一种减少氢气在地下盐穴中被微生物消耗的方法

文档序号:1812475 发布日期:2021-11-09 浏览:20次 >En<

阅读说明:本技术 一种减少氢气在地下盐穴中被微生物消耗的方法 (Method for reducing consumption of hydrogen by microorganisms in underground salt caverns ) 是由 徐俊辉 陈留平 刘娟 朱旭初 王卫东 徐孜俊 赵云松 于 2021-08-25 设计创作,主要内容包括:本发明涉及氢能源储备技术领域,尤其涉及一种减少氢气在地下盐穴中被微生物消耗的方法,包括以下步骤:S1,进行盐穴造腔工程;S2,注气排卤阶段,向盐穴腔内注入待储存的氢气,注入氢气的过程中,同时向盐穴中注入雾化的好氢型微生物抑制剂,盐穴下部的卤水沿排卤管线排出,注气排卤阶段完成后,盐穴底部留有一部分卤水作为垫底层;S3,盐穴注采气管道上安装有浓度测量仪,对注入的好氢型微生物抑制剂的浓度进行测量。本发明在将氢气储存在盐穴的过程中,抑制剂溶液抑制微生物消耗氢气,从而减少氢气在盐穴储存库中的消耗量,也提高氢气在盐穴储存库中储存的纯度。(The invention relates to the technical field of hydrogen energy storage, in particular to a method for reducing the consumption of hydrogen by microorganisms in underground salt caverns, which comprises the following steps: s1, performing salt cave cavity-making engineering; s2, gas injection and brine discharge, namely, injecting hydrogen to be stored into a salt cavern cavity, simultaneously injecting an atomized hydrogen-type microorganism inhibitor into the salt cavern in the process of injecting the hydrogen, discharging brine at the lower part of the salt cavern along a brine discharge pipeline, and leaving a part of brine at the bottom of the salt cavern as a bottom pad layer after the gas injection and brine discharge; and S3, a concentration measuring instrument is installed on the salt cavern gas production pipeline to measure the concentration of the injected hydrogen-type microbial inhibitor. In the process of storing hydrogen in the salt cavern, the inhibitor solution inhibits the microorganisms from consuming the hydrogen, thereby reducing the consumption of the hydrogen in the salt cavern storage warehouse and improving the purity of the hydrogen stored in the salt cavern storage warehouse.)

一种减少氢气在地下盐穴中被微生物消耗的方法

技术领域

本发明涉及氢能源储备技术领域,尤其涉及一种减少氢气在地下盐穴中被微生物消耗的方法。

背景技术

目前,利用液氢代替柴油,用于铁路机车或一般汽车的研制也十分活跃。氢汽车靠氢燃料、氢燃料电池运行也是沟通电力系统和氢能体系的重要手段。

随着太阳能研究和利用的发展,人们已开始利用阳光分解水来制取氢气。在水中放入催化剂,在阳光照射下,催化剂便能激发光化学反应,把水分解成氢和氧。

目前国际上广泛认为,“掺氢天然气技术”是解决“弃风弃光”问题的有效途径之一。该技术将风/光能转化的部分电能用于电解水制氢,并将氢气以一定比例掺入天然气,形成掺氢天然气,再利用新建管网或在役天然气管网输送至用户终端、加气站和储气库等,可起到储能和电力负荷削峰填谷的作用,同时避免了新建输氢管道所需的高昂建造成本。国外研究表明,氢气管道的造价约为天然气管道的2倍多。另一方面,可以利用枯竭油气田、地下含水层、含盐岩层或废矿井建造地下氢气储气库。

目前已有研究表明将氢气储存在地下盐穴储存库中,以储备大量的氢气以供给用户使用,但是在将氢气储存在地下盐穴储存库中时,由于地下盐穴储存库中存在多种微生物,在天然地下环境,多种微生物即使在很深的地方也很活跃,氢是几种微生物(包括古生菌和细菌)的普遍供体,这意味着它会消耗氢气代谢成其他物质,另外还有一些特殊微生物(如产甲烷菌)能够消耗氢气和二氧化碳产生甲烷,并且微生物的繁殖速度非常块,因此,氢气储存在地下盐穴储存库中,会有部分氢气被微生物消耗代谢产生一些杂质,对储存的氢气的纯度和储存的氢气的量有着较大的影响。

