一种茶多酚-ldh纳米复合材料及其制备和应用

文档序号:177084 发布日期:2021-11-02 浏览:21次 >En<

阅读说明:本技术 一种茶多酚-ldh纳米复合材料及其制备和应用 (Tea polyphenol-LDH (layered double hydroxides) nanocomposite material as well as preparation and application thereof ) 是由 郭睿 张璐瑶 于 2021-07-01 设计创作,主要内容包括:本发明涉及一种茶多酚-LDH纳米复合材料及其制备和应用,所述复合材料为层状双金属氢氧化物表面依次负载抗肿瘤药物、修饰透明质酸获得。本发明制备的茶多酚-LDH纳米复合材料不仅具有良好的生物安全性、pH响应释放特性,还可特异性识别肿瘤细胞表面的CD44受体,在肿瘤治疗中具有重大的临床转化与应用潜力。(The invention relates to a tea polyphenol-LDH nano composite material, and a preparation method and an application thereof. The tea polyphenol-LDH nanocomposite prepared by the invention has good biological safety and pH response release characteristics, can specifically identify CD44 receptor on the surface of tumor cells, and has great clinical transformation and application potential in tumor treatment.)

一种茶多酚-LDH纳米复合材料及其制备和应用

技术领域

本发明属于功能性复合材料及其制备和应用领域,特别涉及一种茶多酚-LDH纳米复合材料及其制备和应用。

背景技术

近年来,癌症的发病率与死亡率不断上升,成为严重威胁人类生命的三大致死疾病之一,据国家癌症中心2019年发布的数据,我国每天约有1万多人确诊癌症,相当于平均每分钟就有7个人患上癌症。因此,如何有效的治疗肿瘤至关重要。

常见的癌症治疗方法有化疗、放疗、光热治疗、光动力治疗、化学动力学治疗等。其中,化学动力学治疗(CDT)是通过催化Fenton反应或类Fenton反应产生有毒的羟自由基(·OH),从而杀死癌细胞的一种新兴治疗策略。·OH作为活性氧(ROS)的一种,与其他活性氧相比,具有较高的标准氧化还原电位(E(·OH/H2O)=2.8V),对肿瘤细胞的氧化损伤更大。因此,可以考虑在癌细胞中引入含有铁离子的催化剂,利用肿瘤中高含量的H2O2及弱酸性的微环境,触发Fenton反应,从而治疗肿瘤。在Fenton反应体系中,Fe2+催化内源性H2O2产生·OH,同时被氧化为Fe3+,然而Fe3+参与Fenton反应的活性低于Fe2+,为了加快Fe3+/Fe2+的转化效率,提高CDT的治疗效果,在Fenton反应体系中引入还原性物质是一种有效的方法。

(-)-Epigallocatechin-3-O-gallate(EGCG),一种具有代表性的绿茶多酚,有研究报道表明EGCG可作为还原性物质加速Fe3+/Fe2+的转化,提高Fenton反应效果。此外,EGCG也可作为一种新型的化疗药物使用,但化疗药物通常受血液循环时间短和非特异性生物分布的限制,而纳米材料具有延长循环半衰期,增强通透性和生物安全性等优点。因此,将药物与纳米材料相结合可以增加癌细胞中药物的浓度,提高化疗效果,同时避免对正常细胞的侵害。

层状双金属氢氧化物作为一类最具代表性的二维纳米材料,在催化及生物医学等领域引发了广泛关注。LDH由带正电荷的类似水镁石层组成,层板由M(OH)6八面体单元组成,层间含有阴离子和水分子,通式为:[M2+ 1-xM3+ x(OH)2]x+(An-)x/n·mH2O,其中M2+,M3+分别代表二价和三价金属阳离子(例如,M2+:Fe2+,Mg2+,Zn2+,Ni2+,Ca2+,Cu2+等;M3+:Al3+,Fe3+等),An-代表层间阴离子(例如,Cl-,CO3 2-,NO3 2-,SO4 2-等)。因此,LDH独特的配位结构使氢氧化物层可以具有各种金属成分,除此之外,还具有较高的载药能力、良好的生物相容性、生物可降解性、pH响应等特性。

