一种起身落座动态控制的辅助座椅

文档序号:1746575 发布日期:2019-11-29 浏览:16次 >En<

阅读说明:本技术 一种起身落座动态控制的辅助座椅 (A kind of spare seat dynamically controlled of taking a seat of standing up ) 是由 劳立明 倪晨超 李军 陈敏 李毅康 郑佳月 于 2019-08-29 设计创作,主要内容包括:本发明提供了一种起身落座动态控制的辅助座椅,主要包括底座、坐板、椅背、控制装置、一对前油缸和一对后油缸、以及一感应脚垫。椅背直接安装于底座上:底座内安装有控制装置;所述坐板上安装有第一压力检测组件和倾角传感器;前油缸的底端垂直固定于所述底座的前侧,且所述前油缸顶部的活动端与所述坐板的前侧铰接;所述前油缸上安装有位移传感器;所述后油缸的底端与所述底座的后侧铰接,其顶部的活动端与所述坐板的后侧铰接;至少一个所述后油缸的无杆腔内安装有油压传感器;感应脚垫内布置有第二压力检测组件。本发明通过动态控制,能够在用户起身和落座时给予用户臀部充分的支撑力。(The present invention provides a kind of spare seats dynamically controlled of taking a seat of standing up, mainly including oil cylinder after oil cylinder before pedestal, seat plate, the chair back, control device, a pair and a pair and an induction foot pad.The chair back is directly mounted on pedestal: control device is equipped in pedestal;First pressure detection components and obliquity sensor are installed on the seat plate;The bottom end of preceding oil cylinder is perpendicularly fixed at the front side of the pedestal, and the front side of the movable end and the seat plate at the top of the preceding oil cylinder is hinged;Displacement sensor is installed on the preceding oil cylinder;It is described after oil cylinder bottom end and the pedestal rear side it is hinged, at the top of movable end and the seat plate rear side it is hinged;Oil pressure sensor is installed in the rodless cavity of oil cylinder after at least one is described;Second pressure detection components are disposed in induction foot pad.The present invention is controlled by dynamic, can give user&#39;s buttocks sufficient support force when user stands up and takes a seat.)

一种起身落座动态控制的辅助座椅

技术领域

本发明涉及一种辅助器械,特别地,涉及一种起身落座动态控制的辅助座椅。

背景技术

如今社会老龄化趋势逐渐上升,老年人的人口占比越来越高。那么随着年龄的增长,老年人腿部肌肉萎缩和膝关节力矩不足,导致老年人起身落座困难,这是因为老年人在起坐过程中,由于重心的升高使得腿部肌肉受力增大,在腿部支撑力不足时不能依靠自身力量实现站立,从而在这过程中身体容易感到不适,且还存在易摔倒的安全隐患。

发明内容

有鉴于此,本发明的目的是提供一种起身落座动态控制的辅助座椅,能够在用户起身和落座时给予用户臀部充分的支撑力。

为了解决上述技术问题,本发明的技术方案是:

一种起身落座动态控制的辅助座椅,包括:

一底座,所述底座内安装有控制装置;

一坐板,所述坐板上安装有第一压力检测组件和倾角传感器,其中所述第一压力检测组件安装于所述坐板的板面上,所述倾角传感器用于检测所述坐板的倾角值θ;

一对前油缸和一对后油缸,其中,所述前油缸的底端垂直固定于所述底座的前侧,且所述前油缸顶部的活动端与所述坐板的前侧铰接;所述前油缸上安装有位移传感器,用于检测所述前油缸的位移值S;所述后油缸的底端与所述底座的后侧铰接,其顶部的活动端与所述坐板的后侧铰接;至少一个所述后油缸的无杆腔内安装有油压传感器,用于检测该后油缸的油压值P;

以及一感应脚垫,所述感应脚垫内布置有第二压力检测组件;

其中,所述第一压力检测组件、倾角传感器、位移传感器、油压传感器、第二压力检测组件均与所述控制装置电连接;所述前油缸和后油缸均受控于所述控制装置;

所述控制装置被配置为:所述控制装置根据第一压力检测组件和第二压力检测组件的输出值判定用户的起身或落座状态;在用户相应的状态下,所述控制装置根据预设的θ-S关系曲线、θ-P关系曲线以及实时检测的倾角值θ控制所述前油缸的位移值S和后油缸的油压值P,以使得所述坐板能够按照相应的规律动作。

优选地,所述控制装置配置有调节模块,所述调节模块用于调节所述θ-S关系曲线、θ-P关系曲线的参数,以使得θ-S关系曲线、θ-P关系曲线能够适应不同类型的用户。

优选地,获取所述θ-P关系曲线的方法包括:

获取人体起身和落座时的关节力距数据;

根据所述关节力距数据得到人体起坐影响最大的膝关节的关节转角ω与关节转矩Td的关系曲线,即:Td=Td(ω);