发明内容

本发明要解决的技术问题是:为了解决现有技术中将氢气储存在地下盐穴储存库中,会有部分氢气被微生物消耗代谢产生一些杂质的技术问题,本发明提供一种减少氢气在地下盐穴中被微生物消耗的方法,在盐穴中注入抑制剂气体,在将氢气储存在盐穴的过程中,抑制剂溶液抑制微生物消耗氢气,从而减少氢气在盐穴储存库中的消耗量,也提高氢气在盐穴储存库中储存的纯度。

本发明解决其技术问题所采用的技术方案是:一种减少氢气在地下盐穴中被微生物消耗的方法,盐穴包括盐穴腔,所述盐穴中设置有中心管,所述中心管的下端与盐穴腔相连通,所述中心管的上端延伸至地面上方,所述中心管上套装有生产外管,所述中心管的外壁与生产外管的内壁之间具有间隙,所述生产外管的下端与盐穴腔相连通,所述生产外管的上端延伸至地面上方,包括以下步骤:

S1,进行盐穴造腔过程,盐穴造腔过程包括第一造腔阶段和第二造腔阶段,在第一造腔阶段中,使用中心管向盐穴中注入清水,使用生产外管将盐穴中的卤水采出,在第二造腔阶段中,使用中心管将盐穴中的卤水采出,使用生产外管向盐穴中注入清水,盐穴造腔过程中第一造腔阶段和第二造腔阶段交替进行,在造腔过程中多次调节生产外管和中心管下端的深度,直到盐穴造腔完成,所述深度即为盐穴腔的深度;

S2,注气排卤阶段,向盐穴腔内注入待储存的氢气,注入氢气的过程中,同时向盐穴中注入雾化的好氢型微生物抑制剂,盐穴下部的卤水沿排卤管线排出,注气排卤阶段完成后,盐穴底部留有一部分卤水作为垫底层;

S3,盐穴注采气管道上安装有浓度测量仪,对注入的好氢型微生物抑制剂的浓度进行测量。

进一步,还包括:步骤S4、将步骤S2中注入氢气和好氢型微生物抑制剂的盐穴腔静置,使得雾化的好氢型微生物抑制剂扩散至整个盐穴腔中,然后对盐穴腔内的好氢型微生物抑制剂的浓度进行测量,当好氢型微生物抑制剂气体的浓度测量值小于10mg/L时,再次向盐穴中注入雾化的好氢型微生物抑制剂,直到好氢型微生物抑制剂的浓度测量值大于10mg/L时,停止向盐穴内注入好氢型微生物抑制剂气体。

进一步,所述步骤S2中,在向盐穴内部注入氢气之前,在注气管线上安装雾化泵,在向盐穴中注入氢气时,通过雾化泵将好氢型微生物抑制剂雾化后随氢气同时注入到盐穴中。

进一步,所述好氢型微生物抑制剂包括溶剂和溶质,所述溶剂不溶于卤水,所述溶质为抗生素、胆盐、PH调节剂中的一种或多种的混合物。

进一步,所述溶剂为乙酸乙酯。

进一步,所述抗生素为青霉素、氯霉素、红霉素和异霉素中的一种或多种。

进一步,所述胆盐为牛磺胆酸钠、牛磺胆酸钾、脱氧胆酸钠、脱氧胆酸钾中的一种或多种。

进一步,所述PH调节剂为碳酸钠、碳酸氢钠、磷酸氢二钠中的一种或多种。

进一步,所述步骤S2中注入的好氢型微生物抑制剂气体的浓度为10ug/ml~150ug/ml。

本发明的有益效果是,本发明的一种抑制氢气在地下盐穴中被微生物消耗的方法,通过向盐穴中注入雾化的好氢型微生物抑制剂,在将氢气储存在盐穴的过程中,雾化的好氢型微生物抑制剂可以扩散至整个盐穴腔内,对盐穴中的微生物的代谢和繁殖进行抑制,从而抑制好氢型微生物消耗氢气产生杂质,从而减少氢气储存在盐穴过程中的消耗量,也提高了氢气储存在盐穴中的纯度,进而为氢能源的储存做出贡献;