LDH虽具有良好的生物安全性,可与一些化疗药物结合用于肿瘤治疗,但该类纳米复合平台由于缺乏靶向分子,难以在肿瘤部位积累,故治疗效果往往不太理想。因此本发明提供了一种HA靶向的双金属氢氧化物-超小铁纳米材料及其制备和应用,本发明克服现有技术难以在肿瘤部位特异性积累的缺陷,可以特异性识别肿瘤细胞表面的CD44受体,提高肿瘤细胞内药物浓度,增强细胞杀伤力,从而提高肿瘤治疗效果。

检索国内外文献尚未发现有关于茶多酚-LDH纳米复合平台的制备及其肿瘤协同治疗应用的研究报道。基于上述背景,茶多酚-LDH纳米复合平台的发明具有一定的研究意义及临床转化潜力。

发明内容

本发明所要解决的技术问题是提供一种茶多酚-LDH纳米复合材料及其制备和应用,克服现有技术难以在肿瘤部位特异性积累的缺陷。

本发明提供一种茶多酚-LDH纳米复合材料,其特征在于,所述复合材料为层状双金属氢氧化物表面依次负载抗肿瘤药物、修饰透明质酸获得。

所述层状双金属氢氧化物为铁-铝层状双金属氢氧化物LDH;所述抗肿瘤药物为没食子儿茶素没食子酸酯EGCG。

本发明提供一种茶多酚-LDH纳米复合材料的制备方法,包括:

(1)将没食子儿茶素没食子酸酯EGCG的水溶液和层状双金属氢氧化物的水溶液混合,搅拌20~24h,离心收集,洗涤去除游离的EGCG,冷冻干燥,得到负载没食子儿茶素没食子酸酯的层状双金属氢氧化物纳米材料LDH-EGCG;

(2)将透明质酸HA与苯硼酸PBA在水中搅拌溶解,加入氯化4-(4,6-二甲氧基-1,3,5-三嗪-2-基)-4-甲基吗啉DMTMM,搅拌溶解,滴加酸,调节pH,反应过夜,提纯,即得透明质酸-苯硼酸HA-PBA;

(3)将透明质酸-苯硼酸HA-PBA在去离子水中搅拌溶解,然后和负载没食子儿茶素没食子酸酯的层状双金属氢氧化物纳米材料的水溶液混合,搅拌10~12h,离心收集,洗涤,冷冻干燥,即得透明质酸修饰的负载没食子儿茶素没食子酸酯的层状双金属氢氧化物纳米材料(LDH-EGCG-HA)。

上述制备方法的优选方式如下:

所述步骤(1)中层状双金属氢氧化物由下列方法制备:将亚铁盐和铝盐混合溶液,搅拌,滴加碱,调节pH,然后转移至聚四氟乙烯反应釜中,120~140℃反应20~24h,离心收集、洗涤去除游离的金属离子、冷冻干燥,即得铁-铝层状双金属氢氧化物LDH;其中层状双金属氢氧化物制备全过程在氮气保护下进行。

所述亚铁盐为FeCl2·4H2O、铝盐为AlCl3·6H2O;FeCl2·4H2O和AlCl3·6H2O的摩尔比为1.9~2.2:0.8~1.1;混合溶液的溶剂为水;所述滴加碱,调节pH具体为:滴加的碱为1M的NaOH溶液,调节溶液最终pH值为7.5~8.0。

所述步骤(1)中层状双金属氢氧化物、没食子儿茶素没食子酸酯的投料质量比为1.8~2.1:0.9~1.2。

所述步骤(2)中HA与DMTMM、PBA的摩尔比为1.1~1.3:0.7~0.8:0.1~0.2;所述滴加酸,调节pH具体为:滴加的酸为1M的HCl溶液,调节溶液最终pH值为6.5~7.0。

