提高盐胁迫下植物种子发芽率的寡肽及应用

文档序号:1810512 发布日期:2021-11-09 浏览:12次 >En<

阅读说明:本技术 提高盐胁迫下植物种子发芽率的寡肽及应用 (Oligopeptide capable of improving germination rate of plant seeds under salt stress and application thereof ) 是由 徐扬 张智猛 戴良香 丁红 张冠初 秦斐斐 吴正锋 于 2021-08-02 设计创作,主要内容包括:本发明公开了一种提高盐胁迫下植物种子发芽率的寡肽及应用。属于植物抗逆性技术领域。本发明的寡肽具有SEQ ID NO:3所示氨基酸序列;在盐胁迫条件下,添加该寡肽能够显著提高盐胁迫下种子的发芽率,为盐碱地植物出苗、全苗、高产栽培提供理论依据和技术指导。(The invention discloses oligopeptide capable of improving the germination rate of plant seeds under salt stress and application thereof. Belongs to the technical field of plant stress resistance. The oligopeptide has an amino acid sequence shown in SEQ ID NO. 3; under the condition of salt stress, the addition of the oligopeptide can obviously improve the germination rate of seeds under the condition of salt stress, and provides theoretical basis and technical guidance for seedling emergence, full-seedling and high-yield cultivation of saline-alkali soil plants.)

提高盐胁迫下植物种子发芽率的寡肽及应用

技术领域

本发明属于植物抗逆性技术领域,具体涉及一种提高盐胁迫下植物种子发芽率的寡肽及应用。

背景技术

种子萌发起始于吸水膨胀,结束于胚根出芽,是植物生命周期的初始阶段,也是对盐胁迫最为敏感的阶段,决定了整个生命过程的成败。较高的土壤盐分含量会在种子周围形成高渗透势、过度离子毒害(Na+和Cl-),导致种子活力减弱,发芽率降低,萌发出苗时间延长,甚至被完全抑制,因此保障种子萌发出苗是盐碱地作物高产高效生产的重要前提。

盐碱地作物种子出芽率低,通过抗逆育种和遗传转化途径,改良作物品种抗逆性是提高盐碱地作物出芽率的重要生物途径。抗逆育种主要包括传统常规育种和诱变育种。传统常规杂交育种周期长,效率低、发展缓慢。诱变育种虽然突变频率大幅提高,但是有益突变频率低、突变方向难以掌握,并且适宜的剂量和处理时间比较难掌握,很多化学诱变剂毒性较大,具有残留效应。遗传转化改良作物品质具有定向高效性,但是目前作物转基因技术不成熟,转化成功率低、周期长。

小肽是一条由多个氨基酸串联组成的肽链,其长度暂时没有明确界定,最短小肽Phytosulfokine(PSK)仅有5个氨基酸,半胱氨酸丰富多肽CRPs(cysteine-rich peptides)有120个氨基酸。近年来,鉴于高通量测序技术的成熟,多种分泌小肽被鉴定到,根据其合成方式分为两类:(1)半胱氨酸丰富小肽CRPs,如Rapid Alkalinization Factor(RALF);(2)由较长前体经蛋白酶剪切,完成糖基化、羟基化和硫酸盐化等翻译后修饰的小肽,C-terminally pepetides(CEPs)就属于其中之一。CEPs基因编码产生200个氨基酸左右的小肽前体,包括N-端分泌信号肽和C-端CEP结构域,经过蛋白酶切割过程,变为成熟分泌形式小肽。

CEP分泌小肽家族广泛存在于种子植物中,进化上高度保守。目前对植物CEPs研究相对较少,且主要集中在拟南芥和苜蓿。CEPs主要参与植物根形态建成、侧根发生和根瘤形成;过表达AtCEP1抑制主根生长和侧根发育;过表达AtCEP2致使植物开花延迟;AtCEP5通过与受体AtCEPR1结合,抑制主根伸长;过表达MtCEP1促进苜蓿根瘤形成;MtCEP1通过与受体MtCAR2结合,抑制MtEIN2介导的乙烯信号通路,调控植物生长发育;苹果MdCEP1可调控苹果根系生长,并且第十位保守丝氨酸对于其功能(主要是调控NO3 -的吸收和根系生长)发挥至关重要;低氮胁迫下CEPs作为信号分子诱导根部NO3 -转运体NRT1.1,NRT2.1和NRT3.1表达,提高氮源吸收能力,增强植物耐低氮能力。综上所述,CEPs在植物的生长发育和胁迫应答过程中起着非常重要且独特的作用,因此,对于CEPs的研究具有十分重要的意义。