由于雾化的好氢型微生物抑制剂可以随氢气一起注入至盐穴中,氢气在充满整个盐穴腔中时,雾化的好氢型微生物抑制剂会随氢气一起扩散至整个盐穴腔中,从而可以减少好氢型微生物抑制剂气体注入盐穴后在局部聚集的可能性,从而提高好氢型微生物抑制剂在盐穴腔内的均匀性,进而使得好氢型微生物抑制剂在盐穴腔内对好氢型微生物的作用范围更广,作用效果也更好。

附图说明

下面结合附图和实施例对本发明进一步说明。

图1是本发明的一种减少氢气在地下盐穴中被微生物消耗的方法的流程示意图。

具体实施方式

下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本发明,而不能理解为对本发明的限制。

在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本发明的描述中,除非另有说明,“多个”的含义是两个或两个以上。在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。

下面首先结合附图具体描述根据本发明实施例的一种减少氢气在地下盐穴中被微生物消耗的方法。

如图1所示,是本发明的一种减少氢气在地下盐穴中被微生物消耗的方法,盐穴包括设置在地下的盐穴腔,盐穴中设置有中心管,中心管的下端与盐穴腔相连通,中心管的上端延伸至地面上方,中心管上套装有生产外管,中心管的外壁与生产外管的内壁之间具有间隙,生产外管的下端与盐穴腔相连通,生产外管的上端延伸至地面上方,包括以下步骤:

S1,进行盐穴造腔过程,盐穴造腔过程包括第一造腔阶段和第二造腔阶段,在第一造腔阶段中,使用中心管向盐穴中注入清水,使用生产外管将盐穴中的卤水采出,在第二造腔阶段中,使用中心管将盐穴中的卤水采出,使用生产外管向盐穴中注入清水,盐穴造腔过程中第一造腔阶段和第二造腔阶段交替进行,在造腔过程中多次调节生产外管和中心管下端的深度,每一次调节深度,都为了加深盐穴腔的深度,直到达到盐穴造腔所需要的深度,最终达到的深度即为盐穴腔的深度;

S2,注气排卤阶段,向盐穴腔内注入待储存的氢气,注入氢气的过程中,同时向盐穴中注入雾化的好氢型微生物抑制剂,盐穴下部的卤水沿排卤管线从盐穴中排出,注气排卤阶段完成后,盐穴底部留有一部分卤水作为垫底层;

S3,盐穴注采气管道上安装有浓度测量仪,对注入的好氢型微生物抑制剂的浓度进行测量。

进一步的,将步骤S2中注入氢气和好氢型微生物抑制剂的盐穴腔静置,使得雾化的好氢型微生物抑制剂扩散至整个盐穴腔中,然后对盐穴内的好氢型微生物抑制剂的浓度进行测量,当好氢型微生物抑制剂气体的浓度测量值小于10mg/L时,再次向盐穴中注入雾化的好氢型微生物抑制剂,直到好氢型微生物抑制剂的浓度测量值大于10mg/L时,停止向盐穴内注入好氢型微生物抑制剂气体。

