基于bp神经网络的表面式永磁同步电机模型预测控制方法

文档序号:1758321 发布日期:2019-11-29 浏览:22次 >En<

阅读说明:本技术 基于bp神经网络的表面式永磁同步电机模型预测控制方法 (Surface permanent magnetic Synchronous Machine Models forecast Control Algorithm based on BP neural network ) 是由 李耀华 赵承辉 周逸凡 秦玉贵 秦辉 苏锦仕 于 2019-08-30 设计创作,主要内容包括:本发明公开了基于BP神经网络的表面式永磁同步电机模型预测控制方法,本发明首先通过表面式永磁同步电机模型预测控制算法中的输入量和输出量生成最优电压矢量序列,再通过最优电压矢量序列训练BP神经网络拓扑模型,采用训练后的BP神经网络替代表面式永磁同步电机模型预测算法,BP神经网络具有强大的非线性拟合和模式识别分类的能力,可以大大减少算法的运算时间和运算负担,提高系统的及时性,同时具有结构简单、精度较高、反应速度快等优点,而且神经网络分布式并行运算的特点使得大量运算成为可能,可以减轻系统计算负担,提高系统响应及时性,相对于传统的模型预测算法具有一定的创新优势,验证了智能算法在电机控制中的应用前景。(The invention discloses the surface permanent magnetic Synchronous Machine Models forecast Control Algorithms based on BP neural network, the present invention passes through input quantity and output quantity generation optimal voltage vector sequence in surface permanent magnetic Synchronous Machine Models predictive control algorithm first, pass through optimal voltage vector sequence training BP neural network topological model again, surface-type permanent magnet synchronous motor model prediction algorithm is substituted using the BP neural network after training, BP neural network has the ability of powerful nonlinear fitting and pattern recognition classifier, operation time and the computational burden of algorithm can be greatly reduced, the timeliness of raising system, have structure simple simultaneously, precision is higher, the advantages that reaction speed is fast, and the characteristics of neural network distributed parallel operation, makes it possible a large amount of operations, system-computed burden can be mitigated, raising system responds timeliness , there is certain innovation advantage relative to traditional model prediction algorithm, demonstrate application prospect of the intelligent algorithm in motor control.)

基于BP神经网络的表面式永磁同步电机模型预测控制方法

技术领域

本发明属于永磁同步电机直接转矩控制领域,具体涉及一种基于BP神经网络的表面式永磁同步电机模型预测控制方法。

背景技术

直接转矩控制技术基于定子磁链坐标系并直接将转矩作为控制对象,避免了旋转坐标变换时的大量计算以及对电机参数的依赖性,其动态性能好,转矩响应时间短。但是传统DTC是一种离线式控制方法,将控制算法以及预先编制好的电压矢量LUT植入微处理器中,在每一控制周期循环执行。DTC根据电机控制系统当前的转矩误差和定子磁链误差从电压矢量LUT中选取最优电压矢量来消除转矩误差和定子磁链误差。但是传统DTC只能根据每一控制周期初始时刻的电机变量误差选取最优电压矢量,并不能预知在此电压矢量作用下电机变量的变化趋势,无法保证整个控制周期内转矩和定子磁链始终保持在一定的范围内,导致较大的转矩脉动和定子磁链脉动。同时,传统电压矢量LUT设计简单,控制精度较低,电机在特定运行状态下可有多个不同电压矢量供选择输出,根据查表法得到的电压矢量可能并不是最优的电压矢量。因此,可以研究电机的在线式控制方法,实时预测施加不同电压矢量时电机变量的变化,提前预知在某一电压矢量作用下电机转矩误差和定子磁链误差在整个控制周期内的变化,确保所施加电压矢量的有效性和准确性。

模型预测控制(Model predictive control,MPC)作为一种有效的在线式控制方法被广泛的应用于各种工业控制场合。有相关文献提出将MPC与DTC相结合,提出一种模型预测直接转矩控制,该方法对连续的非线性电机方程进行离散化得到电机预测模型,预测不同电压矢量作用下未来多个控制周期内电机转矩和定子磁链的变化,并根据目标函数对每一电压矢量的各步预测结果进行综合评估,最终确定一个最优电压矢量序列并只输出序列的首项。该方法的首要目标是降低逆变器开关频率,同时将电机转矩、定子磁链和逆变器中性点电压限制在一定范围内,以保证电机稳定运行。但是文献中提出的预测算法运算量较大,难以在实际应用中实施。