发明内容

本发明的目的在于提供一种提高盐胁迫下植物种子发芽率的寡肽以及采用该寡肽提高植物种子发芽率的方法。

为了达到上述目的,本发明采用如下技术方案:

花生AhCEP3基因或其编码的蛋白在提高植物耐高盐能力中的应用,所述AhCEP3基因的核酸序列如SEQ ID NO:1所示,所述AhCEP3基因编码的蛋白序列如SEQ ID NO:2所示。

一种具有SEQ ID NO:3所示氨基酸序列的寡肽。

具有SEQ ID NO:3所示氨基酸序列的寡肽在提高盐胁迫下植物种子发芽率中的应用。

“盐胁迫”指的是植物由于生长在高盐度生境而受到的高渗透势的影响。

所述的盐胁迫可以是NaCl胁迫,其中NaCl的浓度可以为100mM、150mM或200mM。

“提高盐胁迫下植物种子发芽率”是指盐胁迫情况下,添加具有SEQ ID NO:3所示氨基酸序列的寡肽相对于不添加该寡肽的植物种子萌发率至少提高1%。

所述的植物种子可以是单子叶植物也可以是双子叶植物,包括但不限于花生种子、拟南芥种子。

一种提高盐胁迫下植物种子发芽率的制剂,包含具有SEQ ID NO:3所示氨基酸序列的寡肽。

所述包含具有SEQ ID NO:3所示氨基酸序列的寡肽的制剂中,寡肽的含量≥1μM;在一个具体的实施例中寡肽的浓度为1μM~20μM,包括但不限于1μM,5μM,10μM,15μM和20μM。

具有SEQ ID NO:3所示氨基酸序列的寡肽可以与常规的溶剂直接制备成溶液发挥作用,也可以与其他农用药剂配合发挥作用,例如可以将合适浓度的寡肽添加到种子包衣剂中,以此提高盐碱地种子发芽率。

一种提高盐胁迫下植物种子发芽率的方法,在种子萌发过程中添加具有SEQ IDNO:3所示氨基酸序列的寡肽或添加包含具有SEQ ID NO:3所示氨基酸序列的寡肽的制剂;其中在一个具体实施例中,所述具有SEQ ID NO:3所示氨基酸序列的寡肽的添加终浓度为1μM~20μM。

本发明技术方案的优点:

AhCEP3成熟肽能够促进盐胁迫下植物种子的萌发,提高出芽率。可以将合适浓度的AhCEP3成熟肽添加到种子包衣剂中,以此提高盐碱地植物种子发芽率,为盐碱地植物出苗、全苗、高产栽培提供理论依据和技术指导。

附图说明

图1盐胁迫处理下施加与不施加AhCEP3成熟肽花生种子发芽率;

图2盐胁迫处理下施加与不施加AhCEP1成熟肽花生种子发芽率;

图3不同浓度NaCl处理下施加AhCEP3成熟肽花生种子发芽率;

图4盐胁迫处理下施加不同浓度AhCEP3成熟肽花生种子发芽率;

图5盐胁迫处理下施加与不施加AhCEP3成熟肽拟南芥种子发芽率。

具体实施方式

在本发明中所使用的术语,除非有另外说明,一般具有本领域普通技术人员通常理解的含义。

本发明所涉及的酶切、连接、回收、转化、PCR扩增等技术均为常规实验操作,操作流程可详见《分子克隆指南(第三版)》。

载体构建可以利用酶切连接法,也可利用gateway系统构建法;

胶回收,质粒提取,RNA提取,液体样品蛋白提取等过程也可以利用其它公司试剂盒或其他方法操作;

转基因花生毛状根阳性株系筛选方法也是可以改变的,可以利用qRT-PCR,也可以利用RT-PCR;

成熟体小肽大量合成法可以利用化学合成法,也可以通过植物DNA重组合成法。

以下实施例用的材料如下:

大肠杆菌LB液体培养基,成分:胰蛋白胨(Tryptone)10g,酵母提取物(Yeastextract)5g,氯化钠(NaCl)10g,蒸馏水1000mL,调pH至7.0,121℃高压蒸汽灭菌20min。

发根农杆菌YEP液体培养基,成分:胰蛋白胨(Tryptone)10g,酵母提取物(Yeastextract)10g,氯化钠(NaCl)5g,蒸馏水1000mL,调pH至7.0,121℃高压蒸汽灭菌20min。

毛状根诱导和扩繁MS培养基:25mL 20×MS大量(3.8g KNO3,3.3g NH4NO3,0.34gKH2PO4,蒸馏水100mL),5mL 100×MS微量(0.223g MnSO4·4H2O,0.086g ZnSO4·7H2O,0.062g H3BO3,0.0083g KI,2.5mg Na2MoO4·2H2O,0.25mg CuSO4·5H2O,0.25mg CoCl2·6H2O,蒸馏水100mL),5mL 100×铁盐(0.374g EDTA-Na2,0.278g FeSO4·7H2O),10mL 100×VB(肌醇1g,VB1 0.1g,VB3 0.01g,VB6 0.01g,加水100mL),5mL 100×Ca2+,5mL 100×Mg2+,蔗糖15g,蒸馏水1000mL,调pH至5.8,121℃高压蒸汽灭菌20min。

下面结合具体实施例,并参照数据进一步详细的描述本发明。以下实施例只是为了举例说明本发明,而非以任何方式限制本发明的范围。

实施例1 花生AhCEP3基因的克隆与载体构建

本发明通过花生基因组数据库网站PeanutBase(https://www.peanutbase.org)下载基因AhCEP3,利用Pfam(Protein family:http://pfam.sanger.ac.uk/)和SMART(Simple Modular Architecture Research Tool:http://smart.embl-heidelberg.de/)分析可知此基因编码典型的CEP小肽(CDS 252bp如SEQ ID NO:1所示,氨基酸83aa如SEQ IDNO:2),含有N端信号肽和C端保守的CEP结构域。

SEQ ID NO:1

SEQ ID NO:2

根据找到的花生AhCEP3基因的CDS序列设计引物,进行克隆,克隆方法如下:

1.花生RNA提取

使用天根植物总RNA提取试剂盒(DP419)提取花生的总RNA。

(1)取水培生长14d左右Tifrunner花生幼苗在液氮中充分研磨,每50-100mg组织加入1mL裂解液RZ,漩涡振荡混匀,15~30℃孵育5min,使植物组织完全裂解。

(2)4℃12,000rpm离心5min。小心吸取收集管中的上清至新的RNase-Free 1.5mL离心管中,加入200μL氯仿,剧烈震荡30s,室温放置3min。

(3)4℃12,000rpm离心10min,样品会分成三层:黄色的有机相,中间层和无色的水相,RNA主要在水相中,小心转移水相到新管中。

(4)缓慢加入0.5倍体积无水乙醇,混匀。将得到溶液和沉淀一起转入吸附柱CR3中,4℃12,000rpm离心30s,弃掉收集管中的废液。

(5)向吸附柱CR3中加入500μL去蛋白液RD,4℃12,000rpm离心30s,弃废液,将CR3放入收集管中。

(6)向吸附柱CR3中加入500μL漂洗液RW,室温静置2min,4℃12,000rpm离心30s,弃废液。

(7)再次向吸附柱CR3中加入500μL漂洗液RW,室温静置2min,4℃12,000rpm离心30s,弃废液。

(8)将吸附柱放入2mL收集管中,4℃12,000rpm离心2min,去除残余液体。室温静置2min,充分晾干,去除漂洗液。

(9)将吸附柱CR3转入一个新的1.5mL离心管中,加30μL RNase-Free ddH2O,室温放置2min,4℃12,000rpm离心2min。

2.反转录cDNA第一链的合成

测定RNA浓度,使用天根FastKing gDNA Dispelling RT SuperMix反转录试剂盒进行反转录。

取2μg总RNA,加入4μL 5×FastKing-RT SuperMix,补水到20μL,在42℃孵育15min,95℃酶失活3min,获得花生cDNA。

2.AhCEP3的克隆

AhCEP3基因引物序列:

上游引物5’-GGATCCATGGGGAAGAAAACTATCAAGTTAAGCT-3’(SEQ ID NO:4);

下游引物5’-GAGCTCAGGACTATTCGGTGGCGTTTGATGTC-3’(SEQ ID NO:5);

其中下划线处为酶切位点,上游引物的酶切位点为BamHI,下游引物的酶切位点为SacI。

(1)以Tifrunner花生cDNA为模板,利用诺唯赞高保真酶(2×Phanta Max MasterMix,p515)扩增AhCEP3,PCR反应体系为:95℃预变性5min,95℃变性25s,55℃退火25s,72℃延伸20s,35个循环,72℃后延伸5min。

(2)PCR反应结束后,进行琼脂糖凝胶电泳,切胶并进行胶回收,胶回收操作根据天根普通琼脂糖凝胶DNA回收试剂盒(DP209)步骤进行。

2.载体构建

(1)克隆载体构建:PCR产物与pMD19-T克隆载体过夜连接,反应体系如下:pMD19-T0.5μL,Solution I 5.0μL和胶回收产物4.5μL。连接产物使用热激法转化大肠杆菌DH5α菌株,在含有氨苄霉素的LB平板上生长过夜。

(2)挑取白色单个菌落进行菌落PCR,反应体系为2×Phanta Max Master Mix 10μL,上游引物1μL,下游引物1μL,菌液模板1μL,水补齐到20μL,选取阳性菌落转移至5mL摇菌管中扩大培养。

(3)质粒DNA的提取:使用天根质粒小提中量试剂盒(DP106)提取质粒DNA。

(4)序列测定:测序工作由生工生物工程股份有限公司完成。

(5)表达载体的构建:用KpnI和HindⅢ酶切AhCEP3-pMD19-T质粒和pCAMBIA1300空载体,37℃酶切一个小时之后,进行琼脂糖凝胶电泳,切除正确的条带进行胶回收,利用T4DNA连接酶连接,连接产物热激法转化DH5α菌株,在含有卡那霉素的LB平板上生长过夜。挑取白色单个菌落在LB平板上划线,进行菌落PCR,选取阳性菌落扩大并提取质粒酶切鉴定,构建得到35S::AhCEP3的过表达载体。

(6)取2.0μL质粒冻融法转化发根农杆菌R1601,获得AhCEP3-R1601,准备侵染花生叶片。

实施例2 花生毛状根诱导

1.花生外植体获取

鲁花11号花生种子种植于人工气候室(25℃,16h光照/8h黑暗)的花盆中。花生幼苗生长至3-6片复叶时期,从底部向上选取2-4个复叶作为实验材料。用自来水冲洗花生叶片10min,用无菌水温和洗涤2min,用4%的次氯酸钠溶液浸泡2min,以叶柄切口处略显白色为准。然后用无菌水温和洗涤3-4次后,再用无菌水浸泡10min,晾干水分备用。

2.AhCEP3-R1601侵染花生叶片

AhCEP3-R1601和R1601农杆菌分别接种于100mL含卡那霉素(100μg/mL)和潮霉素(200μg/mL)的YEP液体培养基中,28℃,180rpm震荡培养18h,连续活化2-3次后培养至OD600值1.5备用。将消毒处理的花生叶片切成1cm左右,叶片上加2-3处划痕,没于AhCEP3-R1601或R1601菌液中,浸泡5min,期间轻柔摇匀,使叶片表面充分沾满菌液,取出叶片,用无菌滤纸吸干菌液后,平整铺在MS固体培养基表面,24h后将叶片转移到添加100mg/L头孢噻肟钠的MS固体培养基上(抑制发根农杆菌的生长),24h后再转移到MS固体培养基上,依次轮流在两种培养基上转移,直至农杆菌不再生长为止,然后在MS固体培养基上培养,诱导分化产生转基因花生毛状根(转染AhCEP3-R1601)和非转基因的花生毛状根(转染空载R1601)。

实施例3 转基因花生毛状根阳性苗筛选

选取2cm以上的转基因与非转基因(转染空载R1601的毛状根,作为对照)毛状根,转移到MS固体培养基上进行继代培养2周后,截取部分毛状根提取RNA,反转录获得cDNA。