进一步的,步骤S2中,在向盐穴内部注入氢气之前,在注气管线上安装雾化泵,在向盐穴中注入氢气时,通过雾化泵将好氢型微生物抑制剂雾化后随氢气同时注入到盐穴中。

进一步的,好氢型微生物抑制剂包括溶剂和溶质,溶剂不溶于卤水,溶质为抗生素、胆盐、PH调节剂中的一种或多种的混合物。

进一步的,溶剂为乙酸乙酯。

进一步的,抗生素为青霉素、氯霉素、红霉素和异霉素中的一种或多种。

进一步的,胆盐为牛磺胆酸钠、牛磺胆酸钾、脱氧胆酸钠、脱氧胆酸钾中的一种或多种。

进一步的,PH调节剂为碳酸钠、碳酸氢钠、磷酸氢二钠中的一种或多种。

进一步的,步骤S2中注入的好氢型微生物抑制剂气体的浓度为10ug/ml~150ug/ml。

本发明的有益效果是,本发明的一种抑制氢气在地下盐穴中被微生物消耗的方法,通过向盐穴中注入雾化的好氢型微生物抑制剂,在将氢气储存在盐穴的过程中,雾化的好氢型微生物抑制剂可以扩散至整个盐穴腔内,对盐穴中的微生物的代谢和繁殖进行抑制,从而抑制好氢型微生物消耗氢气产生杂质,从而减少氢气储存在盐穴过程中的消耗量,也提高了氢气储存在盐穴中的纯度,进而为氢能源的储存做出贡献;

由于雾化的好氢型微生物抑制剂可以随氢气一起注入至盐穴中,氢气在充满整个盐穴腔中时,雾化的好氢型微生物抑制剂会随氢气一起扩散至整个盐穴腔中,从而可以减少好氢型微生物抑制剂气体注入盐穴后在局部聚集的可能性,从而提高好氢型微生物抑制剂在盐穴腔内的均匀性,进而使得好氢型微生物抑制剂在盐穴腔内对好氢型微生物的作用范围更广,作用效果也更好。

下面结合具体实施例对本发明的一种减少氢气在地下盐穴中被微生物消耗的方法进行详细说明。

实施例1:选择体积为1L,高度为20cm的容器作为盐穴模型,首先向容器内注入产甲烷菌、乙酰化菌、乙酰养菌、硫酸盐还原菌、盐杆菌,注入的微生物浓度为2×1010cells/L;

然后,向容器中注入卤水,卤水体积占容器体积的1/10,向容器内注入800ml纯度为90%的氢气,将容器密封后静置20天,对容器内的氢气进行纯度测试,测试得到容器内氢气的纯度为89.41%。

实施例2:选择体积为1L,高度为20cm的容器作为盐穴模型,首先向容器内注入产甲烷菌、乙酰化菌、乙酰养菌、硫酸盐还原菌、盐杆菌,注入的微生物浓度为2×1010cells/L;

向容器的底部注入卤水,卤水占容器体积的1/10,向容器内注入800ml纯度为90%的氢气,在向容器中注入氢气的同时向容器中注入雾化的好氢型微生物抑制剂,注入的好氢型微生物抑制剂为乙酸乙酯、青霉素、红霉素、牛磺胆酸钠、脱氧胆酸钠和碳酸钠的混合物,注入的抑制剂气体的浓度为10ug/ml,静置20min后对容器内的好氢型微生物抑制剂进行浓度测试,测试出容器内的好氢型微生物抑制剂的浓度为8.3ug/ml,继续向容器内加入雾化的好氢型微生物抑制剂,直到容器内的好氢型微生物抑制剂浓度测量值大于或等于10ug/ml,则停止注入好氢型微生物抑制剂。

氢气和好氢型微生物抑制剂注入完成后,将容器密封后静置20天,对容器内的氢气进行纯度测试,测试得到容器内氢气的纯度为89.79%。

实施例3:选择体积为1L,高度为20cm的容器作为盐穴模型,首先向容器内注入产甲烷菌、乙酰化菌、乙酰养菌、硫酸盐还原菌、盐杆菌,注入的微生物浓度为2×1010cells/L;

