改进的用于治疗肌营养不良的组合物

文档序号:1823261 发布日期:2021-11-12 浏览:9次 >En<

阅读说明:本技术 改进的用于治疗肌营养不良的组合物 (Improved composition for treating muscular dystrophy ) 是由 E·M·凯 于 2014-03-14 设计创作,主要内容包括:本发明涉及改进的用于治疗肌营养不良的组合物。描述了通过施用反义分子来治疗肌营养不良的改进的组合物和方法,所述反义分子能够结合人肌养蛋白基因中的选定靶位以诱导外显子跳跃。(The present invention relates to improved compositions for treating muscular dystrophy. Improved compositions and methods for treating muscular dystrophy by administering antisense molecules capable of binding to selected targets in the human dystrophin gene to induce exon skipping are described.)

改进的用于治疗肌营养不良的组合物

相关申请

本申请是国际申请日为2014年3月14日的国际申请PCT/US2014/029610进入中国、申请号为201480026195.5的题为“改进的用于治疗肌营养不良的组合物”的发明专利申请的分案申请。本专利申请要求2013年3月15日提交的美国临时专利申请系列号61/793,463的权益。上面提及的临时专利申请的整个内容通过引用并入本文。

技术领域

本发明涉及改进的用于治疗患者的肌营养不良的方法。它也提供了适合用于促进人肌养蛋白基因中的外显子跳跃的组合物。

背景技术

正在使用多种化学试剂在多种不同的水平(转录、剪接、稳定性、翻译)上影响基因表达来开发反义技术。该研究中的许多已经集中于使用反义化合物来校正或补偿在宽适应症范围内的异常的或疾病相关的基因。反义分子能够特异性地抑制基因表达,且因此,许多关于将寡核苷酸作为基因表达调节剂的研究工作已经集中于抑制靶向的基因的表达或顺式作用元件的功能。在一些病毒RNA靶标的情况下,反义寡核苷酸通常针对RNA,无论是有义链(例如,mRNA)还是负链。为了实现特定基因下调的预期效果,寡核苷酸通常促进靶向的mRNA的降解、阻断mRNA的翻译或阻断顺式作用RNA元件的功能,由此有效地阻止靶蛋白的从头合成或病毒RNA的复制。

但是,如果目的是上调天然蛋白的产生或补偿诱导翻译的过早终止的突变(诸如无义或移码突变),那么这样的技术是没有用的。在这些情况下,有缺陷的基因转录物不会进行靶向降解或空间抑制,所以反义寡核苷酸化学试剂不会促进靶mRNA降解或阻断翻译。

在多种遗传性疾病中,通过在剪接过程中靶向的外显子跳跃的过程,可以调节突变对基因的最终表达的影响。该剪接过程受复杂的多组分机制指导,该机制使前-mRNA中的相邻外显子-内含子连接部紧密靠近并在内含子的末端处进行磷酸二酯键的切割,所述磷酸二酯键随后在要剪接在一起的外显子之间重新形成。该复杂的且高度精确的过程由前-mRNA中的序列基序介导,所述序列基序是相对短的、半保守的RNA片段,随后参与剪接反应的多种核剪接因子会与其结合。通过改变剪接机制读出或识别参与前-mRNA加工的基序的方式,可能产生差别地剪接的mRNA分子。现在已认识到,大部分人基因在正常的基因表达过程中是交替剪接的,尽管尚未鉴定出涉及的机制。Bennett等人(美国专利号6,210,892)描述了使用反义寡核苷酸类似物对野生型细胞mRNA加工的反义调节,所述类似物不会诱导RNA酶H介导的靶RNA的切割。这在以下方面具有实用性:能够产生交替剪接的mRNA,其缺乏用于制备可溶性TNF超家族受体的特定外显子(例如,如(Sazani,Kole,等人.2007)所述),所述特定外显子缺乏编码跨膜结构域的外显子。

在正常功能蛋白因其中的突变而过早终止的情况下,已经证实,通过反义技术恢复一些功能蛋白产生的方式,通过在剪接过程的干扰是可能的,并且如果可以从一些基因特异性地删除与致病突变相关的外显子,则有时可以产生缩短的蛋白产物,其具有与天然蛋白相似的生物学特性或具有足以改善由与所述外显子相关的突变造成的疾病的生物活性(参见例如,Sierakowska,Sambade等人.1996;Wilton,Lloyd等人.1999;van Deutekom,Bremmer-Bout等人.2001;Lu,Mann等人.2003;Aartsma-Rus,Janson等人.2004)。Kole等人(美国专利号5,627,274、5,916,808、5,976,879和5,665,593)公开了使用不会促进靶向的前-mRNA的降解的、经修饰的反义寡核苷酸类似物与异常剪接斗争的方法。Bennett等人(美国专利号6,210,892)描述了也使用反义寡核苷酸类似物对野生型细胞mRNA加工的反义调节,所述类似物不会诱导RNA酶H介导的靶RNA切割。

靶向的外显子跳跃的过程在长基因中可能是特别有用的,在所述长基因中存在许多外显子和内含子,其中在外显子的基因组成中存在冗余,或其中蛋白在没有一个或多个特定外显子的情况下能够发挥功能。

为了治疗与各种基因中的突变所造成的截短相关的遗传性疾病而更改基因加工的努力,已经集中于使用这样的反义寡核苷酸,其:(1)与参与剪接过程的元件完全地或部分地重叠;或(2)在特定位置与前-mRNA结合,所述特定位置足够接近所述元件以破坏剪接因子的结合和功能,所述剪接因子通常介导在该元件处发生的特定剪接反应。

杜兴肌营养不良(DMD)由蛋白肌养蛋白的表达中的缺陷造成。编码该蛋白的基因含有79个外显子,所述外显子遍布于超过2百万个核苷酸的DNA中。会改变外显子的读码框、或引入终止密码子、或特征在于除去一个或多个完全框架外外显子或者一个或多个外显子的副本的任何外显子突变都具有破坏功能性肌养蛋白的产生的潜力,从而导致DMD。

疾病发作可以记载为在出生时升高的肌酸激酶水平,且显著的运动缺陷可能存在于生命的第一年。在7或8岁之前,大多数DMD患者具有越来越吃力的步态并丧失从地面抬起和爬楼梯的能力;在10-14岁之前,大多数是轮椅依赖性的。DMD一般是致命的;受影响的个体通常在他们的十几岁后期或二十几岁前期死于呼吸和/或心力衰竭。DMD的连续进展允许在所有疾病阶段进行治疗干预;但是,治疗目前限于糖皮质激素,其伴有众多副作用,包括重量增加、行为改变、青春期改变、骨质疏松症、库欣综合征样面容、生长抑制和白内障。结果,开发更好的疗法来治疗该疾病的根本原因是紧要的。

已经发现,在突变(通常是一个或多个外显子的缺失)导致沿着整个肌养蛋白转录物的正确读码框使得mRNA向蛋白的翻译不会过早终止的情况下,发生肌营养不良的一种不太严重的形式,即贝克肌营养不良(BMD)。如果在突变的肌养蛋白前-mRNA的加工中上游和下游外显子的连接会维持基因的正确读码框,那么结果是编码具有短内部缺失的蛋白的mRNA,所述蛋白保留一些活性,从而导致贝克表型。

多年来已经知道,一个或多个不会改变肌养蛋白的读码框的外显子的缺失会引起BMD表型,而造成移码的外显子缺失将引起DMD(Monaco,Bertelson等人.1988)。一般而言,肌养蛋白突变(包括改变读码框并从而阻断适当蛋白翻译的点突变和外显子缺失)会导致DMD。还应当指出,一些BMD和DMD患者具有覆盖多个外显子的外显子缺失。

已经在体外和在体内报告了用反义寡核糖核苷酸对突变体肌养蛋白前-mRNA剪接的调节(参见例如,Matsuo,Masumura等人.1991;Takeshima,Nishio等人.1995;Pramono,Takeshima等人.1996;Dunckley,Eperon等人.1997;Dunckley,Manoharan等人.1998;Errington,Mann等人.2003)。

Wilton等人(Wilton,Lloyd等人.1999)报道了在mdx小鼠模型中的特异性的和可再现的外显子跳跃的第一个例子。通过使反义分子定向于供体剪接位点,在培养的细胞的6小时处理内,在肌养蛋白mRNA中诱导了一致的且有效的外显子23跳跃。Wilton等人还描述了用更长的反义寡核苷酸靶向小鼠肌养蛋白前-mRNA的受体区域。尽管定向于内含子23供体剪接位点的第一反义寡核苷酸诱导了原代培养的成肌细胞中的一致外显子跳跃,但是发现该化合物在表达更高水平的肌养蛋白的永生化细胞培养物中的效力低得多。但是,利用精细化的靶向和反义寡核苷酸设计,会使特定外显子除去的效率增加几乎1个数量级(Mann,Honeyman等人.2002)。

