品中酸性磷酸酶的含量;所述金纳米团簇由以下步骤制得:将0.75 mL浓度为30 mmol/L的半胱胺和0.25 mL 浓度为30 mmol/L 的N-乙酰-L-半胱氨酸预先混合,加入8 mL超纯水混匀,随后加入1 mL浓度为20 mmol/L氯金酸,置于90℃水浴中孵育1.5 h,取出离心去除大颗粒的纳米粒子,用截留分子量为3500的透析袋,在双蒸水中透析24 h,得到半胱胺和N-乙酰-L-半胱氨酸共同保护的金纳米团簇溶液;制备过程中使用的所有玻璃器皿均经过王水浸泡,并用双蒸水彻底清洗,晾干。

本发明的一种基于半胱胺-N-乙酰-L-半胱氨酸-金纳米团簇的酸性磷酸酶抑制剂的测定方法,其特征是包括如下步骤:将0.2 mL浓度为25 μmol/L的磷酸吡哆醛溶液和0.2mL终浓度为4 U/L的酸性磷酸酶溶液加入到1.45 mL含不同浓度钒酸钠的pH 5.0,50 mmol/L醋酸盐缓冲液中,混匀后置于37℃水浴锅中反应30 min。结束后,将0.15 mL金纳米团簇溶液与上述反应液混合,而后测定溶液在激发波长为425 nm 、最大发射波长为590 nm处的荧光发射强度值(F590),每组平行三次;通过软件拟合得到钒酸钠的半抑制浓度IC50值为0.18μmoL/L。所述金纳米团簇由以下步骤制得:将0.75 mL浓度为30 mmol/L的半胱胺和0.25 mL浓度为 30 mmol/L N-乙酰-L-半胱氨酸预先混合,加入8 mL超纯水混匀,随后加入1 mL浓度为20 mmol/L氯金酸,置于90℃水浴中孵育1.5 h,取出离心去除大颗粒的纳米粒子,用截留分子量为3500的透析袋,在双蒸水中透析24 h,得到半胱胺和N-乙酰-L-半胱氨酸共同保护的金纳米团簇溶液;制备过程中使用的所有玻璃器皿均经过王水浸泡,并用双蒸水彻底清洗,晾干。

具体地说,本发明采用如下技术方案:

(一)金纳米团簇的制备

将0.75 mL半胱胺(30 mmol/L)和0.25 mL N-乙酰-L-半胱氨酸(30 mmol/L)预先混合,加入8 mL超纯水混匀,随后加入1 mL氯金酸(20 mmol/L),置于90℃水浴中孵育1.5 h,取出离心去除大颗粒的纳米粒子,用截留分子量为3500的透析袋,在双蒸水中透析24 h,得到半胱胺和N-乙酰-L-半胱氨酸共同保护的金纳米团簇溶液。制备过程中使用的所有玻璃器皿均经过王水浸泡,并用双蒸水彻底清洗,晾干。

(二)酸性磷酸酶的检测方法

将0.2 mL浓度为25 μmol/L的磷酸吡哆醛溶液和0.2 mL含不同酶活力的酸性磷酸酶溶液加入到1.45 mL醋酸盐缓冲液(pH 5.0,50 mmol/L)中,混匀后置于37℃水浴锅中反应30min。结束后,将0.15 mL步骤(一)制得的金纳米团簇溶液与上述反应液混合,而后测定溶液在590 nm处的荧光发射强度值(F590)(激发波长为425 nm),每组平行测定三次。设置不含酸性磷酸酶对照组,并计算实验组与对照组之间的荧光发射强度F590的差值(△F)。最后以酸性磷酸酶活力为横坐标,以△F为纵坐标建立检测酸性磷酸酶的工作曲线。

相比现有技术的不足,本发明的优点:

(1)本发明利用半胱胺-N-乙酰-L-半胱氨酸-金纳米团簇与磷酸吡哆醛的特异性相互作用后,金纳米团簇的荧光受抑制,酸性磷酸酶水解磷酸吡哆醛释放出吡哆醛,解除磷酸吡哆醛对半胱胺-N-乙酰-L-半胱氨酸-金纳米团簇荧光的抑制作用,从而表现出荧光发射光谱强度特征的变化,从而用于酸性磷酸酶的含量检测。