根据预设的辅助力矩系数α,获取座椅提供的辅助力矩Tf与人体膝关节转矩Td的关系曲线,即:Tf(ω)=α Td(ω);

根据公式Tf=F2Lt、0.5F2L=F1Lsinθ2、F1=PA,得到其中:F2为坐板对用户臀部的支撑力,Lt为用户臀部到膝关节的距离,F1为后油缸的推力,θ2为后油缸与坐板的夹角;A为后油缸的无杆油腔的面积;

将θ近似替代所述关节转角ω,则得到θ-P关系曲线,即:

优选地,获取所述关节力距数据的方法包括:

分别在人体的小腿、大腿和腰部安装姿态角度传感器,以获取人体在起身和落座时,其膝关节和髋关节角度数据,记为姿态数据;

将所述姿态数据作为输入数据导入到生物力学仿真软件,由生物力学仿真软件生成人体在起身和落座时的关节力距数据。

优选地,获取所述θ-S关系曲线的方法包括:

测量人体的关节转角ω与膝关节以上大腿的预设测量点的垂直位移Lz的变化,得到Lz=Rsinω,其中,R为所述预设测量点与膝关节的距离;

将前油缸的位移值S近似替代所述垂直位移Lz,以及将坐板的倾角值θ近似替代所述关节转角ω,则得到S=Lz=Rsinω=R sinθ。

优选地,所述底座的前侧开设有用于容纳所述感应脚垫的容纳腔;所述容纳腔的左右侧壁上设置有导轨,所述感应脚垫的两侧分别通过连接件滑移安装对应的导轨上;所述容纳腔内还设置有用于驱动所述感应脚垫活动的驱动件;所述容纳腔的开口处的侧边安装有距离感应器;所述驱动件、距离感应器均与控制装置电连接;所述控制装置被配置为根据所述距离感应器反馈的检测值的变化规律判断用户靠近或远离底座,并据此控制所述驱动件工作,以驱动所述感应脚垫伸出/缩回容纳腔。

本发明技术效果主要体现在以下方面:

1、控制装置通过第一压力检测组件和第二压力检测组件的反馈信号,可判断用户是否有落座动作或起身动作,并根据预设的策略控制前油缸和后油缸工作,使坐板能够按照预定的规律上/下动作,进而能够在用户落座或起身时,对用户的臀部始终保持较好的支撑,从而保持用户身体在这个过程中的稳定性;

2、可根据不同的用户进行适当调节,包括坐板对用户的支撑力以及坐板的升降速率。

附图说明

图1为实施例中辅助座椅的整体示意图;

图2为实施例中液压系统的示意图;

图3为实施例中感应脚垫的一种示例安装结构图;

图4为实施例中其中一个参数分析计算示意图;

图5为实施例中另一个参数分析计算示意图。

附图标记:11、底座;12、坐板;13、椅背;14、支架;15、支杆;21、前油缸;22、后油缸;31、第一压力检测组件;32、第二压力检测组件;4、感应脚垫;41、连接件;42、支撑滚轮;5、距离感应器;71、压力控制阀;72、换向阀;8、油压传感器;91、驱动件;92、第一感应开关;93、第二感应开关;94、检测件。

具体实施方式

以下结合附图,对本发明的具体实施方式作进一步详述,以使本发明技术方案更易于理解和掌握。

参照图1,本实施例提供了一种起身落座动态控制的辅助座椅,主要包括底座11、坐板12、椅背13、控制装置、一对前油缸21和一对后油缸22、以及一感应脚垫4。

椅背13直接安装于底座11上,具体是,在底座11上竖直安装有两根支架14,椅背13则固定在两根支架14之间。控制装置安装于底座11上,优选为底座11的内部,本实施例在附图中不再具体表示控制装置的位置。

前油缸21的底端垂直固定于底座11的前侧,且前油缸21顶部的活动端与坐板12的前侧铰接;前油缸21上安装有位移传感器,用于检测前油缸21的位移值S。在实际生产时,也可直接购买内置有位移传感器的油缸。后油缸22的底端与底座11的后侧铰接,其顶部的活动端与坐板12的后侧铰接;具体是,在上述支架14之间安装一根支杆15,该支杆15呈水平设置,后油缸22的底端则直接铰接于该支杆15上。如此,使得后油缸22的底端的安装位置高于前油缸21的底端的安装位置。另外,至少一个后油缸22的无杆腔内安装有油压传感器8(见图2),用于检测该后油缸22的油压值P。