荧光定量PCR仪为Icycler real-time PCR system(Bio-Rad,美国),qRT-PCR反应条件如下:

(1)95.0℃60s;(2)95.0℃10s;(3)58.0±5.0℃10s;(4)72.0℃15s;(5)PlateRead;(6)Incubate at 65℃for 20s;(7)Melting curve from 65℃to 95℃,read every0.5℃,hold 1s;(8)End;其中(2)(3)(4)50-60cycles。

以花生actin11为内参,调整各模板浓度使内参Ct值之差小于2,利用2-ΔΔCt大致计算与内参的相对表达量,确定AhCEP3基因表达丰度,选取AhCEP3表达丰度高于非转基因对照的花生毛状根继续扩大培养(一般要高于非转基因对照2倍以上),作为阳性苗。

其中,AhCEP3基因的定量引物为:

上游引物5’-ATGGGGAAGAAAACTATCAAGTTAAG-3’(SEQ ID NO:6);

下游引物5’-TCAAGGACTATTCGGTGGC-3’(SEQ ID NO:7)

实施例4 花生小肽AhCEP3成熟体的获得

选取继代培养的AhCEP3转基因花生毛状根分支,转移至MS液体培养基中连续培养6周,期间每隔2周更换新鲜的MS液体培养基,将更换下来的液体培养液收集备用。

用Millipore超滤管过滤更换下来的液体培养液,截留3KDa以下的溶液,利用贝博液体样品蛋白提取试剂盒(BB3133)提取小肽。

(1)取5mL离心管,加入500μL待提取液体,加入试剂盒中2mL试剂A,500μL试剂B,1.5mL试剂C,涡旋振荡混匀。

(2)冰浴30min。

(3)4℃11,000rpm离心15min。

(4)小心收集中间蛋白层于新管中,4℃12,000rpm离心15min。

(5)弃上清,收集沉淀,加入1×loading buffer,煮10min,4℃11,000rpm离心10min。

(6)收集上清,进行MALDI-TOF-TOF质谱鉴定分析获得AhCEP3成熟肽序列为AFRPTTPGHSPGVGH(SEQ ID NO:3)。

(7)根据获得的成熟肽序列,通过生工生物工程股份有限公司完成AhCEP3成熟肽的化学合成。

实施例5 盐胁迫下外施AhCEP3成熟肽对花生发芽率的影响

将合成的AhCEP3成熟肽粉末,用DMSO溶解后配成浓度为1mM母液备用,可向ddH2O或NaCl水溶液中加入母液,制备成所需浓度的工作液。

选取150mm培养皿,铺上一层滤纸,每个培养皿均匀铺上10粒Tifrunner花生种子,对照组用移液器在滤纸上分别加入5mL添加或不添加AhCEP3成熟肽的ddH2O,其中添加AhCEP3成熟肽的ddH2O中AhCEP3成熟肽的终浓度为10μM;盐胁迫处理组在滤纸上分别加入5mL添加或不添加AhCEP3成熟肽的150mM NaCl水溶液,其中添加AhCEP3成熟肽的NaCl水溶液中AhCEP3成熟肽的终浓度为10μM。放于人工气候室遮光萌发,自播种之日起每12h进行种子发芽率统计,每2d更换相应的添加或不添加成熟肽ddH2O或NaCl水溶液直至播种后10d,计算其发芽率(露出3mm的白尖即为发芽)。所有试验进行3次生物学重复。

发芽率(%)=(发芽种子数/供试花生种子总数)×100%。

结果如图1所示。正常条件下,Tifrunner花生种子在第1d开始萌发,第2.5~3.5d增速较快,外施AhCEP3成熟肽对花生种子发芽率没有影响;盐胁迫处理显著抑制花生种子萌发,花生种子在前2.5d增长缓慢,第4~5d发芽率提高,但最终发芽率低于对照,只有88%左右。盐胁迫下外施10μM AhCEP3成熟肽后花生种子萌发提前,第1.5d就开始萌发,第3.5~4.5d增速较快,并且种子发芽率(95%)高于未施加AhCEP3成熟肽盐胁迫处理组(88%)。发芽率统计实验表明外施AhCEP3能够促进盐胁迫下花生种子萌发,并提高花生种子发芽率。