发明内容

本发明的目的在于克服上述不足,提供基于BP神经网络的表面式永磁同步电机模型预测控制方法,通过将离线训练好的BP神经网络嵌入到表面式永磁同步电机直接转矩控制系统中,替代模型预测算法完成未来控制周期内最优电压矢量的选择工作。

为了达到上述目的,本发明包括以下步骤:

步骤一,确定表面式永磁同步电机模型预测控制算法中的输入量和输出量以及神经网络的输入量与输出量,并确定电机参考转速和负载转矩的变化范围;

步骤二,按照恒定参考转速下负载转矩阶跃和恒定负载转矩下参考转速阶跃两种方式将不同参考转速下负载转矩变化的情况和不同负载转矩下参考转速变化的情况按照一定的步长和间隔遍历取到,并将相应产生的上述输入量的数据送入表面式永磁同步电机模型预测控制算法中,生成未来控制周期内模型预测控制算法选择的最优电压矢量序列,并且将各个输入量的取值与对应选择出来的最优电压矢量对应组合成BP神经网络的训练样本;

步骤三,构建BP神经网络拓扑模型;

步骤四,将步骤二中的训练样本数据进行归一化处理,将归一化处理后的训练样本输入已构建BP神经网络拓扑模型中进行训练学习;

步骤五,将训练好的BP神经网络模型嵌入到表面式永磁同步电机模型预测直接转矩控制系统中替代模型预测控制算法进行未来控制周期内电机最优电压矢量选择的工作和功能。

步骤一中,确定表面式永磁同步电机模型预测控制算法中的输入量和输出量以及神经网络输入量与输出量的具体方法如下:

忽略转子旋转运动和定子电阻压降,施加非零电压矢量后,下一时刻定子磁链幅值和转矩如公式1.1所示:

是当前K时刻定子磁链的幅值,是k+1时刻的定子磁链幅值,是当前要施加的电压矢量幅值,固定幅值,即将电压矢量设置为定幅值,其幅值恒等于其中Udc是直流母线电压;Δt是该电压矢量施加的作用时间,α是电压矢量与定子磁链矢量之间的夹角;

下一时刻定子磁链转矩如公式1.2所示:

Te(k+1)是k+1时刻的电机转矩,p是电机的极对数,ψf是永磁体磁链,是当前K时刻定子磁链的幅值,Ld为d轴定子电感,α是电压矢量与定子磁链矢量之间的夹角,δ(k)是当前K时刻的转矩角;

所用成本函数如公式1.3所示:

将公式1.1和公式1.2计算的结果送入成本函数,如果有n个备选电压矢量,则会得到n个成本函数数值,选择成本函数最小的数值所对应的电压矢量作为该计算控制周期内要施加给电机的最优电压矢量;

表面式永磁同步电机模型预测控制算法的输入量分别有转矩角、当前定子磁链幅值、当前定子磁链角位置、参考磁链、参考转矩、备选电压矢量角度,输出量是选择的电压矢量。6个输入量中去掉其中的恒值,包括参考磁链和备选电压矢量角度,将特征维度精简到4,可以减少运算量,作为神经网络的输入量,选择的电压矢量作为神经网络的输出量。

步骤二中,通过编程或者仿真实现按照一定的步长和间隔将相应取值范围内的上述两种变化情况遍历取到。

步骤三中,BP神经网络拓扑模型为三层的前馈神经网络,根据隐含层节点经验公式确定隐含层节点数,其中a为0~10之间的常数,在此基础上进一步根据调试经验确定隐含层节点个数。输入层节点对应上述确定的4个输入量,输出层节点等于备选电压矢量的个数即7个基本电压矢量。BP神经网络拓扑模型的隐含层和输出层中的神经元的激活函数均采用tansig型的双曲正切传递函数,tansig函数的表达式为f(x)=2/(1+exp(-2*x))-1。

步骤四中,归一化处理采用默认方式,其处理方式如下所示:

式中,xmin为数据系列中的最小数,xmax为序列中的最大数。ymin和ymax为指定的归一化范围。

步骤四中,BP神经网络拓扑模型进行训练学习的具体方法如下:

第一步,归一化处理后的训练样本每一维分别对应表面式永磁同步电机模型预测算法中的因变量即输入量,将输入与输出组合成训练样本序列(X,Y),X是输入数据,Y是对应的输出数据;

第二步,根据系统输入输出组合成的训练样本序列(X,Y)确定网络输入层节点数n、隐含层节点数l、输出层节点数m、输入层和隐含层神经元之间的连接权值ωij、隐含层和输出层神经元之间的连接权值ωjk、隐含层阈值a、输出层阈值b、给定学习速率和神经元激励函数;

第三步,根据输入变量X,输入层和隐含层间连接权值ωij以及隐含层阈值a,计算隐含层输出H;

式中,l为隐含层节点数,f为隐含层激励函数,所选函数为:

f(x)=2/(1+exp(-2*x))-1 公式1.6

第四步,根据隐含层输出H,连接权值ωjk和阈值b,计算BP神经网络预测输出O;

第五步,根据网络预测输出O和期望输出Y,计算网络预测误差J;

ek=Yk-Ok k=1,2,…,m 公式1.8

第六步,由输出层开始,依据J,按照梯度下降法方向计算,并逐层调整权值阈值。取步长为η,可得神经元u到神经元v之间的连接权值和阈值的t+1次调整算式:

第七步,判断算法迭代是否结束,若迭代结束要满足以下条件之一,则迭代结束:

条件1,达到迭代次数2000;

条件2,预测的误差降到目标误差值0.05以内;

条件3,连续6次验证集误差不降低或者反而增加;

若迭代没有结束,则返回第三步。

与现有技术相比,本发明首先通过表面式永磁同步电机模型预测控制算法中的输入量和输出量生成最优电压矢量序列,再通过最优电压矢量序列训练BP神经网络拓扑模型,采用训练后的BP神经网络替代表面式永磁同步电机模型预测算法,BP神经网络具有强大的非线性拟合能力和模式识别的分类能力,其分布式并行运算的特点可以大大减少算法的运算时间和运算负担,提高系统的及时性,并且BP神经网络替代的准确率和效果均令人满意,其选择最优电压矢量的准确率可以达到88.34%,性能表现与MPC相当,且平均开关次数可以减少21.1%,相对于传统的模型预测算法具有一定的创新优势,验证了智能算法在电机控制中的应用前景。

附图说明

图1是本发明的模型流程图;

图2是本发明的BP神经网络的原理示意图;

图3为定子磁链运动变化图。

图4为开关表模式下的电机实际转矩波形;

图5为开关表模式下的电机实际转速波形;

图6为开关表模式下的定子磁链幅值;

图7为开关表模式下的定子磁链轨迹;

图8为开关表模式下的a相电流波形;

图9为BP神经网络模式下的电机实际转矩波形;

图10为BP神经网络模式下的电机实际转速波形;

图11为BP神经网络模式下的定子磁链幅值;

图12为BP神经网络模式下的定子磁链轨迹;

图13为BP神经网络模式下的a相电流波形;

图14为MPC工作模式下的电机实际转矩波形;

图15为MPC工作模式下的电机实际转速波形;

图16为MPC工作模式下的定子磁链幅值;

图17为MPC工作模式下的定子磁链轨迹;

图18为MPC工作模式下的a相电流波形;

具体实施方式

下面结合附图对本发明作进一步说明。

本发明包括以下步骤:

步骤一,确定表面式永磁同步电机模型预测控制算法中的输入量和输出量以及神经网络的输入量与输出量,并确定电机参考转速和负载转矩的变化范围;

步骤二,按照恒定参考转速下负载转矩阶跃和恒定负载转矩下参考转速阶跃两种方式将不同参考转速下负载转矩变化的情况和不同负载转矩下参考转速变化的情况按照一定的步长和间隔遍历取到,并将相应产生的上述输入量的数据送入表面式永磁同步电机模型预测控制算法中,生成未来控制周期内模型预测控制算法选择的最优电压矢量序列,并且将各个输入量的取值与对应选择出来的最优电压矢量对应组合成BP神经网络的训练样本;