(2)本发明所采用的酸性磷酸酶底物具有绿色环保、生物相容性好和成本低等特点。

(3)本发明所使用的半胱胺-N-乙酰-L-半胱氨酸-金纳米团簇制备过程简单快速。

(4)本发明具有检测灵敏度高、特异性强、操作快速简便和易于推广使用等优点。

附图说明

图1为荧光发射光谱图。(A)金纳米团簇;(B)金纳米团簇 + 磷酸吡哆醛;(C)金纳米团簇 + 磷酸吡哆醛 + 酸性磷酸酶。

图2为酸性磷酸酶测定体系反应pH优化。

图3为酸性磷酸酶测定体系反应温度优化。

图4为酸性磷酸酶测定体系反应时间优化。

图5为不同酶活力酸性磷酸酶作用下,反应体系的荧光发射光谱图。

图6为酸性磷酸酶测定标准曲线。

图7为酸性磷酸酶检测的干扰实验。

图8为钒酸钠抑制率曲线图。

具体实施方式

实施例1:

金纳米团簇的制备:将0.75 mL半胱胺(30 mmol/L)和0.25 mL N-乙酰-L-半胱氨酸(30mmol/L)预先混合,加入8 mL超纯水混匀,随后加入1 mL氯金酸(20 mmol/L),置于90℃水浴中孵育1.5 h,取出离心去除大颗粒的纳米粒子,用截留分子量为3500的透析袋,在双蒸水中透析24 h,得到半胱胺和N-乙酰-L-半胱氨酸共同保护的金纳米团簇溶液。制备过程中使用的所有玻璃器皿均经过王水浸泡,并用双蒸水彻底清洗,晾干。

实施例2:

将0.2 mL浓度为25 μmol/L的磷酸吡哆醛溶液和0.2 mL终浓度为5 U/L的酸性磷酸酶溶液加入到1.45 mL醋酸盐缓冲液(pH 5.0,50 mmol/L)中,混匀后置于37℃水浴锅中反应30 min。结束后,将0.15 mL实施例1制得的金纳米团簇溶液与上述反应液混合,混匀后立即测定其发射光谱(激发波长为425 nm)。设置对照组。由图可知,金纳米团簇溶液本身在590nm处具有明显发射(图1中的A);当加入磷酸吡哆醛时,金纳米团簇溶液荧光明显受到抑制(图1中的B);而当体系中含有酸性磷酸酶时,磷酸吡哆醛引起的金纳米团簇溶液荧光猝灭可被恢复(图1中的C)。

实施例3:

将0.2 mL浓度为25 μmol/L的磷酸吡哆醛溶液和0.2 mL终浓度为5 U/L的酸性磷酸酶溶液加入到1.45 mL不同pH(3.0~7.0)的醋酸盐缓冲液(50 mmol/L)中,混匀后置于37℃水浴锅中反应30 min。结束后,将0.15 mL实施例1制得的金纳米团簇溶液与上述反应液混合,而后测定溶液在590 nm处的荧光发射强度值(F590)(激发波长为425 nm),每组平行测定三次。每个pH条件下分别设置对照组(不含酸性磷酸酶)。根据实验组与对照组之间荧光发射强度F590的差值(△F)以判断反应体系最佳反应条件。由图2可知,酸性磷酸酶测定体系的最佳反应pH为5.0。

实施例4:

将0.2 mL浓度为25 μmol/L的磷酸吡哆醛溶液和0.2 mL终浓度为5 U/L的酸性磷酸酶溶液加入到1.45 mL醋酸盐缓冲液(pH 5.0,50 mmol/L)中,混匀后置于不同温度(25~60℃)水浴锅中反应30 min。结束后,将0.15 mL实施例1制得的金纳米团簇溶液与上述反应液混合,而后测定溶液在590 nm处的荧光发射强度值(F590)(激发波长为425 nm),每组平行测定三次。每个温度条件下分别设置对照组(不含酸性磷酸酶)。根据实验组与对照组之间荧光发射强度F590的差值(△F)以判断反应体系最佳反应条件。由图3可知,酸性磷酸酶测定体系的最佳反应温度为37℃。

实施例5:

将0.2 mL浓度为25 μmol/L的磷酸吡哆醛溶液和0.2 mL终浓度为5 U/L的酸性磷酸酶溶液加入到1.45 mL醋酸盐缓冲液(pH 5.0,50 mmol/L)中,混匀后置于37℃水浴锅中反应5~40 min。结束后,将0.15 mL实施例1制得的金纳米团簇溶液与上述反应液混合,而后测定溶液在590 nm处的荧光发射强度值(F590)(激发波长为425 nm),每组平行测定三次。每个时间条件下分别设置对照组(不含酸性磷酸酶)。根据实验组与对照组之间荧光发射强度F590的差值(△F)以判断反应体系最佳反应条件。由图4可知,酸性磷酸酶测定体系的最佳反应时间为30 min。

实施例6:

将0.2 mL浓度为25 μmol/L的磷酸吡哆醛溶液和0.2 mL不同活力的酸性磷酸酶溶液加入到1.45 mL醋酸盐缓冲液(pH 5.0,50 mmol/L)中,混匀后置于37℃水浴锅中反应30 min。结束后,将0.15 mL实施例1制得的金纳米团簇溶液与上述反应液混合,而后测定溶液在590nm处的荧光发射强度值(F590)(激发波长425 nm),每组平行测定三次。由图5可知,随着酸性磷酸酶活力的增加,磷酸吡哆醛引起的金纳米团簇溶液荧光猝灭逐渐得到恢复。

实施例7:

将0.2 mL浓度为25 μmol/L的磷酸吡哆醛溶液和0.2 mL不同活力的酸性磷酸酶溶液加入到1.45 mL醋酸盐缓冲液(pH 5.0,50 mmol/L)中,混匀后置于不同温度37℃水浴锅中反应30 min。结束后,将0.15 mL实施例1制得的金纳米团簇溶液与上述反应液混合,而后测定溶液在590 nm处的荧光发射强度值(F590)(激发波长为425 nm),每组平行测定三次。设置不含酸性磷酸酶对照组,并计算实验组与对照组之间的荧光发射强度F590的差值(△F)。由图6可知,在0.1~5 U/L范围内,酸性磷酸酶活力与荧光强度差值△F呈线性关系,检测限为0.05U/L。

实施例8:

将0.2 mL浓度为25 μmol/L的磷酸吡哆醛溶液和0.2 mL终浓度为2 U/L的酸性磷酸酶溶液加入到1.45 mL醋酸盐缓冲液(pH 5.0,50 mmol/L)中,混匀后置于37℃水浴锅中反应30 min。结束后,将0.15 mL实施例1制得的金纳米团簇溶液与上述反应液混合,而后测定溶液在590 nm处的荧光发射强度值(F590)(激发波长为425 nm)。重复上述实验步骤6次,得相对标准偏差(RSD)为2.0%,表明本方法重现性良好。

实施例9:

用醋酸盐缓冲液(pH 5.0,50 mmol/L)将人血清稀释20倍,得到样品溶液。将0.2 mL浓度为25 μmol/L的磷酸吡哆醛溶液和0.2 mL样品溶液加入到1.45 mL醋酸盐缓冲液(pH5.0,50 mmol/L)中,混匀后置于37℃水浴锅中反应30 min。结束后,将0.15 mL实施例1制得的金纳米团簇溶液与上述反应液混合,而后测定溶液在590 nm处的荧光发射强度值(F590)(激发波长为425 nm)。设置对照组,并计算实验组与对照组之间的荧光发射强度F590的差值(△F)。结合实施例7计算人血清样品中酸性磷酸酶的含量,样品的测定回收率为102.2%~110.5%,相对标准偏差为1.8~2.9%(如表1所示)。

表1. 人血清样品加标回收率实验结果

实施例10:

将0.2 mL浓度为25 μmol/L的磷酸吡哆醛溶液和0.2 mL含不同干扰物的溶液加入到1.45 mL醋酸盐缓冲液(pH 5.0,50 mmol/L)中,混匀后置于37℃水浴锅中反应30 min。结束后,将0.15 mL实施例1制得的金纳米团簇溶液与上述反应液混合,而后测定溶液在590 nm处的荧光发射强度值(F590)(激发波长为425 nm)。设置空白对照组,并计算实验组与对照组之间的荧光发射强度F590的差值(△F)。由图7可知,本方法选择性良好,其他物质均不会产生明显干扰(横坐标数值0~15分别代表空白、酸性磷酸酶(5 U/L),牛血清白蛋白(100 μg/mL)、转铁蛋白(100 μg/mL)、溶菌酶(100 μg/mL)、辣根过氧化物酶(100 μg/mL)、尿素(100μg/mL)、葡萄糖(100 μg/mL)、半胱氨酸(5 μmol/L)、Ca2+(5 μmol/L)、 Zn2+(5 μmol/L)、 Mg2 +(5 μmol/L)、Fe3+(5 μmol/L)、 Fe2+(5 μmol/L)、PO4 3-(5 μmol/L)和CO3 2-(5 μmol/L))。

实施例11:

将0.2 mL浓度为25 μmol/L的磷酸吡哆醛溶液和0.2 mL终浓度为4 U/L的酸性磷酸酶溶液加入到1.45 mL含不同浓度钒酸钠的醋酸盐缓冲液(pH 5.0,50 mmol/L)中,混匀后置于37℃水浴锅中反应30 min。结束后,将0.15 mL实施例1制得的金纳米团簇溶液与上述反应液混合,而后测定溶液在590 nm处的荧光发射强度值(F590)(激发波长为425 nm),每组平行三次。结果如图8所示,通过软件拟合得到钒酸钠的半抑制浓度IC50值为0.18 μmoL/L。

13页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种餐具洁净程度检测设备

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!