所述步骤(2)中提纯具体为:反应产物在冷乙醇中沉淀12h,离心收集、洗涤,使用合适的透析袋在室温条件下透析3-4天,冷冻干燥即得透明质酸-苯硼酸(HA-PBA)。

所述步骤(3)中透明质酸-苯硼酸HA-PBA、负载没食子儿茶素没食子酸酯的层状双金属氢氧化物纳米材料的投料质量比为0.9~1.0:1.0~1.2。

所述步骤(1)-(3)中采用的水均为除去CO2的超纯水。

所述步骤(1)-(3)中冷冻干燥时间为24-48h。

所述步骤(1)-(3)中离心收集和洗涤的步骤中,均采用4℃,8500r/min离心15分钟。

本发明提供一种所述茶多酚-LDH纳米复合材料在制备肿瘤化学动力学治疗药物中应用。

本发明首先通过共沉淀法合成粒径大小均匀的含有铁离子的LDH,然后利用静电吸附及阴离子交换作用负载抗癌药物没食子儿茶素没食子酸酯(Epigallocatechingallate,EGCG),最后利用化学键相互作用修饰透明质酸HA,形成具有靶向效果的载药纳米材料(LDH-EGCG-HA)。本发明中LDH中的铁离子可用于化学动力学治疗,EGCG药物除了用于化疗外,还可提高Fe3+/Fe2+的转化效率进而提高CDT效果。本发明使用紫外吸收光谱仪(UV-Vis)、红外吸收光谱仪(FT-IR)、X射线晶体衍射分析(XRD)、场发射扫描电子显微镜(SEM)、透射电子显微镜(TEM)、Zeta电势与动态光散射分析(DLS)等技术对合成的纳米材料进行相应的物理化学表征,利用CCK-8实验评价纳米材料的细胞毒性,利用电感耦合等离子体原子发射光谱法(ICP-OES)评价纳米材料的细胞吞噬效果,利用激光共聚焦显微镜和流式细胞术对纳米材料的抗肿瘤效果进行定性及定量评价,最后在小鼠上建立肿瘤模型,探究纳米材料的体内抗肿瘤效果。

有益效果

(1)本发明合成工艺简单,制备周期短,原料来源广泛,成本较低且产物收率高,具有良好的发展应用前景。

(2)本发明制备的纳米材料不仅具有良好的生物相容性、生物可降解性、敏感的pH响应释放特性,还可对CD44受体表达的肿瘤细胞进行特异性识别,从而提高抗肿瘤效果。

(3)本发明首次在LDH表面及层间负载抗癌药物EGCG,其不仅具有一定的化疗作用,还可作为还原性物质加速Fe3+/Fe2+的转化,提高化学动力学治疗效果,为肿瘤的化疗/化学动力学联合治疗提供了一种新策略。

(4)本发明中利用共沉淀法合成粒径大小均匀的铁-铝层状双金属氢氧化物(LDH),然后利用静电吸附及阴离子交换作用负载抗癌药物形成纳米材料(LDH-EGCG),然后修饰透明质酸,形成具有靶向效果的载药纳米材料(LDH-EGCG-HA),具有一定的肿瘤治疗效果。

附图说明

图1为本发明提供的透明质酸靶向的LDH纳米平台的合成方法原理图;

图2(a)、(b)分别为本发明制备的LDH的SEM图、TEM图,(c)为本发明制备的LDH的水动力学直径分布直方图;

图3(a)、(b)分别为本发明制备的LDH的STEM图像、相应的元素映射及STEM模式下的EDS-mapping(c);

图4(a)、(b)分别为本发明制备的LDH-EGCG的SEM图、TEM图,(c)为本发明制备的LDH-EGCG的水动力学直径分布直方图;

图5为单独EGCG和本发明制备的LDH、LDH-EGCG在200-800nm的紫外吸收峰;

图6为本发明制备的LDH、LDH-EGCG的X射线晶体衍射图谱;

图7为本发明制备的LDH、LDH-EGCG的红外吸收光谱;

图8为单独HA和本发明制备的HA-PBA的1H NMR图谱;