参照图1,坐板12上安装有第一压力检测组件31和倾角传感器(未示出),其中第一压力检测组件31安装于坐板12的板面上,该第一压力检测组件31可采用薄膜式压力传感器,或其它合适类型的压力传感器;其安装方式可以是:1、将第一压力检测组件31安装于坐板12的表面,然后在其上方覆盖一层软性材质的坐垫,例如普通家用的凳子上的软垫;2、坐板12整体采用类似于电子秤的结构,将压力传感器内置于坐板12内部。无论采取怎样的结构,均是为了避免第一压力检测组件31与用户的臀部直接接触,保证整体结构的合理性。当用户的臀部与坐板12接触时,第一压力检测组件31则会产生相应的第一检测值。倾角传感器的具体安装位置可以是坐板12的背面,用于检测坐板12的倾角值θ。

感应脚垫4内布置有第二压力检测组件32,该第二压力检测组件32可采用薄膜式压力传感器,或其它合适类型的压力传感器;感应脚垫4的结构可以是:底层为硬质板,表层为软质皮料或者与家用地垫相同的材料,第二压力检测组件32则嵌设于底层与表层之间,引线从感应脚垫4的一侧伸出,连接到控制装置上。当用户踩在感应脚垫4上时,第二压力检测组件32则会产生相应的第二检测值。

另外,本实施例还给出了感应脚垫4的一种优选安装结构,如图3所示,底座11的前侧开设有用于容纳感应脚垫4的容纳腔;容纳腔的左右侧壁上设置有导轨(未示出),感应脚垫4的两侧分别通过连接件41滑移安装对应的导轨上;同时,为了保证感应脚垫的承受能力,在感应脚垫4的底部还安装有支撑滚轮42,支撑滚轮42与地面接触,以减少用户踩在感应脚垫4上时,连接件41受到的压力;容纳腔内还设置有用于驱动感应脚垫4活动的驱动件91;优选地,该驱动件91采用油缸或电动推杆。另外,在容纳腔的开口处的侧边安装有距离感应器5;在容纳腔的两处分别安装有第一感应开关92、第二感应开关93,同时在驱动件91上安装有可触发该第一感应开关92、第二感应开关93的检测件94,第一感应开关92、第二感应开关93分别被检测件94触发时,表示驱动件91伸出到位或伸出到位。上述的第一感应开关92、第二感应开关93、驱动件91、距离感应器5均与控制装置电连接。控制装置被配置为根据距离感应器5反馈的检测值的变化规律判断用户靠近或远离底座11,例如距离值逐渐变小,则表示靠近,逐渐增加,则表示离开。控制器据此判断结果控制驱动件91工作,以驱动感应脚垫4伸出/缩回容纳腔。

控制装置主要包括控制器和驱动模块两大部分;其中,控制器可基于PLC或单片机开发,其与上述的各个传感检测模块电连接,以接收第一检测值、第二检测值、位移值S、油压值P、以及倾角值θ。驱动模块则包括微型液压泵、换向阀72和压力控制阀71等,其中微型液压泵、换向阀72和压力控制阀71均与控制器电连接;另外,还需要在底座11内安装适当体积的油箱,微型液压泵与油箱共同构成油源;进而,上述的各个部件构成了完整的液压驱动系统,该液压驱动系统的连接图可参照图2。

控制装置被配置为:根据第一压力检测组件31和第二压力检测组件32的输出值判定用户的起身或落座状态;在用户相应的状态下,根据预设的θ-S关系曲线、θ-P关系曲线以及实时检测的倾角值θ控制前油缸21的位移值S和后油缸22的油压值P,以使得坐板12能够按照相应的规律动作。

下面,本实施例将介绍上述的θ-S关系曲线、θ-P关系曲线的获取方法。

一、θ-P关系曲线:

S01、获取人体起身和落座时的关节力距数据;

其中,获取所述关节力距数据的方法包括:

分别在人体的小腿、大腿和腰部安装姿态角度传感器,以获取人体在起身和落座时,其膝关节和髋关节角度数据,记为姿态数据;

将所述姿态数据作为输入数据导入到生物力学仿真软件(例如Anybody、MedFee、LifeMOD等),再由生物力学仿真软件生成人体在起身和落座时的关节力距数据。

S02、根据所述关节力距数据得到人体起坐影响最大的膝关节的关节转角ω与关节转矩Td的关系曲线,即:Td=Td(ω)。

S03、根据预设的辅助力矩系数α,获取座椅提供的辅助力矩Tf与人体膝关节转矩Td的关系曲线,即:Tf(ω)=d Td(ω)。

S04、根据公式Tf=F2Lt、0.5F2L=F1Lsinθ2、F1=PA,得到其中:F2为坐板12对用户臀部的支撑力,Lt为用户臀部到膝关节的距离,F1为后油缸22的推力,θ2为后油缸22与坐板12的夹角;A为后油缸22的无杆油腔的面积;