最近的研究已经开始解决在受肌养蛋白缺乏影响的组织中实现伴有微小不良作用的持续肌养蛋白表达的挑战。在4位具有DMD的患者中靶向外显子51(PRO051)的反义寡核苷酸向胫骨前肌肌肉中的肌肉内注射导致外显子51的特异性跳跃,没有任何临床上明显的不良作用(Mann,Honeyman等人.2002;van Deutekom,Janson等人.2007)。在mdx小鼠中试图全身性递送与靶向外显子23的细胞穿透肽(PPMO)缀合的反义磷酰二胺吗啉代寡聚体的研究在骨骼肌和心肌中产生了高的且持续的肌养蛋白生产,没有可检测的毒性(Jearawiriyapaisarn,Moulton等人.2008;Wu,Moulton等人.2008;Yin,Moulton等人.2008)。

最近的试验剪接开关寡核苷酸(SSO)用于治疗DMD的安全性和效力的临床试验是基于SSO技术通过剪接体的空间阻断来诱导前-mRNA的选择性剪接(Cirak等人,2011;Goemans等人,2011;Kinali等人,2009;van Deutekom等义,2007)。但是,尽管有这些成功,可用于治疗DMD的药理学选择是有限的。值得注意的是,利用带负电荷的硫代磷酸酯主链的反义寡核苷酸(drisapersen)已经在临床试验中与蛋白尿、增加的尿α1-微球蛋白、血小板减少症和注射部位反应(诸如红斑和炎症)关联。

Eteplirsen(其正在由本申请的受让人开发)已经成为试验它的安全性和效力的临床研究的主题,且临床开发正在进行中。Eteplirsen是在结构上不同于drisapersen的寡核苷酸。具体地,eteplirsen的化学主链是磷酰二胺吗啉代(PMO),而drisapersen的化学主链是2’O-甲基硫代磷酸酯(2’-OMe)。最近描述了这些结构差异和它们对临床结果的潜在影响。参见Molecular Therapy Nucleic Acids(2014)3,e152;doi:10.1038/mtna.2014.6(2014年3月11日在线公开)。

以前已经描述了eteplirsen的序列。参见,例如,美国专利号7,807,816,其排它地许可给申请人。但是,美国专利号7,807,816没有明确地讨论eteplirsen的最适给药计划和施用途径。

因而,仍然需要改进的用于治疗患者中的肌营养不良(诸如DMD和BMD)的组合物和方法。

发明内容

本发明至少部分地基于外显子跳跃反义寡核苷酸eteplirsen的令人注目的治疗效果的证据,所述eteplirsen代表通过解决该疾病的根本原因来治疗DMD的一个重大进步。如通过6分钟行走试验(6MWT)所测量的,用外显子51跳跃反义寡核苷酸eteplirsen进行治疗的新颖发现产生了可靠的新颖肌养蛋白的增加和稳定的行走能力(例如,离床活动的稳定),凸显了改变该疾病的进程的潜力。重要的是,在历时1年施用的576次输注中没有观察到药物相关的不利事件。当应用于其它外显子时,外显子跳跃反义寡核苷酸的应用可以治疗估计70%至80%的由于肌养蛋白基因的缺失而具有DMD的患者。

因此,在一个方面,本发明涉及一种治疗有此需要的患者中的杜兴肌营养不良的方法,所述方法包括给所述患者施用每周1次约30mg/kg的剂量的eteplirsen。在某些实施方案中,在单次剂量中施用eteplirsen。在某些实施方案中,静脉内地施用eteplirsen。在某些实施方案中,所述患者具有可以通过肌养蛋白基因的跳跃外显子51来校正的框架外缺失。在某些实施方案中,所述患者是儿科患者。

在另一个方面,本发明涉及一种治疗有此需要的患者中的杜兴肌营养不良的方法,所述方法包括给所述患者施用每周1次约30mg/kg的剂量的eteplirsen,其中在第一剂eteplirsen之前给所述患者施用口服皮质类固醇至少24周。

在另一个方面,本发明提供了一种治疗有此需要的患者中的杜兴肌营养不良的方法,所述方法包括:给所述患者静脉内地施用每周1次约30mg/kg的单次剂量的eteplirsen,其中所述患者具有可以通过肌养蛋白基因的跳跃外显子51来校正的框架外缺失。

本发明的其它实施方案涉及一种治疗有此需要的患者中的杜兴肌营养不良的方法,所述方法包括给所述患者施用每周1次约50mg/kg的剂量的eteplirsen。在某些实施方案中,在单次剂量中施用eteplirsen。在某些实施方案中,静脉内地施用eteplirsen。在某些实施方案中,所述患者具有可以通过肌养蛋白基因的跳跃外显子51来校正的框架外缺失。在某些实施方案中,所述患者是儿科患者。在其它实施方案中,在第一剂eteplirsen之前给所述患者施用口服皮质类固醇至少24周。

在另一个方面,本发明涉及一种治疗有此需要的患者中的杜兴肌营养不良的方法,所述方法包括:给所述患者静脉内地施用每周1次约50mg/kg的单次剂量的eteplirsen,其中所述患者具有可以通过肌养蛋白基因的跳跃外显子51来校正的框架外缺失。

在另一个方面,本发明提供了一种增加具有杜兴肌营养不良的患者中的肌养蛋白产生的方法,所述方法包括给所述患者施用每周1次约30mg/kg的剂量的eteplirsen。在某些实施方案中,施用每周1次约50mg/kg的剂量的eteplirsen。在某些实施方案中,在单次剂量中施用eteplirsen。在某些实施方案中,静脉内地施用eteplirsen。在其它实施方案中,所述患者具有可以通过肌养蛋白基因的跳跃外显子51来校正的框架外缺失。在某些实施方案中,所述患者是儿科患者。在其它实施方案中,在第一剂eteplirsen之前给所述患者施用口服皮质类固醇至少24周。

因此,本发明涉及通过施用有效量的组合物来治疗患者中的杜兴肌营养不良(DMD)或贝克肌营养不良(BMD)的方法,所述组合物包含长度为20-50个核苷酸的反义寡核苷酸,所述反义寡核苷酸包含至少10个与人肌养蛋白基因的外显子中的靶区域互补的连续核苷酸,以与所述靶区域特异性地杂交、诱导外显子跳跃和从而治疗所述疾病。在一个实施方案中,有效量是至少20mg/kg持续一段时间,所述时间足以使受试者中的肌养蛋白阳性纤维的数目增加至正常值的至少20%,并且稳定、维持或改善患者相对于健康等同者的20%短缺(例如在6MWT中)的行走距离。在另一个实施方案中,有效量是至少20mg/kg至约30mg/kg,约25mg/kg至约30mg/kg,或约30mg/kg至约50mg/kg。在另一个实施方案中,有效量是约30mg/kg或约50mg/kg。

在另一个方面,有效量是至少20mg/kg、约25mg/kg、约30mg/kg或约30mg/kg至约50mg/kg持续至少24周、至少36周或至少48周,由此使受试者中的肌养蛋白阳性纤维的数目增加至正常值的至少20%、约30%、约40%、约50%、约60%、约70%、约80%、约90%、约95%,并且稳定或改善患者相对于健康等同者的20%短缺(例如在6MWT中)的行走距离。在一个实施方案中,治疗会使肌养蛋白阳性纤维的数目增加至所述患者中的正常值的20-60%或30-50%。在某些实施方案中,治疗是通过全身施用,诸如每周一次输注。在其它实施方案中,治疗包括给所述受试者施用另一种治疗剂,诸如类固醇。

在另一个方面,本发明提供了通过施用约30mg/kg至约50mg/kg的组合物治疗患者中的DMD或BMD的方法,所述组合物包含长度为20-50个核苷酸的反义寡核苷酸,所述反义寡核苷酸包含至少10个与人肌养蛋白基因的外显子中的靶区域互补的连续核苷酸,其中所述反义寡核苷酸与诱导外显子跳跃的靶区域特异性地杂交,由此治疗所述受试者。在一个实施方案中,所述反义寡核苷酸是基本上不带电荷的。在另一个实施方案中,所述反义寡核苷酸包含通过含磷的亚基间键连接的吗啉代亚基,所述含磷的亚基间键将一个亚基的吗啉代氮连接至邻近亚基的5′环外碳。在另一个实施方案中,所述反义寡核苷酸包含通过基本上不带电荷的含磷的亚基间键连接的吗啉代亚基,所述含磷的亚基间键将一个亚基的吗啉代氮连接至邻近亚基的5′环外碳。在其它方面,所述反义寡核苷酸包含吗啉代亚基和磷酰二胺亚基间键。