图9(a)、(b)分别为本发明制备的LDH、LDH-EGCG、LDH-EGCG-HA的水动力学直径及电势图;

图10为本发明制备的LDH-EGCG-HA在水溶液、磷酸盐水溶液及培养基中的粒径变化;

图11为本发明制备的LDH、LDH-EGCG对亚甲基蓝的降解效果;

图12(a)、(b)分别为本发明制备的LDH-EGCG-HA的EGCG及铁离子在pH=7.4、6.5、5.0的磷酸盐缓冲液中的累计释放曲线;

图13为单独EGCG和本发明制备的LDH-EGCG-HA的细胞毒性测试结果;

图14为单独EGCG和本发明制备的LDH、LDH-EGCG、LDH-EGCG-HA与细胞共培养24h的体外抗肿瘤活力测试结果;

图15为肿瘤细胞对本发明制备的LDH-EGCG、LDH-EGCG-HA的吞噬结果;

图16为采用流式细胞术定量分析肿瘤细胞对单独EGCG和本发明制备的LDH、LDH-EGCG、LDH-EGCG-HA的凋亡效果;

图17(a)、(b)分别为采用流式细胞术、共聚焦显微镜分析肿瘤细胞对单独EGCG和本发明制备的LDH、LDH-EGCG、LDH-EGCG-HA的化学动力学效果。

具体实施方式

下面结合具体实施例,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。此外应理解,在阅读了本发明讲授的内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。

除非特殊说明,否则所有化学试剂都是可商购的,无需进一步纯化即可直接使用。四水合氯化亚铁,六水合氯化铝,氢氧化钠,盐酸购自国药控股化学试剂有限公司(中国,上海)。没食子儿茶素没食子酸酯,氯化4-(4,6-二甲氧基-1,3,5-三嗪-2-基)-4-甲基吗啉购自MACKLIN(中国,上海)。透明质酸购自东源生物科技有限公司(中国,镇江)。苯硼酸购自西格玛-奥尔德里奇(圣路易斯,密苏里)。B16细胞(鼠类黑色素瘤细胞系)和L929细胞(小鼠上皮样成纤维细胞系)来自中国科学院生物化学与细胞生物学研究所。RPMI-1640培养基(1640培养基,GIBCO,Invitrogen,Carlsbad,CA),胎牛血清(FBS,GIBCO),青霉素-链霉素(HyClone,Thermo Scientific,Logan,UT)和胰蛋白酶0.25%溶液(HyClone)购自杭州吉诺生物医学技术有限公司(中国,杭州)。Cell Counting Kit-8(CCK-8)来自7Sea BiotechCo.,Ltd.(中国,上海)。所有实验中使用的电阻率高于18.2MΩ.cm的水均通过实验室水净化系统(Cascada I,PALL,北京,中国)进行净化。

实施例1

(1)称取FeCl2·4H2O(0.2M)和AlCl3·6H2O(0.1M)溶于50mL脱去二氧化碳的超纯水中,向上述溶液中缓慢滴加浓度为1M的NaOH溶液,至pH值为7.5~8.0,此时将看到浅绿色溶液,合成过程始终在氮气保护下进行,然后将反应溶液转移至聚四氟乙烯中,120℃反应24h,8500r/min离心15min收集样品,洗涤除去游离的两种盐离子,将最终产品冷冻干燥,即得LDH,以进行相关表征和后续实验。

(2)将EGCG和LDH按投料质量比为1:2合成LDH-EGCG,即将13.9mg EGCG溶于5mL超纯水中,逐滴加入到10mL的LDH(浓度为2.8mg/mL)水溶液中,搅拌24h,4℃,11000r/min离心20min,洗涤2-3次,冷冻干燥即得LDH-EGCG。

(3)HA与DMTMM、PBA的反应摩尔比为1:0.7:0.1,称取249.0mg HA与12.5mg PBA溶于25mL超纯水中,再向上述溶液中加入112.0mg DMTMM,搅拌溶解,向上述溶液中缓慢滴加1M的HCl溶液,至pH值为6.5~7.0,搅拌12h,将反应产物在冷乙醇中沉淀12h,4℃,6500r/min离心10min,洗涤2-3次,重分散在超纯水中,在室温条件下透析3-4天,一天换3-4次水,冷冻干燥即得HA-PBA。