步骤三,构建BP神经网络拓扑模型;

步骤四,将步骤二中收集到的训练样本数据进行数据归一化处理,将归一化处理后的训练样本数据输入到已构建BP神经网络拓扑模型中进行训练学习;

步骤五,将训练好的BP神经网络模型嵌入到表面式永磁同步电机模型预测直接转矩控制系统中替代模型预测控制算法进行未来控制周期内电机最优电压矢量选择的工作和功能。

步骤一中,忽略转子旋转运动和定子电阻压降,施加非零电压矢量后,定子磁链运动变化如图3所示。

施加电压矢量后,下一时刻定子磁链幅值和转矩如公式1.13和公式1.14所示。

其中, 是当前K时刻定子磁链的幅值,是k+1时刻的定子磁链幅值,是当前要施加的电压矢量幅值,固定幅值,即将电压矢量设置为定幅值,其幅值恒等于其中Udc是直流母线电压;Δt是该电压矢量施加的作用时间,α是电压矢量与定子磁链矢量之间的夹角。

Te(k+1)是k+1时刻的电机转矩,p是电机的极对数,ψf是永磁体磁链,是当前K时刻定子磁链的幅值,Ld为d轴定子电感,α是电压矢量与定子磁链矢量之间的夹角,δ(k)是当前K时刻的转矩角。

所用成本函数如公式1.15所示:

将公式1.13和公式1.14计算的结果送入成本函数,整个算法过程中,如果有n个备选电压矢量,则会得到n个成本函数数值,选择成本函数最小的数值所对应的电压矢量作为该计算控制周期内要施加给电机的最优电压矢量。

由上述表面式永磁同步电机模型预测控制的公式中可以得知模型预测控制算法的输入量分别有转矩角、当前定子磁链幅值、当前定子磁链角位置、参考磁链、参考转矩、备选电压矢量,去掉其中的恒值,因为恒值在神经网络的运算中意义不大,包括参考磁链和备选电压矢量角度,认为当前电压矢量的选择主要与当前定子磁链角位置有关。因此,将特征维度精简到4,可以减少运算量,将该4个变量作为神经网络的输入,选择的电压矢量作为神经网络的输出。

步骤二中,按照恒定参考转速下负载转矩阶跃和恒定负载转矩下参考转速阶跃两种方式将不同参考转速下负载转矩变化的情况和不同负载转矩下参考转速变化的情况按照一定的步长和间隔遍历取到,并将相应产生的上述输入量的数据送入表面式永磁同步电机模型预测控制算法中,生成未来控制周期内模型预测控制算法选择的最优电压矢量序列,并且将其与对应的各个输入量的取值对应组合成BP神经网络的训练样本矩阵。

步骤三中,BP神经网络模型为3层的前馈神经网络,根据隐含层节点经验公式其中a为0~10之间的常数,在此基础上进一步根据调试经验确定隐含层节点个数,输入层节点对应上述确定的4个输入量,输出层节点等于备选电压矢量的个数,BP神经网络的隐含层和输出层中的神经元的激活函数均采用tansig型双曲正切传递函数,tansig函数的表达式为f(x)=2/(1+exp(-2*x))-1。

步骤四中,为了取消各维数据间数量级差别,避免因为输入输出数据数量级差别较大而造成网络预测误差较大,需要对数据进行归一化处理,本方法中所述神经网络中归一化处理采用传统默认方式,其处理方式如下所示:

式中,xmin为数据系列中的最小数,xmax为序列中的最大数。ymin和ymax为指定的归一化范围。

步骤五中,BP神经网络拓扑模型进行训练学习的过程如下:

(5.1)输入数据:

对步骤二中收集到的训练数据进行数据预处理即数据归一化处理之后,形成一个4维矩阵,每一维分别对应表面式永磁同步电机模型预测算法中的因变量即输入量,将输入与输出组合成训练样本序列(X,Y),X是输入数据,Y是对应的输出数据。

(5.2)网络初始化:

根据系统输入输出序列(X,Y)确定网络输入层节点数n,隐含层节点数l,输出层节点数m,初始化输入层、隐含层和输出层神经元之间的连接权值ωij,ωjk,初始化隐含层阈值a,输出层阈值b,给定学习速率和神经元激励函数。