在某些实施方案中,所述反义寡核苷酸是20-50、30-50或20-30个核苷酸的长度,其包含至少10、12、15、17或20个与人肌养蛋白基因的外显子中的靶区域互补的连续核苷酸,所述外显子选自外显子51、外显子50、外显子53、外显子45、外显子46、外显子44、外显子52、外显子55和外显子8。在一个实施方案中,所述反义寡核苷酸是20-50、30-50或20-30个核苷酸的长度,且包括eteplirsen(SEQ ID NO:1)的至少20个连续核苷酸。在另一个实施方案中,所述反义寡核苷酸是20-50、30-50或20-30个核苷酸的长度,且包括如在SEQ ID NO:2、SEQ ID NO:3、SEQ ID NO:4、SEQ ID NO:5、SEQ ID NO:6、SEQ ID NO:7、SEQ ID NO:8或SEQ ID NO:9中阐述的反义寡核苷酸的至少10、12、15、17或20个连续核苷酸。在另一个实施方案中,所述反义寡核苷酸是20-50、30-50或20-30个核苷酸的长度,且包括如在表3和4中阐述的核苷酸序列的至少10、12、15、17或20个连续核苷酸,其中所述反义寡核苷酸中的尿嘧啶碱基任选地是胸腺嘧啶碱基。

在一个实施方案中,所述组合物包括eteplirsen(SEQ ID NO:1)和任选的药学上可接受的载体。在另一个实施方案中,所述组合物包括选自SEQ ID NO:1-9的反义寡核苷酸,诸如SEQ ID NO:1、SEQ ID NO:2、SEQ ID NO:3、SEQ ID NO:4、SEQ ID NO:5、SEQ ID NO:6、SEQ ID NO:7、SEQ ID NO:8和SEQ ID NO:9。在另一个实施方案中,所述反义寡核苷酸是在表3和4中阐述的核苷酸序列中的任一种或组合,其中所述反义寡核苷酸中的尿嘧啶碱基任选地是胸腺嘧啶碱基。在某些方面,所述反义寡核苷酸与一个或多个增强反义寡核苷酸的活性、细胞分布或细胞摄取的部分或缀合物(诸如富含精氨酸的肽)化学连接。

在另一个方面,本发明提供了通过施用至少20mg/kg的包含eteplirsen(SEQ IDNO:1)的组合物一段时间来治疗患者中的DMD或BMD的方法,所述时间足以使受试者中的肌养蛋白阳性纤维的数目增加至正常值的至少约20%,并且稳定或改善患者相对于健康等同者的20%短缺(例如在6MWT中)的行走距离。在另一个实施方案中,有效量是至少20mg/kg至约30mg/kg、约25mg/kg至约30mg/kg、或约30mg/kg至约50mg/kg的组合物,所述组合物包含eteplirsen(SEQ ID NO:1)和任选的药学上可接受的载体,诸如磷酸盐缓冲盐水。

在另一个方面,包含eteplirsen(SEQ ID NO:1)的组合物的有效量是至少20mg/kg、约25mg/kg、约30mg/kg或约30mg/kg至约50mg/kg,持续至少24周、至少36周或至少48周,由此使受试者中的肌养蛋白阳性纤维的数目增加至正常值的至少约20%、约30%、约40%、约50%、约60%、约70%、约80%、约90%、约95%,并且稳定或改善患者相对于健康等同者的20%短缺(例如在6MWT中)的行走距离。在某些实施方案中,使用本发明的反义寡核苷酸的治疗会减慢或减轻在没有治疗时会预见到的离床活动的缺失。在某些实施方案中,使用本发明的反义寡核苷酸的治疗会稳定、维持或增加患者的稳定行走距离。例如,治疗可能使患者的稳定行走距离从基线增加至大于3、5、6、7、8、9、10、15、20、25、30或50米(包括之间的所有整数)。

本发明的其它方面涉及使用本发明的反义寡核苷酸(诸如eteplirsen)的治疗,所述反义寡核苷酸会减慢或减轻在没有治疗时会预见到的具有DMD的患者中的进行性呼吸肌功能障碍和/或衰竭。在一个实施方案中,使用本发明的反义寡核苷酸的治疗可能减少或消除在没有治疗时会预见到的换气辅助设备需求。在一个实施方案中,用于跟踪疾病进程的呼吸功能的测量以及潜在治疗干预的评价包括最大吸气压(MIP)、最大呼气压(MEP)和用力肺活量(FVC)。

附图说明

图1A显示了具有磷酰二胺连接的示例性吗啉代寡聚体结构。

图1B显示了根据本发明的一个实施方案,富含精氨酸的肽与反义寡聚体的缀合物。

图1C显示了如图1B中的缀合物,其中主链连接含有一个或多个带正电荷的基团。

图1D-G显示了示例性吗啉代寡核苷酸的重复亚基区段,其命名为D至G。

图2是用于治疗DMD患者的研究设计的示意图。将12位DMD患者随机化至双盲安慰剂对照的研究201的3个组群之一:组群1,eteplirsen 30mg/kg/wk;组群2,eteplirsen50mg/kg/wk;和组群3,安慰剂/延迟的eteplirsen。在第25周,组群3中的安慰剂治疗的患者转换至使用30或50mg/kg/周eteplirsen的开放标记的治疗。在开放标记的延伸研究202下,将患者维持在他们的相同剂量的eteplirsen。肌肉活组织检查.为了肌养蛋白分析,患者在基线接受二头肌活组织检查,并在第48周接受三角肌活组织检查。在第12周(得自组群2中的患者和组群3中的2位患者)或第24周(得自组群1中的患者和组群3中的2位患者)得到另外的二头肌活组织检查。效力评价.使用6MWT作为功能结果量度,并在治疗前和治疗后每12周直到第48周进行。

图3描绘了12、24和48周的eteplirsen以后的肌养蛋白阳性的肌肉纤维。图A和B显示了治疗组在第12周、第24周和第48周时肌养蛋白阳性纤维的百分比从基线的平均绝对变化。在图A中:*P-值是关于使用得自第12周和第24周的合并结果的eteplirsen和安慰剂之间的对比,且是基于关于分级数据的协方差分析模型,其中治疗作为固定效应,且基线值和自DMD诊断以后的时间作为协变量。显示的平均变化是基于描述性统计。值来自将第48周值与基线进行对比的配对t检验。合并得自在第12周和第24周活组织检查的、安慰剂治疗的患者的结果。§安慰剂/延迟的eteplirsen患者在第25周开始接受eteplirsen,且在第48周已经接受共计24剂。缩写:BL=基线;NA=不适用;ND=未进行;NS=不显著;SE=标准误差。

图4显示了eteplirsen对肌养蛋白-相关的糖蛋白复合物的影响。(A)与所有参加的研究患者的治疗有关的肌养蛋白阳性纤维的时间依赖性增加的代表性例子。(B)得自DMD(a)和正常(c)对照患者(不是在研究中)和在基线(b)和第48周(d)时得自患者6的肌肉的nNOSμ染色证实了nNOSμ与eteplirsen的结合的恢复。在第48周时在患者6中的β-肌聚糖(sarcoglycan)(e)和γ-肌聚糖(f)染色证实了肌聚糖与eteplirsen的复合物的恢复。(C)RT-PCR显示了治疗后患者12的肌肉中的跳跃的产物(289bp)。

图5图解地描绘了eteplirsen的功能效力。深紫色线显示了6位可评价的患者随时间在6MWT上行走的距离相对于基线的变化,所述患者从201的开始起接受eteplirsen(从该分析排除了2个在第24周时或以后不能接受的男孩)。灰色线显示了4位患者在6MWT上行走的距离相对于基线的变化,所述患者在前24周接受安慰剂并在最后24周接受eteplirsen。

具体实施方式

本发明的实施方案涉及改进的通过施用反义化合物来治疗肌营养不良(诸如DMD和BMD)的方法,所述反义化合物特别地设计成诱导人肌养蛋白基因中的外显子跳跃。肌养蛋白在肌肉功能中发挥极其重要的作用,并且多种肌肉相关的疾病都特征在于该基因的突变形式。因此,在某些实施方案中,本文所述的改进的方法可以用于诱导人肌养蛋白基因的突变形式(诸如在DMD和BMD中发现的突变的肌养蛋白基因)中的外显子跳跃。

由于突变造成的异常mRNA剪接事件,这些突变的人肌养蛋白基因会表达缺陷型肌养蛋白或表达根本不可测量的肌养蛋白,这是导致多种形式的肌营养不良的状况。为了治疗这种状况,本发明的反义化合物会与突变的人肌养蛋白基因的预加工的RNA的选定区域杂交,在以其它方式异常地剪接的肌养蛋白mRNA中诱导外显子跳跃和差异化剪接,并由此允许肌细胞产生编码功能性肌养蛋白的mRNA转录物。在某些实施方案中,得到的肌养蛋白不一定是“野生型”形式的肌养蛋白,而是截短的、但是有功能的或半功能的形式的肌养蛋白。