(4)将HA-PBA和LDH-EGCG按投料质量比为1:1合成LDH-EGCG-HA,即将23.0mgHA-PBA溶于5mL超纯水中,逐滴滴加到10mL的LDH-EGCG(2.3mg/mL)溶液中,搅拌12h,4℃,11000r/min离心20min,洗涤2-3次,冷冻干燥即得LDH-EGCG-HA。

实施例2

对实施例1中制备的LDH纳米材料进行SEM、TEM电镜分析及DLS分析,即将实施例1制备的LDH样品配置成浓度为0.1mg/mL的溶液,并将其滴在锡箔纸上用枪头涂开烘干,将样品贴在扫描电镜样品台,喷金,使用日立S400扫描电子显微镜观察其形貌;取浓度0.1mg/mL的LDH水溶液滴在透射电镜铜网上,使用日本JEOL电子显微镜进行形貌观察;取1mL浓度为1.0mg/mL的LDH水溶液,使用纳米粒度仪进行水动力学分布分析。LDH的SEM分析结果如图2(a)所示,LDH纳米片呈较为规则的六边形结构,且分布较为均匀。LDH的TEM分析结果如图2(b)所示,进一步表明LDH纳米片为六边形的晶型结构,与SEM分析结果相一致。LDH的DLS分析结果如图2(c)所示,LDH的水动力学直径约为157.0nm,PDI为0.132,说明LDH纳米片的分散性较好,分布较为均匀。

实施例3

对实施例1中制备的LDH纳米材料进行Energy-Dispersive X-ray(EDX)mapping分析,即取浓度为0.1mg/mL的LDH水溶液,使用日本*/JEM-2100F电子显微镜进行元素分析。LDH的STEM分析结果如图3(a)所示,LDH纳米片为形状规则的六边形结构,LDH的元素分析结果如图3(b)所示,Fe、Al、Cl、O四种元素在LDH纳米片上均匀分散,且Fe元素的存在证明合成的LDH纳米片上含有铁元素,如图3(c)所示的元素相应的EDX线剖面图也证实了铁元素的存在。

实施例4

对实施例1中制备的LDH-EGCG纳米材料进行SEM、TEM电镜分析及DLS分析,即将实施例1制备的LDH-EGCG样品配置成浓度为0.1mg/mL的溶液,并将其滴在锡箔纸上用枪头涂开烘干,将样品贴在扫描电镜样品台,喷金,使用日立S400扫描电子显微镜观察其形貌;取浓度0.1mg/mL的LDH-EGCG水溶液滴在透射电镜铜网上,使用日本JEOL电子显微镜进行形貌观察;取1mL浓度为1.0mg/mL的LDH-EGCG水溶液,使用纳米粒度仪进行水动力学分布分析。LDH-EGCG的SEM分析结果如图4(a)所示,负载EGCG后,LDH纳米片仍为片状的六边形,证明EGCG的负载并未改变LDH的晶型结构。LDH-EGCG的TEM分析结果如图4(b)所示,纳米片表明有一层薄薄的物质,初步猜测这种物质是EGCG。LDH-EGCG的DLS分析结果如图4(c)所示,LDH-EGCG的水动力学直径约为223.0nm,与LDH的水动力学直径157.0nm,增大了66.0nm,证明了EGCG在LDH纳米片上的成功负载。

实施例5

对实施例1中制备的LDH、LDH-EGCG纳米材料和单独的EGCG进行UV-vis分析,即将EGCG、LDH、LDH-EGCG样品配置成浓度为0.1mg/mL的溶液,使用紫外分光光度仪进行分析,上述样品的UV-vis分析结果如图5所示,EGCG在276nm有吸收峰,与单独的LDH对比,发现LDH-EGCG在276nm处存在紫外吸收,证明EGCG成功修饰到LDH纳米片上。

