一种适用于低碳铝镇静钢的rh精炼炉化学升温方法

文档序号:1767249 发布日期:2019-12-03 浏览:23次 >En<

阅读说明:本技术 一种适用于低碳铝镇静钢的rh精炼炉化学升温方法 (A kind of RH refining furnace chemical heating method suitable for carbon aluminium-killed steel ) 是由 李应江 胡晓光 姚思源 邓勇 毛学庆 李宝庆 熊华报 张虎 孔磊 单永刚 张雷 于 2019-09-29 设计创作,主要内容包括:本发明公开了一种适用于低碳铝镇静钢的RH精炼炉化学升温方法,通过RH脱碳结束后加铝粒的手段,利用铝-氧反应产生的化学热对钢水温度进行补偿,对吹氧时机、吹氧量、加铝量、加铝时机、浸渍管插入深度、提升气体流量、真空度、钢水循环时间等进行深入研究,开发出一种适用于低碳铝镇静钢的RH精炼炉化学升温方法,以实现转炉不需要过高温度出钢,而在RH工序进行化学升温补偿温度,在不降低产品质量的前提下,实现低碳铝镇静钢的批量生产。(The invention discloses a kind of RH refining furnace chemical heating methods suitable for carbon aluminium-killed steel, add the means of aluminum shot after by RH decarburization, liquid steel temperature is compensated using the chemical heat that aluminium-oxygen reaction generates, to oxygen blast opportunity, blowing oxygen quantity, add aluminum amount, add aluminium opportunity, dip pipe insertion depth, lift gas flow, vacuum degree, molten steel circulation time etc. is furtherd investigate, develop a kind of RH refining furnace chemical heating method suitable for carbon aluminium-killed steel, to realize that converter does not need excessive temperature tapping, and chemical heating compensation temperature is carried out in RH process, under the premise of not reducing product quality, realize the batch production of carbon aluminium-killed steel.)

一种适用于低碳铝镇静钢的RH精炼炉化学升温方法

技术领域

本发明属于钢铁冶炼技术领域,具体涉及一种适用于低碳铝镇静钢的RH精炼炉化学升温方法。

背景技术

低碳铝镇静钢板多用于汽车工业、家电工业及建筑领域等。目前,低碳铝镇静钢主要采用以下三种工艺流程生产:第一种工艺流程为“转炉→吹氩站→LF精炼炉→连铸”:本工艺的核心在LF精炼炉工序,在LF工序造还原渣脱硫,并进行合金化,LF精炼后期喂入含钙包芯线对夹杂物进行变性,使脱氧产物Al2O3变性为以铝酸钙为主的夹杂物,从而改善了钢水的可浇性。这种方法的优点在于转炉不需要高温出钢,钢水温度低时,LF炉采用电极加热进行补偿温度;缺点在于LF炉工序增碳量大,碳含量易超标,且造还原渣过程容易造成硅含量超标,并且喂含钙包芯线成本高.

第二种工艺流程为“转炉→吹氩站→连铸”:本工艺的核心在转炉出钢期及吹氩站工序,在转炉出钢期加入含铝材料对钢水脱氧,加入石灰或精炼渣调整钢包渣成分,在吹氩站工序根据钢水氧含量加入含铝材料对钢水脱氧合金化,同时开钢包底吹氩进行强搅拌。本方法的优点在于物流简单,省去LF精炼炉或RH精炼炉工序,成本低;缺点在于吹氩站工序温降大,要保证连铸浇铸温度,转炉需高温出钢,从而影响转炉炉衬寿命及金属吹损;同时,由于不喂含钙包芯线,脱氧产物Al2O3未进行变性,钢水夹杂物含量高,钢水可浇性差,经常出现连铸水口蓄流,这种工艺生产的低碳铝镇静钢多用于最终产品质量要求不高的产品。

第三种工艺流程为“转炉→吹氩站→RH精炼炉→连铸”:本工艺的核心在RH精炼炉工序,主要承担脱碳、脱氧合金化以及去除夹杂物功能。本方法的优点在于碳含量、硅含量控制精准,钢水洁净度高,因此采用这种工艺生产的低碳铝镇静钢多用于最终产品质量要求高的产品;缺点在于RH工序温降较大,要保证连铸浇铸温度,转炉需高温出钢,从而影响转炉炉衬寿命及金属吹损。