通过增加肌细胞中的功能性肌养蛋白的水平,这些和有关的实施方案可用于预防和治疗肌营养不良,特别是,诸如DMD和BMD的那些形式的肌营养不良,它们的特征在于由异常的mRNA剪接引起的缺陷型肌养蛋白的表达。本文所述的方法进一步为具有肌营养不良的患者提供了改进的治疗选择,并提供了胜过治疗有关形式的肌营养不良的替代方法的显著的和实用的优点。例如,在某些实施方案中,所述改进的方法涉及与先前方案相比以更高剂量和/或更长的持续时间施用用于诱导人肌养蛋白基因中的外显子跳跃的反义化合物。

因而,本发明涉及改进的通过诱导患者中的外显子跳跃而治疗肌营养不良(诸如DMD和BMD)的方法。在某些实施方案中,通过施用有效量的组合物来诱导外显子跳跃,所述组合物包括电荷中性的、磷酰二胺吗啉代寡聚体(PMO),诸如eteplirsen,其选择性地结合肌养蛋白前-mRNA的外显子中的靶序列。在某些实施方案中,本发明涉及治疗DMD或BMD的方法,其中在足以治疗该疾病的一段时间内施用有效量的组合物例如,至少20mg/kg、约25mg/kg、约30mg/kg或约30mg/kg至约50mg/kg,所述组合物包括如本文中所述的反义化合物,诸如eteplirsen。

本发明的一些实施方案涉及eteplirsen作为用于治疗DMD的疾病改善疗法的用途。不受理论的约束,迄今为止用eteplirsen观察到的临床效力可以源自它的安全性谱,这是由于它的独特化学组成,其特征在于通过电荷中性的磷酰二胺部分连接的与吗啉环结合的核苷酸。

在用eteplirsen治疗1年的DMD患者中,与基线相比,肌养蛋白阳性纤维的平均百分比增加至正常值的47%。增加的量级取决于治疗持续时间。在取自组群1(30mg/kg)的患者的24-周活组织检查中和在取自组群3(其在第25周开始eteplirsen)的患者的48-周活组织检查中观察到肌养蛋白水平的显著增加。

Eteplirsen的临床益处反映了它的诱导外显子跳跃和恢复功能性肌养蛋白产生的能力。用6MWT评估了临床效应,所述6MWT是超过单个肌群中的强度评估的忍耐力和肌肉能力的量度。从开始接受30或50mg/kg eteplirsen的患者在48周中维持稳定行走距离,这与在第12周和第24周之间eteplirsen诱导的新颖肌养蛋白表达的增加一致。相反,在安慰剂/延迟的eteplirsen组群中的患者在第36周之前减少70米,但是显得在第48周(开始eteplirsen以后24周)之前稳定。这是在从研究开始每周1次接受30或50mg/kg eteplirsen的患者中观察到临床影响的相同时间范围。如下所述,两个组群已经在120周中维持稳定的6MWT结果。

在120周时,在30mg/kg和50mg/kg eteplirsen组群(改进的意图治疗或mITT群体;n=6)中的能够进行6MWT的患者经历了一般稳定性,行走能力从基线稍微下降了13.9米或小于5%。与安慰剂/延迟治疗组群(其在24周的安慰剂以后在第25周时开始治疗)(n=4)相比,对于mITT群体观察到64.9米的统计上显著的治疗益处(p≤0.006)。在研究早期(在用etiplersen治疗之前)经历大幅下降以后,安慰剂/延迟治疗组群也表现出行走能力稳定超过1.5年,从第36周至第120周,在该阶段可能产生有意义水平的肌养蛋白,在该时间范围内下降9.5米。这些分析是基于当在连续2天进行试验时的最大6MWT评分。

通过最大吸气压和呼气压(MIP和MEP)测量的两个给药组群中从基线至第120周的呼吸肌功能显示了MIP的14.6%平均增加和MEP的15.0%平均增加。预测的MIP%(针对重量调节的MIP)和预测的MEP%(针对年龄调节的MEP)的分析证实了预测的MIP%从基线时的90.2%至第120周时的95.2%的平均增加,和预测的MEP%从基线时的79.3%至第120周时的79.6%的轻微平均增加。另外,存在用力肺活量(FVC)(肺容积的量度)从基线至第120周的8.7%的平均增加,且预测的FVC%(针对年龄和高度调节的FVC)至第120周维持在90%的平均值以上,在基线时为101%和在第120周时为93%。

本发明至少部分地基于eteplirsen的治疗效果的证据,所述eteplirsen代表通过解决该疾病的根本原因来治疗DMD的一个重大进步。因此,本发明涉及通过施用有效量的组合物来治疗患者中的DMD或BMD的方法,所述组合物包括反义寡核苷酸,诸如eteplirsen,所述反义寡核苷酸与人肌养蛋白基因的外显子中的靶区域互补,以与所述靶区域特异性地杂交、诱导外显子跳跃和治疗所述疾病。在一个实施方案中,治疗是通过给有此需要的受试者施用一种或多种本发明的反义寡核苷酸(例如,在表3和4中显示的核苷酸序列),任选地作为药物制剂或剂型的组成部分。治疗包括通过施用有效量的一种或多种反义寡核苷酸而在受试者中诱导外显子跳跃,其中所述外显子是来自肌养蛋白基因的外显子1-79中的任意一个或多个。优选地,所述外显子是来自人肌养蛋白基因的外显子44、45、46、47、48、49、50、51、52、53、54、55、56或8。

除非另外定义,本文使用的所有技术和科学术语具有本发明所属领域的普通技术人员所通常理解的相同含义。尽管与本文描述的那些类似或等同的任何方法和材料都可以用于实践或检验本发明,仍描述了优选的方法和材料。为了本发明的目的,在下面定义了以下术语。

I.定义

“约”是指变动范围高达参考数量、水平、值、数目、频率、百分比、尺寸、大小、量、重量或长度的30%、25%、20%、15%、10%、9%、8%、7%、6%、5%、4%、3%、2或1%的数量、水平、值、数目、频率、百分比、尺寸、大小、量、重量或长度。

术语“互补”和“互补性”表示通过碱基配对规则而关联的多核苷酸(即核苷酸的序列)。例如,序列“T-G-A(5’-3’)”与序列“T-C-A(5’-3’)”互补。互补性可以是“部分的”,其中仅一些核酸碱基根据碱基配对规则匹配。或者,在核酸之间可能存在“完全的”或“全部的”互补性。核酸链之间的互补性程度对核酸链之间的杂交的效率和强度具有显著影响。尽管经常期望完美的互补性,但是一些实施方案可以包括一个或多个、但是优选6、5、4、3、2或1个与靶RNA的错配。包括在寡聚体内的任何位置处的变异。在某些实施方案中,序列中接近寡聚体末端的变异通常比内部中的变异更优选,并且如果存在的话,通常是在5′和/或3′末端的约6、5、4、3、2或1个核苷酸之内。

术语“细胞穿透肽”和“CPP”互换使用,且表示阳离子的细胞穿透肽,也称为运输肽、载体肽或肽转导结构域。本文所示的肽具有在给定细胞培养群体的100%的细胞中诱导细胞穿透的能力,并允许大分子在全身施用后在体内多个组织内的易位。一种优选的CPP实施方案是如下面进一步描述的富含精氨酸的肽。

术语“反义寡聚体”和“反义化合物”和“反义寡核苷酸”互换使用,且表示通过亚基间键连接的环状亚基的序列,每个环状亚基携带碱基配对部分,所述亚基间键允许所述碱基配对部分与核酸(通常是RNA)中的靶序列通过沃森-克里克碱基配对进行杂交,以在靶序列内形成核酸:寡聚体异源双链体。环状亚基是基于核糖或另一种戊糖,或在一个优选的实施方案中,基于吗啉代基团(参见下面吗啉代寡聚体的描述)。所述寡聚体可以与靶序列具有精确的或近似的序列互补性;序列在寡聚体的末端附近的变异通常比在内部中的变异优选。

可以设计这样的反义寡聚体以阻断或抑制mRNA的翻译或抑制天然的前-mRNA剪接加工,且可以说成“定向”或“靶向”它与其杂交的靶序列。靶序列通常是这样的区域:其包括mRNA的AUG起始密码子(抑制翻译的寡聚体)或预加工的mRNA的剪接位点(抑制剪接的寡聚体(SSO))。剪接位点的靶序列可以包括这样的mRNA序列:其在它的5’端具有1至约25个位于预加工的mRNA的正常剪接受体连接部下游的碱基对。一个优选的靶序列是包括剪接位点或被整体包含在外显子编码序列之内或横跨剪接受体或供体位点的预加工的mRNA的任何区域。当寡聚体以上述方式靶向靶标的核酸时,所述寡聚体更通常被说成“靶向”生物学上相关的靶标,诸如蛋白、病毒或细菌。