实施例6

对实施例1中制备的LDH、LDH-EGCG纳米材料进行XRD分析,即称取LDH、LDH-ECGG固体粉末5.0mg,利用X射线衍射仪检测其晶体结构。LDH及LDH-EGCG的XRD分析结果如图6所示,LDH、LDH-EGCG纳米材料的003、006特征衍射峰尖锐而狭窄,其峰型与文献报道的一致,表明制备的LDH具有较好的晶型结构,且负载EGCG之后其晶体结构并未发生改变。

实施例7

对实施例1中制备的LDH、LDH-EGCG纳米材料进行FT-IR分析,即取LDH、LDH-ECGG固体粉末0.1mg,使用傅里叶变换红外光谱仪研究其表面组成。LDH及LDH-EGCG的FT-IR分析结果如图7所示,光谱在400-500cm-1具有红外吸收,来自金属与氧原子之间形成的Fe-O伸缩振动;1626cm-1处的尖峰来自LDH层间阴离子Cl-的伸缩振动;3435cm-1处的宽吸收峰为金属氢氧化物层的O-H振动与层间水分子O-H的伸缩振动,上述特征峰均表明LDH的成功制备。在负载EGCG后,在1220cm-1处出现一个新的吸收峰,表明EGCG成功负载在LDH纳米片上,与上述实验结果一致。

实施例8

对实施例1中制备的HA-PBA进行1H NMR分析,即取HA、HA-PBA固体各5.0mg,分别溶于500μL D2O中,进行氢谱分析。单独的HA与HA-PBA的1H NMR分析结果如图8所示,出现在1.8-5.0ppm处的化学位移峰对应HA的特征峰,制备的HA-PBA与单独的HA相比,在7.0-8.2ppm化学位移处出现新的特征峰,该质子峰来源于苯硼酸,表明HA-PBA的成功制备,且通过积分可知每一个HA分子上可修饰1.5个PBA。

实施例9

对实施例1中制备的LDH、LDH-EGCG、LDH-EGCG-HA进行Zeta电势及水动力学直径分析,即取1mL浓度为1.0mg/mL的LDH、LDH-EGCG、LDH-EGCG-HA水溶液,使用纳米粒度仪进行分析。Zeta电势及水动力学直径的分析结果如图9所示,LDH、LDH-EGCG、LDH-EGCG-HA的水动力学直径分别约为157.0nm、223.0nm、280.0nm,LDH、LDH-EGCG、LDH-EGCG-HA的电势分别为39.5mV、-12.0mV、-34.6mV,负载EGCG后,材料与LDH相比粒径增大了66.0nm,电势大大降低,表明EGCG的成功负载,修饰HA后,材料与LDH-EGCG相比粒径进一步增加,约为57.0nm,电势进一步降低,下降约为22.6mV,表明HA的成功修饰。

实施例10

对实施例1中制备的LDH-EGCG-HA进行稳定性分析,即将1mL浓度为1.0mg/mL的LDH-EGCG-HA分别分散到水溶液、PBS溶液及培养基溶液中,每天对上述溶液的水动力学直径进行分析,分析一周,观察并记录材料的水动力直径变化。稳定性分析的结果如图10所示,发现LDH-EGCG-HA在不同溶液中一周内的水力学直径并未发生明显变化,表明LDH-EGCG-HA具有良好的胶体稳定性。

实施例11

将实施例1中制备的LDH、LDH-EGCG进行MB降解实验分析,整个实验过程须保证LDH、LDH-EGCG中的铁离子含量相同,将l.0mg/mL的样品、10.0μg/mL的MB、10mM的H2O2混合均匀,在相同的时间间隔内使用紫外分光光度计测定溶液在λ=644nm处的紫外吸收。MB降解实验的分析结果如图11所示,反应2h后,LDH仅降解了7.47%,而LDH-EGCG降解了32.7%,表明EGCG可加速Fe3+/Fe2+的转化,从而产生较多的羟自由基,加速MB的降解,为后续的化学动力学治疗提供了基础。