综合以上三种工艺流程的优缺点分析,目前国内配备RH精炼炉的大型钢厂多采用“转炉→吹氩站→RH精炼炉→连铸”流程生产低碳铝镇静钢。这种工艺流程的重点控制参数为转炉出钢温度。若转炉出钢温度低,钢水在吹氩站、RH精炼炉工序温度正常损耗后,难以保证适宜的连铸浇铸温度;同时,在大工业生产中,由于转炉流钢耗时、时序节点、钢包热状况等不确定因素影响,钢厂精准的控制出钢温度以实现连铸过程目标过热度浇铸非常困难。因此,在工业实践中多采用提高转炉出钢温度的方法来保障后续工序钢水温度。这种控制方法的有利后果是RH工序操作简单,无须考虑温度补偿;其缺点是:转炉吹损大、转炉炉况恶化、钢水及炉渣严重过氧化、温度偏高炉次RH工序需加入冷却废钢,等等。

发明内容

为解决上述技术问题,本发明提供了一种适用于低碳铝镇静钢的RH精炼炉化学升温方法,通过RH脱碳结束后加铝粒的手段,利用铝-氧反应产生的化学热对钢水温度进行补偿,对吹氧时机、吹氧量、加铝量、加铝时机、浸渍管***深度、提升气体流量、真空度、钢水循环时间等进行深入研究,开发出一种适用于低碳铝镇静钢的RH精炼炉化学升温方法,以实现转炉不需要过高温度出钢,而在RH工序进行化学升温补偿温度,在不降低产品质量的前提下,实现低碳铝镇静钢的批量生产。

本发明采取的技术方案为:

一种适用于低碳铝镇静钢的RH精炼炉化学升温方法,所述方法包括以下步骤:

(1)控制转炉出钢温度范围为1640-1660℃;在钢水进入合金微调站后,加入钢包顶渣改质剂进行改质,改质期间不开钢包底吹氩;

(2)钢包顶升,RH浸渍管***钢水深度保持为520mm-560mm;

(3)根据钢水在合金微调站中的碳含量(C1)、RH脱碳结束后的钢水目标碳含量(C2)、RH脱碳结束后的钢水目标氧含量(C3)、RH进站钢水氧含量(C4)、以及RH进站目标钢水温度与RH进站实际钢水温度的差值(ΔT),确定RH吹氧量;

(4)在真空度100-150mbar时开始进行RH吹氧;

(5)RH吹氧结束后在真空度50-100mbar条件下保持3-4分钟,然后定氧,根据定氧结果加入铝粒进行脱氧合金化;

(6)脱氧合金化后进行钢水循环;

(7)钢水循环后加入合金料对钢水进行合金化处理;

(8)合金化处理后,钢水净循环;

(9)板坯连铸。

进一步地,步骤(1)中,转炉出钢流钢耗时为3-8分钟。

步骤(1)中,钢水入合金微调站后取钢样分析钢水碳含量和氧含量。

步骤(1)中,所述钢包顶渣改质剂的加入量为1-3kg/吨钢。所述钢包顶渣改质剂的要求为:MAl≥45.0%、SiO2≤8.0%、H2O≤8.0%、粒度:5-28mm>85%,>30mm≤5%。

步骤(3)中,其中C1、C2、C3、C4的单位均为ppm;RH吹氧量的单位为Nm3;如果RH吹氧量的计算结果为负值,则不需要吹氧。

步骤(3)中,RH进站目标温度为1605℃,若RH进站实际温度≥1605℃,则RH精炼步骤中不需进行温度补偿。

步骤(3)中,RH脱碳结束后的钢水目标碳含量(C2)范围为50-100ppm,优选为65ppm;RH脱碳结束后的钢水目标氧含量(C3)范围为100-200ppm,优选为150ppm。