术语“吗啉代寡聚体”或“PMO”(氨基磷酸酯-或磷酰二胺吗啉代寡聚体)表示由吗啉代亚基结构组成的寡核苷酸类似物,其中(i)所述结构通过含磷键连接到一起,所述含磷键具有1-3个原子的长度,优选2个原子的长度,且优选地是不带电荷的或阳离子的,其将一个亚基的吗啉代氮连接至邻近亚基的5’环外碳,和(ii)每个吗啉代环带有嘌呤或嘧啶碱基配对部分,该部分通过碱基特异性的氢键合有效地结合多核苷酸中的碱基。参见,例如,图1A中的结构,其显示了一种优选的磷酰二胺键类型。可以对该键做出变化,只要它们不会干扰结合或活性即可。例如,与磷连接的氧可以被硫取代(硫代磷酰二胺)。5’氧可以被氨基或低级烷基取代的氨基取代。与磷连接的侧氮可以是未被取代的、或被(任选地取代的)低级烷基单取代或二取代。嘌呤或嘧啶碱基配对部分通常是腺嘌呤、胞嘧啶、鸟嘌呤、尿嘧啶、胸腺嘧啶或肌苷。吗啉代寡聚体的合成、结构和结合特征详述于美国专利号5,698,685、5,217,866、5,142,047、5,034,506、5,166,315、5,521,063、5,506,337、8,076,476、8,299,206和7,943,762(阳离子键),它们都通过引用并入本文。改进的亚基间键和末端基团详述于PCT申请US2011/038459和公开WO/2011/150408,它们通过引用整体并入本文。

“Eteplirsen”也被称作“AVN-4658”,是具有碱基序列5’-CTCCAACATCAAGGAAGATGGCATTTCTAG-3’(SEQ ID NO:1)的PMO。Eteplirsen登记在CAS登记号1173755-55-9下。化学名称包括:

RNA,[P-脱氧-P-(二甲基氨基)](2′,3′-二脱氧-2′,3′-亚氨基-2′,3′-开环)(2′a→5′)(C-m5U-C-C-A-A-C-A-m5U-C-A-A-G-G-A-A-G-A-m5U-G-G-C-A-m5U-m5U-m5U-C-m5U-A-G),5′-[P-[4-[[2-[2-(2-羟基乙氧基)乙氧基]乙氧基]羰基]-1-哌嗪基]-N,N-二甲基膦酸酰胺酯(phosphonamidate)]

P,2′,3′-三脱氧-P-(二甲基氨基)-5′-O-{P-[4-(10-羟基-2,5,8-三氧杂癸酰基)哌嗪-1-基]-N,N-二甲基膦酸酰胺酰基(phosphonamidoyl)}-2′,3′-亚氨基-2′,3′-开环胞苷酰基-(2′a→5′)-P,3′-二脱氧-P-(二甲基氨基)-2′,3′-亚氨基-2′,3′-开环胸苷酰基-(2′a→5′)-P,2′,3′-三脱氧-P-(二甲基氨基)-2′,3′-亚氨基-2′,3′-开环胞苷酰基-(2′a→5′)-P,2′,3′-三脱氧-P-(二甲基氨基)-2′,3′-亚氨基-2′,3′-开环胞苷酰基-(2′a→5′)-P,2′,3′-三脱氧-P-(二甲基氨基)-2′,3′-亚氨基-2′,3′-开环腺苷酰基-(2′a→5′)-P,2′,3′-三脱氧-P-(二甲基氨基)-2′,3′-亚氨基-2′,3′-开环腺苷酰基-(2′a→5′)-P,2′,3′-三脱氧-P-(二甲基氨基)-2′,3′-亚氨基-2′,3′-开环胞苷酰基-(2′a→5′)-P,2′,3′-三脱氧-P-(二甲基氨基)-2′,3′-亚氨基-2′,3′-开环腺苷酰基-(2′a→5′)-P,3′-二脱氧-P-(二甲基氨基)-2′,3′-亚氨基-2′,3′-开环胸苷酰基-(2′a→5′)-P,2′,3′-三脱氧-P-(二甲基氨基)-2′,3′-亚氨基-2′,3′-开环胞苷酰基-(2′a→5′)-P,2′,3′-三脱氧-P-(二甲基氨基)-2′,3′-亚氨基-2′,3′-开环腺苷酰基-(2′a→5′)-P,2′,3′-三脱氧-P-(二甲基氨基)-2′,3′-亚氨基-2′,3′-开环腺苷酰基-(2′a→5′)-P,2′,3′-三脱氧-P-(二甲基氨基)-2′,3′-亚氨基-2′,3′-开环鸟苷酰基-(2′a→5′)-P,2′,3′-三脱氧-P-(二甲基氨基)-2′,3′-亚氨基-2′,3′-开环鸟苷酰基-(2′a→5′)-P,2′,3′-三脱氧-P-(二甲基氨基)-2′,3′-亚氨基-2′,3′-开环腺苷酰基-(2′a→5′)-P,2′,3′-三脱氧-P-(二甲基氨基)-2′,3′-亚氨基-2′,3′-开环腺苷酰基-(2′a→5′)-P,2′,3′-三脱氧-P-(二甲基氨基)-2′,3′-亚氨基-2′,3′-开环鸟苷酰基-(2′a→5′)-P,2′,3′-三脱氧-P-(二甲基氨基)-2′,3′-亚氨基-2′,3′-开环腺苷酰基-(2′a→5′)-P,3′-二脱氧-P-(二甲基氨基)-2′,3′-亚氨基-2′,3′-开环胸苷酰基-(2′a→5′)-P,2′,3′-三脱氧-P-(二甲基氨基)-2′,3′-亚氨基-2′,3′-开环鸟苷酰基-(2′a→5′)-P,2′,3′-三脱氧-P-(二甲基氨基)-2′,3′-亚氨基-2′,3′-开环鸟苷酰基-(2′a→5′)-P,2′,3′-三脱氧-P-(二甲基氨基)-2′,3′-亚氨基-2′,3′-开环胞苷酰基-(2′a→5′)-P,2′,3′-三脱氧-P-(二甲基氨基)-2′,3′-亚氨基-2′,3′-开环腺苷酰基-(2′a→5′)-P,3′-二脱氧-P-(二甲基氨基)-2′,3′-亚氨基-2′,3′-开环胸苷酰基-(2′a→5′)-P,3′-二脱氧-P-(二甲基氨基)-2′,3′-亚氨基-2′,3′-开环胸苷酰基-(2′a→5′)-P,3′-二脱氧-P-(二甲基氨基)-2′,3′-亚氨基-2′,3′-开环胸苷酰基-(2′a→5′)-P,2′,3′-三脱氧-P-(二甲基氨基)-2′,3′-亚氨基-2′,3′-开环胞苷酰基-(2′a→5′)-P,3′-二脱氧-P-(二甲基氨基)-2′,3′-亚氨基-2′,3′-开环胸苷酰基-(2′a→5′)-P,2′,3′-三脱氧-P-(二甲基氨基)-2′,3′-亚氨基-2′,3′-开环腺苷酰基-(2′a→5′)-2′,3′-二脱氧-2′,3′-亚氨基-2′,3′-开环鸟苷。

Eteplirsen具有以下结构:

结构式

“氨基酸亚基”或“氨基酸残基”可以表示α-氨基酸残基(-CO-CHR-NH-)或β-或其它氨基酸残基(例如-CO-(CH2)nCHR-NH-),其中R是侧链(其可以包括氢)且n是1-6,优选1-4。

术语“天然存在的氨基酸”表示在自然界中发现的蛋白中存在的氨基酸。术语“非天然的氨基酸”表示在自然界中发现的蛋白中不存在的那些氨基酸,例子包括:β-丙氨酸(β-Ala)、6-氨基己酸(Ahx)和6-氨基戊酸。

“外显子”表示编码蛋白的核酸的限定部分,或在已经通过剪接除去预加工的(或前体)RNA的任一部分之后以RNA分子的成熟形式呈现的核酸序列。成熟的RNA分子可以是信使RNA(mRNA)或功能形式的非编码RNA,诸如rRNA或tRNA。人肌养蛋白基因具有约79个外显子。