实施例12

将实施例1中制备的LDH-EGCG-HA进行pH响应性释放分析,用pH=7.4、pH=6.5、pH=5.0的磷酸盐缓冲液作为溶剂,溶液浓度为l.0mg/mL,分别取1mL上述溶液于透析袋中固定,并将其置于含有9mL不同pH磷酸盐缓冲液的50mL离心管中,置于37℃恒温摇床上振荡,并在不同时间点取1mL外液测定其在λ=276nm处的吸光值,相应的加入1mL对应的缓冲液,通过吸光值计算EGCG的释放量,通过ICP-AES计算铁离子的释放量,EGCG及铁离子的累计释放结果分别如图12(a)、(b)所示,EGCG、铁离子在弱酸条件(pH=5.0)时,均具有较高的释放量,其中EGCG在48h内累计24.8%,铁离子在48h内累计18.6%,而在中性环境(pH=7.4)时,EGCG及铁离子在48h内的累计释放量仅分别达5.2%、5.5%,表明LDH-EGCG-HA纳米材料具有良好的pH响应释放特性,该特性有利于化疗药物EGCG及铁离子在肿瘤部位的释放,从而减少抗肿瘤药物对正常组织的损伤。

实施例13

通过CCK-8比色法,以L929细胞为模型细胞评价实施例1制备的材料LDH-EGCG-HA和单独EGCG的细胞相容性。将1×104/孔的L929细胞接种在96孔板中,在37℃、5%CO2的培养箱中培养24h,加入各稀释梯度的样品,每孔EGCG浓度分别为5、10、20、40、60μg/mL,与细胞共培养24h。每个梯度做5个平行孔,以PBS缓冲液作为空白对照。随后用CCK-8法检测细胞活力,每孔加CCK-8溶液,在37℃下培养4小时,之后用酶标仪检测λ=450nm处吸光度。CCK-8测试结果如图13所示,在EGCG浓度0到60μg/mL范围内,LDH-EGCG-HA与单纯的EGCG相比,细胞存活率都在85.0%以上,在达到最高浓度60μg/mL时,L929细胞的存活率仍为90.6%,说明制备的LDH-EGCG-HA材料具有良好的细胞相容性,可用于后续实验研究。

实施例14

通过CCK-8比色法,以B16细胞为模型细胞评价实施例1制备的材料LDH-EGCG-HA、LDH-EGCG、LDH和单独的EGCG对细胞存活率的影响。将1×104/孔的B16细胞接种在96孔板中,在37℃、5%CO2的培养箱中培养24h,加入各稀释梯度的样品,每孔EGCG浓度分别为5、10、20、40、60μg/mL,与细胞共培养24h,后续实验步骤同实施例13。CCK-8测试结果如图14所示,与PBS对照组相比,LDH在试剂浓度范围内对B16细胞没有明显细胞毒性,细胞存活率均在85.0%之上,说明LDH具有良好的细胞相容性。在EGCG的含量相同时,经单纯EGCG处理的B16细胞的存活率都远低于LDH的存活率,说明同等浓度的EGCG水平,EGCG对细胞产生的毒性远远大于LDH,负载EGCG后的纳米材料LDH-EGCG对B16细胞的存活率低于LDH,说明EGCG在LDH纳米片上的成功负载,修饰HA后的纳米材料LDH-EGCG-HA对B16细胞的存活率低于非靶向组LDH-EGCG,说明HA在纳米片上的成功修饰,此外,将B16细胞表面的CD44受体部分封闭后,LDH-EGCG-HA+pre-HA组与靶向组LDH-EGCG-HA相比对B16细胞的存活率上升,表明LDH-EGCG-HA是通过识别B16细胞表面的CD44受体进入肿瘤细胞,总之,LDH-EGCG-HA纳米材料可以对B16细胞表面的CD44受体特异性识别从而具有良好的抗肿瘤效果。