步骤(4)中,吹氧要求一次性完成;RH吹氧时,真空度控制在100-150mbar,其它时间RH真空度控制50-100mbar。

步骤(5)中,

,式中,铝粒加入量的单位为kg;钢水量的单位为吨;η1—脱氧铝粒铝收得率;η2—合金化铝粒铝收得率;C5—RH脱碳结束钢水实际氧含量,单位为ppm;A—铝粒含铝量。

步骤(6)中,当ΔT≤10℃,循环时间4-5分钟;当ΔT>10℃,循环时间5-6分钟。

步骤(8)中,当ΔT≤10℃时,净循环时间6-8分钟;当ΔT>10℃时,净循环时间8-10分钟。

RH开抽前5分钟:120-160Nm3/h,开抽5分钟后:180-220Nm3/h;提升气体类型为氩气,氩气出口压力为2-5bar。

所述低碳铝镇静钢的重量百分比组成为:碳:0.015-0.035%,硅≤0.01%,锰:0.08-0.25%,磷≤0.015%,硫≤0.008%,酸溶铝:0.030-0.050%,余量为铁和不可避免的杂质。

所述板坯连铸步骤中,中包目标温度为1551-1566℃。

本发明的技术原理主要是:利用铝-氧反应产生的化学热对钢水温度进行补偿,其反应式为:2[A1]+3[O]=Al2O3+30932kJ/KgAl,即:每公斤铝与氧反应放热30932kJ。本专利在RH处理初期即吹氧,缩短脱碳时间,脱碳结束时一次性加铝脱氧合金化,配合浸渍管***深度、提升气体流量、真空度、钢水循环时间等工艺参数协同控制,改善了夹杂物排除的动力学条件,从而促进脱氧产物Al2O3的有效排除。

与现有技术相比,本发明的技术方案具有以下优点:

(1)应用本发明工艺后,生产低碳铝镇静钢时转炉出钢温度平均为1648℃,较现行工艺出钢温度(1673℃)降低了25℃;RH终点全氧平均为20ppm,较现行工艺RH终点全氧(现行工艺:21.5ppm)降低了1.5ppm;中包全氧平均为21.5ppm,较现行工艺RH终点全氧(现行工艺:21.25ppm)增加了0.25ppm;

(2)应用本发明工艺后,低碳铝镇静钢RH纯循环时间26分钟(现行工艺:24分钟)、RH终点平均碳含量为0.021%(现行工艺:0.023%)、RH终点平均酸溶铝含量为0.049%(现行工艺:0.048%)、中包温度合格率为100%(现行工艺:100%)。上述主要指标同现行工艺基本相当。

附图说明

图1为本发明的工艺流程及主要工艺措施示意图。

具体实施方式

一种适用于低碳铝镇静钢的RH精炼炉化学升温方法,包括以下步骤:

(1)控制转炉出钢温度范围为1640-1660℃,转炉出钢碳含量:0.02-0.06%,转炉出钢流钢耗时为3-8分钟;在钢水进入合金微调站后,加入钢包顶渣改质剂进行改质,钢包顶渣改质剂的加入量为1-3kg/吨钢,改质期间不开钢包底吹氩;钢包顶渣改质剂的要求为:MAl≥45.0%、SiO2≤8.0%、H2O≤8.0%、粒度:5-28mm>85%,>30mm≤5%;

(2)钢包顶升,RH浸渍管***钢水深度保持为520mm-560mm;

(3)根据钢水在合金微调站中的碳含量(C1)、RH脱碳结束后的钢水目标碳含量(C2)、RH脱碳结束后的钢水目标氧含量(C3)、RH进站钢水氧含量(C4)、以及RH进站目标钢水温度与RH进站实际钢水温度的差值(ΔT),确定RH吹氧量;其中C1、C2、C3、C4的单位均为ppm;RH吹氧量的单位为Nm3;如果RH吹氧量的计算结果为负值,则不需要吹氧;

RH进站目标温度为1605℃,若RH进站实际温度≥1605℃,则RH精炼步骤中不需进行温度补偿;

RH脱碳结束后的钢水目标碳含量(C2)范围为50-100ppm;RH脱碳结束后的钢水目标氧含量(C3)范围为100-200ppm;

(4)在真空度100-150mbar时开始进行RH吹氧;吹氧要求一次性完成;RH吹氧时,真空度控制在100-150mbar,其它时间RH真空度控制50-100mbar;