“内含子”表示不被翻译成蛋白的核酸区域(在基因内)。内含子是被转录成前体mRNA(前-mRNA)并随后在形成成熟RNA过程中通过剪接而除去的非编码部分。

“有效量”或“治疗有效量”表示作为单次剂量或作为一系列剂量的组成部分施用给人受试者的治疗性化合物(诸如反义寡核苷酸)的量,其有效地产生期望的治疗效果。对于反义寡核苷酸,该效果通常通过抑制选定的靶序列的翻译或天然剪接加工而实现。在某些实施方案中,有效量是至少20mg/kg的包含反义寡核苷酸的组合物持续治疗受试者的时间段。在一个实施方案中,有效量是至少20mg/kg的包含反义寡核苷酸的组合物,以使受试者中的肌养蛋白阳性纤维的数目增加至正常值的至少20%。在另一个实施方案中,有效量是至少20mg/kg的包含反义寡核苷酸的组合物,以稳定、维持或改善患者相对于健康等同者的20%短缺(例如在6MWT中)的行走距离。在另一个实施方案中,有效量是至少20mg/kg至约30mg/kg、约25mg/kg至约30mg/kg、或约30mg/kg至约50mg/kg。在另一个实施方案中,有效量是约30mg/kg或约50mg/kg。在另一个方面,有效量是至少20mg/kg、约25mg/kg、约30mg/kg、或约30mg/kg至约50mg/kg持续至少24周、至少36周或至少48周,由此使受试者中的肌养蛋白阳性纤维的数目增加至正常值的至少20%、约30%、约40%、约50%、约60%、约70%、约80%、约90%、约95%,并且稳定或改善患者相对于健康等同者的20%短缺(例如在6MWT中)的行走距离。在一个实施方案中,治疗使肌养蛋白阳性纤维的数目增加至患者中的正常值的20-60%或30-50%。

“外显子跳跃”通常表示这样的过程:通过该过程,整个外显子或其部分从给定的预加工的RNA除去,且由此被排除存在于成熟RNA(诸如被翻译成蛋白的成熟mRNA)中。因此,以其它方式由跳跃的外显子编码的蛋白部分不存在于蛋白的表达形式中,通常产生改变的但仍有功能的蛋白形式。在某些实施方案中,被跳跃的外显子是来自人肌养蛋白基因的异常外显子,其在它的序列中可能含有以其它方式造成异常剪接的突变或其它改变。在某些实施方案中,被跳跃的外显子是人肌养蛋白基因的外显子1-79中的任意一个或多个,诸如3-8、10-16、19-40、42-47和50-55,尽管人肌养蛋白基因的外显子44、45、46、47、48、49、50、51、52、53、54、55、56和8是优选的。

“肌养蛋白”是一种杆状细胞质蛋白,并且是通过细胞膜将肌纤维的细胞骨架连接至周围胞外基质的蛋白复合物的重要部分。肌养蛋白含有多个功能结构域。例如,肌养蛋白含有在约氨基酸14-240处的肌动蛋白结合结构域和在约氨基酸253-3040处的中心杆状结构域。该大中心结构域由约109个氨基酸的24个血影蛋白-样三螺旋元件形成,它们与α-辅肌动蛋白和血影蛋白具有同源性。这些重复序列通常被四个富含脯氨酸的非重复区段(也被称作铰链区)中断。重复序列15和16被18个氨基酸的段隔开,所述段似乎为肌养蛋白的蛋白水解性裂解提供主要位点。大部分重复序列之间的序列同一性在10-25%的范围内。一个重复序列含有三个α螺旋:1、2和3。α螺旋1和3每个都由7个螺旋转角形成,所述螺旋转角可能作为卷曲螺旋通过疏水界面相互作用。α螺旋2具有更复杂的结构,并且由被甘氨酸或脯氨酸残基隔开的四个和三个螺旋转角的区段形成。每个重复由两个外显子编码,所述外显子通常被在α螺旋2的第一部分中的氨基酸47和48之间的内含子中断。在重复序列的其它位置发现了其它内含子,通常分散在螺旋3中。肌养蛋白也含有在约氨基酸3080-3360处的富含半胱氨酸的结构域,包括显示出与粘液菌(盘基网柄菌(Dictyostelium discoideum))α-辅肌动蛋白的C-端结构域的同源性的富含半胱氨酸的区段(即,在280个氨基酸中的15个半胱氨酸)。羧基端结构域是在约氨基酸3361-3685处。

肌养蛋白的氨基端与F-肌动蛋白结合,且羧基端与肌膜上的肌养蛋白-相关的蛋白复合物(DAPC)结合。DAPC包括营养不良聚糖、肌聚糖、整联蛋白和窖蛋白,并且这些组分中的任一个内的突变会造成常染色体遗传的肌营养不良。当缺乏肌养蛋白时,DAPC是不稳定的,这会导致膜蛋白水平降低,并又导致进行性纤维损伤和膜渗漏。在多种形式的肌营养不良(诸如杜兴肌营养不良(DMD)和贝克肌营养不良(BMD))中,肌肉细胞产生改变的和在功能上有缺陷的肌养蛋白形式,或根本不产生肌养蛋白,主要是由于导致不正确剪接的基因序列中的突变。如上所述,缺陷型肌养蛋白的优势表达,或肌养蛋白或肌养蛋白-样蛋白的完全缺乏,会导致肌肉退化的快速进展。在这点上,“缺陷型”肌养蛋白可能通过如本领域已知的在某些具有DMD或BMD的受试者中产生的肌养蛋白形式来表征,或通过可检测的肌养蛋白的缺失来表征。

本文中使用的术语“功能”和“有功能的”等表示生物学功能、酶功能或治疗功能。

“有功能的”肌养蛋白通常表示这样的肌养蛋白:其通常与存在于某些具有DMD或BMD的受试者中的改变的或”缺陷”形式的肌养蛋白相比,具有足以降低肌肉组织的进行性降解的生物活性,所述进行性降解是肌营养不良的其它特征。在某些实施方案中,功能性肌养蛋白可能具有野生型肌养蛋白的体外或体内生物活性的约10%、20%、30%、40%、50%、60%、70%、80%、90%或100%(包括之间的所有整数),如根据本领域中的常规技术所测量的。作为一个例子,根据肌管大小、肌原纤维组构(或分解)、收缩活性和乙酰胆碱受体的自发簇集,可以测量体外肌肉培养物中的肌养蛋白相关活性(参见,例如,Brown等人,Journalof Cell Science.112:209-216,1999)。动物模型也是研究疾病的发病机制的重要资源,并提供试验肌养蛋白相关活性的手段。最广泛地用于DMD研究的动物模型中的两个是mdx小鼠和金毛猎犬肌营养不良(GRMD)狗,这两者都是肌养蛋白阴性的(参见,例如,Collins&Morgan,Int J Exp Pathol 84:165-172,2003)。这些和其它动物模型可以用于测量各种肌养蛋白的功能活性。包括截短形式的肌养蛋白,诸如由本发明的某些外显子-跳跃反义化合物产生的那些形式。

术语肌养蛋白合成或产生的“恢复”通常表示,在用如本文中所述的反义寡核苷酸治疗以后,肌养蛋白(包括截短形式的肌养蛋白)在具有肌营养不良的患者中的产生。在某些实施方案中,治疗导致患者中的新颖肌养蛋白产生增加1%、5%、10%、20%、30%、40%、50%、60%、70%、80%、90%或100%(包括之间的所有整数)。在某些实施方案中,治疗使肌养蛋白阳性纤维的数目增加至受试者中的正常值的至少20%、约30%、约40%、约50%、约60%、约70%、约80%、约90%或约95%至100%。在其它实施方案中,治疗使肌养蛋白阳性纤维的数目增加至受试者中的正常值的约20%至约60%、或约30%至约50%。使用已知技术,通过肌肉活组织检查,可以确定治疗以后患者中的肌养蛋白阳性纤维的百分比。例如,肌肉活组织检查可以取自合适的肌肉,诸如患者中的肱二头肌。

可以在治疗前和/或在治疗后或在治疗过程中的时间点进行阳性肌养蛋白纤维的百分比分析。在某些实施方案中,治疗后活组织检查取自治疗前活组织检查的对侧肌肉。使用任意合适的肌养蛋白测定,可以进行治疗前和治疗后肌养蛋白表达研究。在一个实施方案中,使用抗体(其为肌养蛋白的标志物)诸如单克隆或多克隆抗体,在得自肌肉活组织检查的组织切片上进行免疫组织化学检测。例如,可以使用MANDYS106抗体,其是肌养蛋白的非常灵敏的标志物。可以使用任意合适的第二抗体。

在某些实施方案中,通过将阳性纤维的数目除以计数的总纤维,计算肌养蛋白阳性纤维百分比。正常的肌肉样品具有100%肌养蛋白阳性纤维。因此,肌养蛋白阳性纤维百分比可以表达为正常值的百分比。为了控制痕量水平的肌养蛋白在治疗前肌肉以及回复体(revertant)纤维中的存在,当计数治疗后肌肉中的肌养蛋白阳性纤维时,可以使用得自每位患者的治疗前肌肉切片设定基线。这可以用作阈值用于计数该患者的治疗后肌肉切片中的肌养蛋白阳性纤维。在其它实施方案中,使用Bioquant图像分析软件(Bioquant ImageAnalysis Corporation,Nashville,TN),也可以将抗体染色的组织切片用于肌养蛋白定量。可以将总肌养蛋白荧光信号强度报告为正常值的百分比。另外,使用单克隆或多克隆抗-肌养蛋白抗体的蛋白质印迹分析可以用于确定肌养蛋白阳性纤维的百分比。例如,可以使用得自Novacastra的抗-肌养蛋白抗体NCL-Dys1。通过确定肌聚糖复合物(β,γ)和/或神经元NOS的组分的表达,也可以分析肌养蛋白阳性纤维的百分比。