专利“花生毛状根株系在提高花生耐低氮、耐高盐能力中的应用”,申请号202010312520.1中报道转基因AhCEP1的花生毛状根能够耐高盐、耐低氮,其在低氮、高盐胁迫环境下花生毛状根的含量提高,但是其在花生种子发芽率中没有效果,如图2所示。

具体方法是采用与实施例5相同的方法进行试验,其中将AhCEP3成熟肽替换为AhCEP1成熟肽(AFRPTAPGHSPGVGH SEQ ID NO:8)。

实施例6 不同NaCl浓度下外施AhCEP3成熟肽对花生发芽率的影响

将合成的AhCEP3成熟肽粉末,用DMSO溶解后配成浓度为1mM母液备用,可向ddH2O或NaCl水溶液中加入母液,制备成所需浓度的工作液。

选取150mm培养皿,铺上一层滤纸,每个培养皿均匀铺上10粒Tifrunner花生种子,用移液器在滤纸上加入5mL不添加AhCEP3成熟肽的ddH2O作为对照组;在滤纸上加入5mL不添加AhCEP3成熟肽的100mM、150mM和200mM NaCl水溶液作为不同浓度NaCl处理组;在其他各组滤纸上分别加入5mL添加AhCEP3成熟肽的不同浓度的NaCl水溶液作为NaCl+成熟肽处理组,其中AhCEP3成熟肽的终浓度为10μM。放于人工气候室遮光萌发,自播种之日起每12h进行种子发芽率统计,每2d更换相应的添加或不添加AhCEP3成熟肽ddH2O或NaCl水溶液直至播种后10d,计算其发芽率(露出3mm的白尖即为发芽)。所有试验进行3次生物学重复。

结果如图3所示。不同浓度盐胁迫处理均显著抑制花生种子萌发,随着盐浓度提高,发芽率降低。200mM NaCl对种子发芽率抑制程度最高,花生种子在前3d增长缓慢,第4.5~5.5d发芽率迅速提高,但最终发芽率只有80%左右。各浓度下外施10μM AhCEP3成熟肽后花生种子发芽率均提高。其中,150mM NaCl下外施AhCEP3成熟肽对花生种子发芽率的影响效果最显著。

实施例7 外施AhCEP3成熟肽的浓度对花生发芽率的影响

将合成的AhCEP3成熟肽粉末,用DMSO溶解后配成浓度为1mM母液备用,可向ddH2O或NaCl水溶液中加入母液,制备成所需浓度的工作液。

选取150mm培养皿,铺上一层滤纸,每个培养皿均匀铺上10粒Tifrunner花生种子,用移液器在滤纸上加入5mL不添加AhCEP3成熟肽的ddH2O作为对照组(CK);在滤纸上加入5mL不添加AhCEP3成熟肽的150mM NaCl水溶液作为NaCl处理组;在其他各组滤纸上分别加入5mL添加不同浓度AhCEP3成熟肽的NaCl水溶液,分别选择1μM,5μM,10μM,15μM和20μM 5种不同浓度AhCEP3成熟肽进行实验。放于人工气候室遮光萌发,自播种之日起每12h进行种子发芽率统计,每2d更换相应的添加或不添加成熟肽ddH2O或NaCl水溶液直至播种后10d,计算其发芽率(露出3mm的白尖即为发芽)。所有试验进行3次生物学重复。

结果如图4所示。盐胁迫抑制花生种子萌发,外源施加1μM成熟肽对花生种子发芽率影响不显著,随着AhCEP3成熟肽浓度的升高,花生发芽率不断提高,但是逐渐达到饱和,15μM、20μM两种浓度与10μM成熟肽效果基本一致,发芽率均显著高于对照,约为95%,但无法达到正常条件萌发率(100%)。综合比较经济成本和作用效果,10μM是AhCEP3成熟肽外源施加的最适浓度,可显著提高盐胁迫(150mM NaCl)下花生的发芽率。