(5)RH吹氧结束后在真空度50-100mbar条件下保持3-4分钟,然后定氧,根据定氧结果加入铝粒进行脱氧合金化;

,式中,铝粒加入量的单位为kg;钢水量的单位为吨;η1—脱氧铝粒铝收得率;η2—合金化铝粒铝收得率;C5—RH脱碳结束钢水实际氧含量,单位为ppm;A—铝粒含铝量

(6)脱氧合金化后进行钢水循环;当ΔT≤10℃,循环时间4-5分钟;当ΔT>10℃,循环时间5-6分钟;

(7)钢水循环后加入合金料对钢水进行合金化处理,按目标值加电解锰调整锰含量、加高碳锰铁调整碳含量;

(8)合金化处理后,钢水净循环;当ΔT≤10℃时,净循环时间6-8分钟;当ΔT>10℃时,净循环时间8-10分钟;

(9)在RH开抽前5分钟:120-160Nm3/h,开抽5分钟后:180-220Nm3/h;提升气体类型为氩气,氩气出口压力为2-5bar;

(10)板坯连铸。

上述工艺适用的低碳铝镇静钢的重量百分比组成为:碳:0.015-0.035%,硅≤0.01%,锰:0.08-0.25%,磷≤0.015%,硫≤0.008%,酸溶铝:0.030-0.050%,余量为铁和不可避免的杂质。

下面通过300TRH精炼炉生产低碳铝镇静钢的具体的实施例、对比例及其生产数据对本发明的技术方案和效果进行详细介绍。

下述各实施例中,上述计算公式中的C2为65ppm、C3为150ppm、η1为65%;η2为90%;A为99%。

各实施例及对比例中的工艺步骤及参数控制如下:

(1)转炉冶炼工艺中:主要参数控制情况如表1:

表1实施例与对比例转炉主要工艺参数对比

炉号 钢水量/吨 出钢温度/℃ 出钢碳含量/% 流钢耗时
实施例1 302 1655 0.037% 4分29秒
实施例2 305 1649 0.041% 6分23秒
实施例3 304 1645 0.026% 5分32秒
实施例4 298 1641 0.053% 3分56秒
对比例1 297 1675 0.032% 5分25秒
对比例2 305 1672 0.028% 4分46秒
对比例3 302 1677 0.024% 5分31秒
对比例4 299 1669 0.041% 3分38秒

(2)合金微调站:合金微调站进站后取样,然后加入钢包顶渣改质剂。主要参数控制情况如表2:

表2实施例与对比例合金微调站主要工艺参数对比

(3)RH精炼炉:

主要参数控制情况如表3:

表3实施例与对比例RH精炼炉主要工艺参数对比

接表3:

接表3:

(4)连铸:

钢水上台后开浇。主要参数控制情况如表4:

表4实施例与对比例连铸主要工艺参数对比

从上述数据可以看出:

(1)应用本发明工艺后,实施例1~4中生产低碳铝镇静钢时转炉出钢温度平均为1648℃,较现行工艺对比例1~4中的出钢温度(1673℃)降低了25℃;RH终点全氧平均为20ppm,较现行工艺RH终点全氧(现行工艺:21.5ppm)降低了1.5ppm;中包全氧平均为21.5ppm,较现行工艺RH终点全氧(现行工艺:21.25ppm)增加了0.25ppm;

(2)应用本发明工艺后,实施例1~4中低碳铝镇静钢RH纯循环平均时间26分钟(现行工艺对比例1~4中的RH纯循环平均时间:24分钟)、RH终点平均碳含量为0.021%(现行工艺:0.023%)、RH终点平均酸溶铝含量为0.049%(现行工艺:0.048%)、中包温度合格率为100%(现行工艺:100%)。上述主要指标同现行工艺基本相当。

上述参照实施例对一种适用于低碳铝镇静钢的RH精炼炉化学升温方法进行的详细描述,是说明性的而不是限定性的,可按照所限定范围列举出若干个实施例,因此在不脱离本发明总体构思下的变化和修改,应属本发明的保护范围之内。

11页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种转炉开吹打火不成功的处理方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!