在某些实施方案中,使用本发明的反义寡核苷酸(诸如eteplirsen)的治疗会减慢或减轻在没有治疗时可以预见到的具有DMD的患者中的进行性呼吸肌功能障碍和/或衰竭。在一个实施方案中,使用本发明的反义寡核苷酸的治疗可以减少或消除在没有治疗时可以预见到的对换气辅助设备的需要。在一个实施方案中,用于跟踪疾病进程的呼吸功能的测量以及潜在治疗干预的评价包括最大吸气压(MIP)、最大呼气压(MEP)和用力肺活量(FVC)。MIP和MEP分别测量一个人在吸气和呼气过程中可以产生的压力的水平,并且是呼吸肌强度的灵敏量度。MIP是膈肌无力的量度。

在一个实施方案中,MEP可能在其它肺功能试验(包括MIP和FVC)的变化之前下降。在另一个实施方案中,MEP可以是呼吸功能障碍的早期指示。在另一个实施方案中,FVC可以用于测量在最大吸气以后在用力呼气过程中排出的空气的总体积。在具有DMD的患者中,FVC伴随着身体生长而增加,直到十几岁早期。但是,随着生长减慢或被疾病进展阻碍和肌无力发展,肺活量进入下降期并在10-12岁以后以每年约8-8.5%的平均速率下降。在另一个实施方案中,预测的MIP%(针对重量调节的MIP)、预测的MEP%(针对年龄调节的MEP)和预测的FVC%(针对年龄和高度调节的FVC)是支持性分析。

“分离的”是指这样的材料:其实质上或基本上不含有在它的天然状态通常伴随它的组分。例如,本文中使用的“分离的多核苷酸”可以表示这样的多核苷酸:其已经经过纯化或从在天然存在状态侧接它的序列除去,例如,已经从通常与该片段相邻的序列除去的DNA片段。

本文中使用的“足够长度”表示这样的反义寡核苷酸:其与靶肌养蛋白前-mRNA中的至少8个、更典型地8-30个连续核苷碱基互补。在某些实施方案中,足够长度的反义寡核苷酸包括靶肌养蛋白前-mRNA中的至少8、9、10、11、12、13、14或15个连续核苷碱基。在其它实施方案中,足够长度的反义寡核苷酸包括靶肌养蛋白前-mRNA中的至少16、17、18、19、20、21、22、23、24或25个连续核苷碱基。足够长度的反义寡核苷酸至少具有能够与肌养蛋白基因的外显子1-79中的任意一个或多个特异性地杂交的最小数目的核苷酸。优选地,本发明的反义寡核苷酸具有能够与人肌养蛋白基因的外显子44、45、46、47、48、49、50、51、52、53、54、55、56或8中的任意一个或多个特异性地杂交的最小数目的核苷酸。优选地,足够长度的寡核苷酸是约10至约50个核苷酸的长度,包括10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30、31、32、33、34、35、36、37、38、39和40或更多个核苷酸的寡核苷酸。在一个实施方案中,足够长度的寡核苷酸是10至约30个核苷酸的长度。在另一个实施方案中,足够长度的寡核苷酸是15至约25个核苷酸的长度。在另一个实施方案中,足够长度的寡核苷酸是20-30或20-50个核苷酸的长度。在另一个实施方案中,足够长度的寡核苷酸是25-28个核苷酸的长度。

“增强”或“增加”或“刺激”通常表示,与无反义化合物或对照化合物造成的应答相比,一种或多种反义化合物或组合物在细胞或受试者中产生或造成更大生理学应答(即下游效应)的能力。除了从本领域中的理解和本文中的描述显而易见的其它应答以外,可测量的生理学应答可以包括功能形式的肌养蛋白的表达增加、或肌肉组织中肌养蛋白相关的生物活性的增加。也可以测量增加的肌肉功能,包括肌肉功能增加或改善约1%、2%、3%、4%、5%、6%、7%、8%、9%、10%、11%、12%、13%、14%、15%、16%、17%、18%、19%、20%、25%、30%、35%、40%、45%、50%、55%、60%、65%、70%、75%、80%、85%、90%、95%或100%。也可以测量表达功能性肌养蛋白的肌纤维的百分比,包括在约1%、2%、%、15%、16%、17%、18%、19%、20%、25%、30%、35%、40%、45%、50%、55%、60%、65%、70%、75%、80%、85%、90%、95%或100%的肌纤维中增加的肌养蛋白表达。例如,已经证实,如果25-30%的纤维表达肌养蛋白,则可以发生约40%的肌肉功能改善(参见,例如,DelloRusso等人,Proc Natl Acad Sci USA 99:12979-12984,2002)。“增加的”或“增强的”量通常是“统计上显著的”量,且可以包括这样的增加:其为无反义化合物(缺乏试剂)或对照化合物产生的量的1.1、1.2、2、3、4、5、6、7、8、9、10、15、20、30、40、50或更多倍(如500、1000倍)(包括所有整数,和在之间且大于1的小数点),例如,1.5、1.6、1.7、1.8等)。

术语“减少”或“抑制”通常可能涉及本发明的一种或多种反义化合物的“减少”相关生理学应答或细胞应答(诸如本文描述的疾病或病症的症状)的能力,如根据诊断领域的常规技术所测量的。相关生理学应答或细胞应答(体内或体外)对于本领域技术人员而言是显而易见的,且可以包括肌营养不良的症状或病状的减少,或缺陷形式的肌养蛋白(诸如在具有DMD或BMD的个体中表达的改变形式的肌养蛋白)的表达的减少。与无反义化合物或对照组合物产生的应答相比,应答的“减少”可能是统计上显著的,并且可能包括1%、2%、3%、4%、5%、6%、7%、8%、9%、10%、11%、12%、13%、14%、15%、16%、17%、18%、19%、20%、25%、30%、35%、40%、45%、50%、55%、60%、65%、70%、75%、80%、85%、90%、95%或100%的减少,包括之间的所有整数。

还包括能够表达本发明的寡聚肌养蛋白靶向序列的载体递送系统,诸如如本文中所述的表达包含表3和4所示的序列中的任意一个或多个、及其变体的多核苷酸序列的载体。“载体”或“核酸构建体”是指从例如可以在其中插入或克隆多核苷酸的质粒、细菌噬菌体、酵母或病毒衍生出的多核苷酸分子,优选DNA分子。载体优选地含有一个或多个独特的限制位点,并且可以能够在限定的宿主细胞(包括靶细胞或组织或其祖细胞或组织)中自主复制,或与限定的宿主的基因组整合,使得克隆的序列是可再现的。因此,载体可以是自主复制载体,即作为染色体外实体而存在的载体,其复制独立于染色体复制,例如,线性或闭环质粒、染色体外元件、微染色体或人工染色体。载体可以含有用于确保自我复制的任何装置。可替换地,载体可以是当被导入宿主细胞中时整合进基因组中并与它已经整合进的染色体一起复制的载体。

个体(例如哺乳动物,诸如人)或细胞的“治疗”是在改变个体或细胞天然进程的尝试中使用的任何类型的干扰。治疗包括、但不限于施用药物组合物,且可以预防性地实施,或在病理性事件开始或与病原体接触之后实施。治疗包括对与肌养蛋白相关的疾病或病症的症状或病理的任何合乎需要的效应(如在某些形式的肌营养不良中),且可以包括例如正在治疗的疾病或病症的一种或多种可测量标志物的最小变化或改善。也包括“预防性的”治疗,其可以旨在降低正在治疗的疾病或病症的发展速度、延迟该疾病或病症的发作、或降低它的发作的严重程度。“治疗”或“预防”不一定指示完全根除、治愈或预防疾病或病症或其相关症状。