实施例8 盐胁迫下外施AhCEP3成熟肽对拟南芥发芽率的影响

将合成的AhCEP3成熟肽粉末,用DMSO溶解后配成浓度为1mM母液备用,可向ddH2O或NaCl水溶液中加入母液,制备成所需浓度的工作液。

将拟南芥Col-0的种子分别点播在1/2MS固体培养基、含有150mM或200mM NaCl的1/2MS固体培养基以及含有10μM AhCEP3的150mM或200mM NaCl的1/2MS固体培养基,经过三天的低温层积化处理(4℃遮光处理)后,于长日照条件下萌发,并每隔12h统计萌发率,所有试验进行3次生物学重复。结果如图5所示,在1/2MS和添加10μM AhCEP3的1/2MS培养基上种子萌发率并没有表现出差异,而在含有NaCl的培养基上生长时,拟南芥种子萌发明显被抑制。在含有150mM NaCl培养基上,拟南芥种子前2d增长缓慢,第3~6d增速较快,施加10μMAhCEP3后第1.5d开始萌发,最后萌发率为86%,高于盐处理对照(80%);200mM NaCl培养基中施加10μM AhCEP3也得到相同结果,拟南芥种子萌发率由65%提高到80%左右。

以上所述,仅是本发明的较佳实施例而已,并非是对本发明作其它形式的限制,任何熟悉本专业的技术人员可能利用上述揭示的技术内容加以变更或改型为等同变化的等效实施例。但是凡是未脱离本发明技术方案内容,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与改型,仍属于本发明技术方案的保护范围。

序列表

<110> 山东省花生研究所

<120> 提高盐胁迫下植物种子发芽率的寡肽及应用

<160> 8

<170> SIPOSequenceListing 1.0

<210> 1

<211> 252

<212> DNA

<213> 花生(Arachis hypogaea Linn.)

<400> 1

atggggaaga aaactatcaa gttaagcttt gttctcttcc ttattattgt tgtccaacac 60

aatttcttag gttttgtggt tgggtcaagg gttttaataa tgaagaatca agcagaacct 120

cctcctcttc cttattcgtc tttattgtat acaataaatg atgcaaaaga tggtgaaggt 180

gatgcttttc gtccaacaac tcctggccat agtcctggcg taggacatca aacgccaccg 240

aatagtcctt ga 252

<210> 2

<211> 83

<212> PRT

<213> 花生(Arachis hypogaea Linn.)

<400> 2

Met Gly Lys Lys Thr Ile Lys Leu Ser Phe Val Leu Phe Leu Ile Ile

1 5 10 15

Val Val Gln His Asn Phe Leu Gly Phe Val Val Gly Ser Arg Val Leu

20 25 30

Ile Met Lys Asn Gln Ala Glu Pro Pro Pro Leu Pro Tyr Ser Ser Leu

35 40 45

Leu Tyr Thr Ile Asn Asp Ala Lys Asp Gly Glu Gly Asp Ala Phe Arg

50 55 60

Pro Thr Thr Pro Gly His Ser Pro Gly Val Gly His Gln Thr Pro Pro

65 70 75 80

Asn Ser Pro

<210> 3

<211> 15

<212> PRT

<213> 人工序列(Artificial Sequence)

<400> 3

Ala Phe Arg Pro Thr Thr Pro Gly His Ser Pro Gly Val Gly His

1 5 10 15

<210> 4

<211> 34

<212> DNA

<213> 人工序列(Artificial Sequence)

<400> 4

ggatccatgg ggaagaaaac tatcaagtta agct 34

<210> 5

<211> 32

<212> DNA

<213> 人工序列(Artificial Sequence)

<400> 5

gagctcagga ctattcggtg gcgtttgatg tc 32

<210> 6

<211> 26

<212> DNA

<213> 人工序列(Artificial Sequence)

<400> 6

atggggaaga aaactatcaa gttaag 26

<210> 7

<211> 19

<212> DNA

<213> 人工序列(Artificial Sequence)

<400> 7

tcaaggacta ttcggtggc 19

<210> 8

<211> 15

<212> PRT

<213> 人工序列(Artificial Sequence)

<400> 8

Ala Phe Arg Pro Thr Ala Pro Gly His Ser Pro Gly Val Gly His

1 5 10 15

15页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:花色苷合成相关蛋白IbMYB113及其编码基因与应用

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!