实施例15

通过ICP-AES法,评价实施例1制备的材料LDH-EGCG-HA对B16细胞的特异靶向性。将2×105/孔的B16细胞接种在12孔板中,在37℃、5%CO2的培养箱中培养24h,加入1mL各稀释梯度的样品,每孔EGCG浓度分别为5、10、20、40、60μg/mL,与细胞共培养4h,PBS洗涤、胰酶消化、离心、弃上清,王水消化24h,用ICP-OES检测样品中的Fe浓度。以同样的方法测定实施例1中非靶向LDH-EGCG与B16细胞共培养4h后的吞噬情况。此外,还需要做靶向阻断实验,评价B16细胞对LDH-EGCG-HA+pre-HA纳米材料的吞噬情况,将2×105/孔的B16细胞接种在12孔板中,在37℃、5%CO2的培养箱中培养24h,用2.0mM游离HA对B16细胞预处理2h,以封闭细胞表面过度表达的CD44受体,然后加入1mL各稀释梯度的样品,每孔EGCG浓度分别为5、10、20、40、60μg/mL,与细胞共培养4h,PBS洗涤、胰酶消化、离心、弃上清,王水消化24h,用ICP-OES检测样品中的Fe浓度。细胞靶向性测试结果如图15所示,在不同浓度下,B16细胞对LDH-EGCG-HA的吞噬量总是多于对LDH-EGCG和经HA阻断之后的LDH-EGCG-HA+pre-HA的吞噬量,在最高材料浓度60μg/mL时,LDH-EGCG、LDH-EGCG-HA+pre-HA、LDH-EGCG-HA的吞噬量分别为:20.8pg/细胞、21.5pg/细胞、36.4pg/细胞,该实验结果表明LDH-EGCG-HA对表面CD44受体高表达的B16细胞具有优异的靶向性。

实施例16

通过流式细胞仪定量评价实施例1制备的材料LDH-EGCG-HA的细胞凋亡效果。将2×105/孔的B16细胞接种在12孔板中,在37℃、5%CO2的培养箱中培养24h,加入1mL系列样品,各样品中EGCG浓度为40μg/mL,与细胞共培养4h,PBS洗涤,完全培养基与细胞孵育24h,PBS洗涤,胰酶消化、离心、弃上清,加入1×Binding Buffer重悬细胞,加入FI-TC,轻轻混均,避光孵育15min,加入PI,轻轻混均,冰浴且避光孵育5min,使用流式细胞仪进行检测。细胞凋亡分析结果如图16所示,LDH、LDH-EGCG、LDH-EGCG-HA、Free EGCG组的凋亡率分别为4.5%、7.8%、10.3%、11.5%,表明LDH-EGCG-HA具有较好的促凋亡效果,但略低于FreeEGCG组的凋亡率,可能由于小分子物质更容易进入细胞发挥作用。

实施例17

通过流式细胞仪定量评价、激光共聚焦显微镜定性分析实施例1制备的材料LDH-EGCG-HA的ROS的含量。将2×105/孔的B16细胞接种在12孔板中,在37℃、5%CO2的培养箱中培养至24h,加入1mL系列样品,各样品中EGCG浓度为40μg/mL,与细胞共培养4h,PBS洗涤,装载DCFH-DA探针,避光孵育20分钟,PBS洗涤,胰酶消化、离心、弃上清,使用流式细胞仪进行检测。将1×105/孔的B16细胞接种在共聚焦培养皿中,在37℃、5%CO2的培养箱中培养至24h,加入1mL系列样品,各样品中EGCG浓度为40μg/mL,与细胞共培养4h,PBS洗涤,用2.5%的戊二醛固定15min,PBS洗涤,用DAPI染色10min,洗涤液洗涤,使用激光共聚焦显微镜进行观察。ROS的定量、定性分析结果如图17(a)、(b)所示,LDH-EGCG-HA与LDH-EGCG的ROS产生量较高,是单独LDH、EGCG组的3倍左右,表明EGCG的存在可加速ROS产生,与之前MB脱水实验结果一致,且通过激光共聚焦显微镜也证实这一结论。

16页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:多糖多肽偶联物在治疗感染性角膜炎中的用途

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!

技术分类