(5.3)隐含层输出计算:

根据输入变量X,输入层和隐含层间连接权值ωij以及隐含层阈值a,计算隐含层输出H。

式中,l为隐含层节点数,f为隐含层激励函数,该函数有多种选择,本发明所选函数为f(x)=2/(1+exp(-2*x))-1 1.18

(5.4)输出层输出计算:

根据隐含层输出H,连接权值ωjk和阈值b,计算BP神经网络预测输出O。

(5.5)误差计算:

根据网络预测输出O和期望输出Y,计算网络预测误差J。

ek=Yk-Ok k=1,2,…,m 1.20

(5.6)权值阈值更新:

由输出层开始,依据J,按照梯度下降法方向计算,并逐层调整权值阈值。取步长为η,可得神经元u到神经元v之间的连接权值和阈值的t+1次调整算式:

(5.7)判断算法迭代是否结束,迭代结束要满足以下条件之一:

(1)达到迭代次数2000;

(2)预测的误差降到目标误差值0.05以内;

(3)连续6次验证集误差不降低或者反而增加。若迭代没有结束,返回步骤(5.3)。

步骤五中,将训练好的BP神经网络模型嵌入到表面式永磁同步电机模型预测直接转矩控制系统中替代模型预测控制算法进行未来控制周期内电机最优电压矢量的计算与选择工作。

实施例

基于MATLAB/Simulink建立了表面式永磁同步电机模型预测直接转矩控制仿真模型。仿真模型为离散模型,采样周期为5×10-5s。直流母线电压为312V。转速PI调节器参数为:Kp=5,KI=10,PI调节器输出上下限为[-35,35]。参考定子磁链幅值为0.3Wb。仿真用表面式永磁同步电机参数如表1所示。

表1仿真用表面式永磁同步电机参数

综合考虑参考转速和负载转矩两种变化情况的学习,使用斜坡函数营造训练数据:

参考转速10rpm、30rpm和60rpm的三种情况下,负载转矩均使用斜坡函数设置,初始值为10N·m,仿真时间2s,2s末负载转矩上升到34N·m。

负载转矩10N·m、15N·m、20N·m、25N·m、30N·m和34N·m的六种情况下,参考转速均使用斜坡函数设置,初始值为10rpm,仿真时间2s,2s末参考转速上升到60rpm。

收集以上数据,经过调试和训练,神经网络的拓扑结构为4-18-7,其分类选择正确率可达到88.34%。将神经网络嵌入到表面式永磁同步电机直接转矩控制系统中替代模型预测控制进行最优电压矢量选择的工作。

参考转速为35rpm,1s时阶跃至30rpm。负载转矩初始为10N.m,0.5s时阶跃至30N.m。开关表工作模式、BP神经网络工作模式和原始MPC工作模式下的仿真结果分别如图4—图18所示。

不同的性能之间的对比采用以下指标进行评价:表面式永磁同步电机模型预测直接转矩控制系统稳态评价指标采用转矩脉动均方根误差Trip_RMSE、磁链脉动均方根误差ψrip_RMSE和平均开关次数,分别如下式所示,其中n为采样个数,Nswitching为开关次数,t为仿真时间。

表2.三种方式的评价指标对比

仿真实验表明,BP神经网络工作模式下的电机运行良好,而且性能表现与MPC相当,且平均开关次数可以减少21.1%。这表明可以用简单的BP神经网络代替复杂的模型预测算法,同时具有结构简单、精度较高、反应速度快等优点,而且神经网络分布式并行运算的特点使得大量运算成为可能,可以减轻系统计算负担,提高系统响应及时性,并且探索了神经网络在电机模型预测控制中的应用价值。

目前暂时没有发现使用神经网络替代模型预测算法去选择电压矢量这样的方法,所以本发明具有开创性,且神经网络具有强大的非线性拟合能力和模式识别的分类能力,其分布式并行运算的特点加速了运算,使得大量运算成为可能,利用神经网络去替代计算量较大实时性不好的模型预测控制具有重要的探索意义和实际应用价值。

20页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:基于单神经元与改进粒子群算法优化双电机高速高精度同步控制方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!