向容器的底部注入卤水,卤水占容器体积的1/10,向容器内注入800ml纯度为90%的氢气,在向容器中注入氢气的同时向容器中注入雾化的好氢型微生物抑制剂,注入的好氢型微生物抑制剂为乙酸乙酯、青霉素、红霉素、牛磺胆酸钠、脱氧胆酸钠和碳酸钠的混合物,注入的抑制剂气体的浓度为150ug/ml,静置20min后对容器内的好氢型微生物抑制剂进行浓度测试,测试出容器内的好氢型微生物抑制剂的浓度为142ug/ml,继续向容器内加入雾化的好氢型微生物抑制剂,直到容器内的好氢型微生物抑制剂浓度测量值大于或等于150ug/ml,则停止注入好氢型微生物抑制剂。

氢气和好氢型微生物抑制剂注入完成后,将容器密封后静置20天,对容器内的氢气进行纯度测试,测试得到容器内氢气的纯度为89.94%。

实施例4:选择体积为1L,高度为20cm的容器作为盐穴模型,首先向容器内注入产甲烷菌、乙酰化菌、乙酰养菌、硫酸盐还原菌、盐杆菌,注入的微生物浓度为2×1010cells/L;

向容器的底部注入卤水,卤水占容器体积的1/10,向容器内注入800ml纯度为90%的氢气,在向容器中注入氢气的同时向容器中注入雾化的好氢型微生物抑制剂,注入的好氢型微生物抑制剂为乙酸乙酯、青霉素、红霉素、牛磺胆酸钠、脱氧胆酸钠和碳酸钠的混合物,注入的抑制剂气体的浓度为100ug/ml,静置20min后对容器内的好氢型微生物抑制剂进行浓度测试,测试出容器内的好氢型微生物抑制剂的浓度为93ug/ml。

氢气和好氢型微生物抑制剂注入完成后,将容器密封后静置20天,对容器内的氢气进行纯度测试,测试得到容器内氢气的纯度为89.92%。

对实施例1、实施例2、实施例3和实施例4的数据进行对比分析,数据如表一所示:

表一

有表一可知,实施例1为没有向容器中加入好氢型微生物抑制剂的对照实施例,注入的氢气初始纯度为90%,储存20天后,氢气的纯度为89.41%,可知氢气的纯度衰减量为0.59%。

实施例2中,注入的氢气初始纯度为90%,注入的好氢型微生物抑制剂纯度为10ug/ml,储存20天后,氢气的纯度为89.79%,可知氢气的纯度衰减量为0.21%,实施例2与实施例1进行对比,可知,实施例2中的容器中储存的氢气的纯度衰减量比实施例1中容器储存的氢气的纯度衰减量小0.38%。

实施例3中,注入的氢气初始纯度为90%,注入的好氢型微生物抑制剂纯度为150ug/ml,储存20天后,氢气的纯度为89.94%,可知氢气的纯度衰减量为0.06%,实施例3与实施例1进行对比,可知,实施例3中的容器中储存的氢气的纯度衰减量比实施例1中容器储存的氢气的纯度衰减量小0.53%。

实施例4中,注入的氢气初始纯度为90%,注入的好氢型微生物抑制剂纯度为100ug/ml,储存20天后,氢气的纯度为89.92%,可知氢气的纯度衰减量为0.08%。实施例4与实施例1进行对比,可知,实施例4中的容器中储存的氢气的纯度衰减量比实施例1中容器储存的氢气的纯度衰减量小0.51%。

通过实施例2、实施例3和实施例4与实施例1进行对比,可得,在容器中加入了好氢型微生物抑制剂后,储存在容器中的氢气的纯度相对于没有加好氢型微生物抑制剂而言,储存的氢气的纯度衰减量减小了0.38%-0.51%,因此可知,在容器中加入好氢型微生物抑制剂后可以有效抑制微生物对氢气的消耗,从而减少氢气在盐穴中储存时的消耗,节约氢能源。

以上述依据本发明的理想实施例为启示,通过上述的说明内容,相关工作人员完全可以在不偏离本项发明技术思想的范围内,进行多样的变更以及修改。本项发明的技术性范围并不局限于说明书上的内容,必须要如权利要求范围来确定其技术性范围。

9页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种地铁站厅及隧道洪涝灾害预警系统及方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!