其中,公式Tf=F2Lt由以下方法获得:参照图4,由于坐板12对用户臀部的支撑力提供了弥补膝关节不足的辅助力距,则可以简化认为辅助力距Tf等于坐板12中心的集中力(与F2方向相反,大小相同)乘以臀部到膝关节的距离(该距离记为Lt),也就是说辅助力距Tf=F2Lt

公式0.5F2L=F1Lsinθ2由以下方法获得:参照图4,由于F2与后油缸22的推力F1对坐板12前支点的力距和为零,所以可以容易获得后油缸22的推力F1与坐板12的支撑力F2之间的关系为0.5F2L=F1Lsinθ2

另外,当位移值S和倾角值θ可以测量获得后,θ2可以计算出来。见图5,A点坐标为(0,s),B点坐标为(Lcosθ,s+L sinθ),C点坐标由座椅结构尺寸决定(d1,d2)。当三点的坐标均确定后,那么用向量夹角积式公式可求得。

S05、将θ近似替代所述关节转角ω,则得到θ-P关系曲线,即:

二、θ-S关系曲线:

S11、测量人体的关节转角ω与膝关节以上大腿的预设测量点的垂直位移Lz的变化,得到Lz=Rsinω,其中,R为所述预设测量点与膝关节的距离。

S21、将前油缸21的位移值S近似替代所述垂直位移Lz,以及将坐板12的倾角值θ近似替代所述关节转角ω,则得到S=Lz=R sinω=R sinθ。

值得说明的是,上述的辅助力矩系数α以及预设测量点与膝关节的距离R的值均可调节;其中,例如非常下肢无力的,辅助力距α占比可达到70%;稍微下肢无力的,辅助力距α占比可达到30%等。不同身高的人,所对应的R值也不同。因此,为满足这一需求,本实施例对上述的控制器配置相应的调节模块,该调节模块可以是集成了UI界面的触控面板,或者是简易的调节旋钮,其安装位置可以是在底座11的侧边,也可在座椅两侧安装扶手,进而将调节模块安装在扶手上。当然,也可以利用互联网控制技术或遥控技术,使控制器实现远程控制功能,方便用户使用APP或遥控板控制。

综上,本实施例的工作原理是:

一、落座阶段:

参照图,当用户未坐下时,前油缸21和后油缸22均处于最大伸出状态,此时坐板12处于最大前倾状态。用户要落座时,走向座椅,控制器通过距离传感器5检测到用户靠近时,控制驱动件91工作,使得感应脚垫4伸出到位。然后用户踩在感应脚垫4上,第二压力检测组件32输出相应的第一检测值至控制器。然后用户坐到坐板12上,其臀部以一定角度压在坐板12上,使得第一压力检测组件31输出相应的第二检测值至控制器。此时第一检测值、第二检测值均满足落座判定条件,控制器则切换换向阀72,并启动微型液压泵,使得油源中的油液分别进入到前油缸21、后油缸22的有杆腔内,无杆腔内的油液回流到油源中,进而使得前油缸21、后油缸22的伸缩杆收回,坐板12开始下落。在下落的过程中,控制器通过对压力控制阀71进行控制,使得前油缸21、后油缸22内的油压保持在可控的高压状态,即:使前油缸21的缩回长度和后油缸22的支撑力受控(即按照上述落座时的θ-S关系曲线、θ-P关系曲线进行控制),增大落座时坐板12的阻尼感,从而保证一定的舒适性。当控制器通过倾角传感器检测到坐板12处于水平状态后,表示落座完成,此时控制器控制微型液压泵关闭,使前油缸21、后油缸22保持在当前状态。

二、起身阶段:

当用户有起身动作时,第一压力检测组件31输出的第一检测值减小,同时第二压力检测组件32输出的第二检测值增大,当第一检测值与第二检测值之差达到预设值时,控制器根据这样的变化判断出用户有准备起身的动作;然后控制器控制上述的换向阀72切换油路方向,并重新启动微型液压泵,使得前油缸21、后油缸22的伸缩杆伸出,将坐板12逐渐抬升;在抬升的过程中,同样通过压力控制阀71将前油缸21、后油缸22内的油压保持在可控的高压状态,即:使前油缸21的伸出长度和后油缸22的支撑力受控(即按照上述起身时的θ-S关系曲线、θ-P关系曲线进行控制),给予臀部充分的支撑,帮助用户舒适起身。当控制通过倾角传感器检测到坐板12达到预设的倾斜角度后,表示起身完成,此时控制器控制微型液压泵关闭,使前油缸21、后油缸22保持在当前状态。当用户离开后,控制器通过距离传感器5检测到用户离开时,控制驱动件91复位,使得感应脚垫4缩回到位。

当然,以上只是本发明的典型实例,除此之外,本发明还可以有其它多种具体实施方式,凡采用等同替换或等效变换形成的技术方案,均落在本发明要求保护的范围之内。

12页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种可穿戴的外骨骼座椅

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!