在一个实施方案中,使用本发明的反义寡核苷酸的治疗会增加新颖肌养蛋白产生,并减慢或减少在没有治疗时可以预见到的离床活动的缺失。例如,治疗可能稳定、维持、改善或增加受试者的行走能力(例如,离床活动的稳定)。在某些实施方案中,治疗会维持或增加患者的稳定行走距离,如通过例如McDonald,等人(Muscle Nerve,2010;42:966-74,通过引用并入本文)描述的6分钟行走试验(6MWT)所测量的。6分钟行走距离(6MWD)的变化可以表达为绝对值、变化百分比或预测值百分比的变化。在某些实施方案中,治疗会维持或改善受试者与健康等同者相比在6MWT中的稳定行走距离的20%短缺。通过计算预测值百分比,可以确定与健康等同者的典型表现相比DMD患者在6MWT中的表现。例如,对于男性,可以使用下述方程式计算预测的6MWD百分比:196.72+(39.81x年龄)-(1.36x年龄2)+(132.28x以米为单位的高度)。对于女性,可以使用下述方程式计算预测的6MWD百分比:188.61+(51.50x年龄)-(1.86x年龄2)+(86.10x以米为单位的高度)(Henricson等人.PLoS Curr.,2012,第2版,通过引用并入本文)。在某些实施方案中,使用反义寡核苷酸的治疗会使患者的稳定行走距离从基线增加至大于3、5、6、7、8、9、10、15、20、25、30或50米(包括之间的所有整数)。

在具有DMD的患者中肌肉功能的丧失可能发生在正常儿童生长和发育的背景下。实际上,更年幼的具有DMD的儿童可能在约1年的病程中表现出在6MWT中行走的距离的增加,尽管存在进行性肌肉病损。在某些实施方案中,将得自具有DMD的患者的6MWD与通常发育中的对照受试者对比,并与得自年龄和性别匹配的受试者的现有标准数据对比。在某些实施方案中,使用拟合至标准数据的基于年龄和高度的方程式,可以解释正常生长和发育。这样的方程式可以用于将6MWD转化成具有DMD的受试者中的预测值的百分比。在某些实施方案中,预测的6MWD百分比数据的分析代表了解释正常生长和发育的方法,且可以表明在早期(例如,小于或等于7岁)功能的增加代表具有DMD的患者中稳定的能力,而不是改善的能力(Henricson等人.PLoS Curr.,2012,第2版,通过引用并入本文)。

本文中使用的“受试者”包括可用本发明的反义化合物治疗的表现出症状或处于表现出症状的风险中的任何动物,例如这样的受试者:其具有DMD或BMD或与这些病症相关的任何症状(例如,肌纤维损失),或处于具有DMD或BMD或与这些病症相关的任何症状(例如,肌纤维损失)的风险中。合适的受试者(患者)包括实验动物(诸如小鼠、大鼠、兔或豚鼠)、家畜和家养动物或宠物(诸如猫或狗)。包括非人灵长类动物,且优选人患者。

本文中使用的“儿科患者”是1-21(包括端点)岁的患者。

“烷基”或“亚烷基”二者表示含有1-18个碳的饱和直链或支链烃基。例子包括、但不限于甲基、乙基、丙基、异丙基、丁基、异丁基、叔丁基、正戊基和正己基。术语“低级烷基”表示含有1-8个碳的如本文中定义的烷基。

“烯基”表示含有2-18个碳且包含至少一个碳碳双键的不饱和直链或支链烃基。例子包括、但不限于乙烯基、丙烯基、异丙烯基、丁烯基、异丁烯基、叔丁烯基、正戊烯基和正己烯基。术语“低级烯基”表示含有2-8个碳的如本文中定义的烯基。

“炔基”表示含有2-18个碳且包含至少一个碳碳三键的不饱和直链或支链烃基。例子包括、但不限于乙炔基、丙炔基、异丙炔基、丁炔基、异丁炔基、叔丁炔基、戊炔基和己炔基。术语“低级炔基”表示含有2-8个碳的如本文中定义的炔基。

“环烷基”表示单环或多环烷基残基。例子包括、但不限于环丁基、环戊基、环己基、环庚基和环辛基。

“芳基”表示含有-18个碳且具有一个或多个闭环的环状芳烃部分。例子包括、但不限于苯基、苄基、萘基、蒽基、菲基和联苯基。

“芳烷基”表示式RaRb的残基,其中Ra是如上所定义的亚烷基链,且Rb是一个或多个如上所定义的芳基残基,例如,苄基、二苯基甲基等。

“硫代烷氧基”表示式-SRc的残基,其中Rc是如本文中定义的烷基残基。术语“低级硫代烷氧基”表示含有1-8个碳的如本文中定义的烷氧基。

“烷氧基”表示式-ORda的残基,其中Rd是如本文中定义的烷基残基。术语“低级烷氧基”表示含有1-8个碳的如本文中定义的烷氧基。烷氧基的例子包括、但不限于甲氧基和乙氧基。

“烷氧基烷基”表示被烷氧基取代的烷基。

“羰基”表示C(=O)-残基。

“胍基(Guanidynyl)”表示H2N(C=NH2)-NH-残基。

“脒基(Amidinyl)”表示H2N(C=NH2)CH-残基。

“氨基”表示NH2残基。

“烷基氨基”表示式-NHRd或-NRdRd的残基,其中每个Rd独立地是如本文中定义的烷基残基。术语“低级烷基氨基”表示含有1-8个碳的如本文中定义的烷基氨基。

“杂环”是指5-7元单环或7-10元双环杂环,其是饱和的、不饱和的或芳族的,且其含有1-4个独立地选自氮、氧和硫的杂原子,且其中氮和硫杂原子可以任选地被氧化,且氮杂原子可以任选地被季铵化,包括其中任何上述杂环与苯环稠合的双环。杂环可以通过任何杂原子或碳原子连接。杂环包括如下定义的杂芳基。因而,除了以下所列的杂芳基之外,杂环也包括吗啉基、吡咯烷酮基、吡咯烷基、哌啶基、哌嗪基(piperizinyl)、乙内酰脲基、戊内酰胺基、氧杂环丙基、氧杂环丁基、四氢呋喃基、四氢吡喃基、四氢吡啶基、四氢噻吩基、四氢噻喃基、四氢嘧啶基、四氢噻喃基等。

“杂芳基”是指具有至少一个选自氮、氧和硫的杂原子并含有至少1个碳原子的5-10元芳族杂环,包括单环和双环系统。代表性的杂芳基是吡啶基、呋喃基、苯并呋喃基、噻吩基、苯并噻吩基、喹啉基、吡咯基、吲哚基、噁唑基、苯并噁唑基、咪唑基、苯并咪唑基、噻唑基、苯并噻唑基、异噁唑基、吡唑基、异噻唑基、哒嗪基、嘧啶基、吡嗪基、三嗪基、噌啉基、酞嗪基和喹唑啉基。

术语“任选地取代的烷基”、“任选地取代的烯基”、“任选地取代的烷氧基”、“任选地取代的硫代烷氧基”、“任选地取代的烷基氨基”、“任选地取代的低级烷基”、“任选地取代的低级烯基”、“任选地取代的低级烷氧基”、“任选地取代的低级硫代烷氧基”、“任选地取代的低级烷基氨基”和“任选地取代的杂环基”是指,当被取代时,至少一个氢原子被取代基替换。在氧代取代基(=O)的情况下,两个氢原子都替换。在这点上,取代基包括:氘、任选地被取代的烷基、任选地被取代的烯基、任选地被取代的炔基、任选地被取代的芳基、任选地被取代的杂环、任选地被取代的环烷基、氧代、卤素、-CN、-ORx、NRxRy、NRxC(=O)Ry、NRxSO2Ry、-NRxC(=O)NRxRy、C(=O)Rx、C(=O)ORx、C(=O)NRxRy、-SOmRx和-SOmNRxRy,其中m是0、1或2,Rx和Ry是相同的或不同的,且独立地是氢、任选地被取代的烷基、任选地被取代的烯基、任选地被取代的炔基、任选地被取代的芳基、任选地被取代的杂环或任选地取代的环烷基,且所述任选地取代的烷基、任选地被取代的烯基、任选地被取代的炔基、任选地被取代的芳基、任选地被取代的杂环和任选地取代的环烷基取代基中的每一个可以进一步被氧代、卤素、-CN、-ORx、NRxRy、NRxC(=O)Ry、NRxSO2Ry、-NRxC(=O)NRxRy、C(=O)Rx、C(=O)ORx、C(=O)NRxRy、-SOmRx和-SOmNRxRy中的一个或多个取代。

提出并公开了反义分子命名系统以区分不同的反义分子(参见Mann等人,(2002)JGen Med 4,644-654)。当试验几种稍微不同的反义分子(都针对相同靶区域,如下所示)时,该命名法变得特别相关:

H#A/D(x:y)。

第一个字母指示物种(例如H:人,M:鼠,C:犬科动物)。“#”指示靶肌养蛋白外显子编号。“A/D”分别指示在外显子的开始和末尾处的受体或供体剪接位点。(x y)代表退火配对物,其中“-”或“+”分别指示内含子或外显子序列。例如,A(-6+18)指示在靶外显子前面的内含子的最后6个碱基和靶外显子的前18个碱基。最靠近的剪接位点是使得这些配对物前面具有“A”的受体。描述在供体剪接位点处的退火配对物是D(+2-18),其中最后2个外显子碱基和前18个内含子碱基对应于反义分子的退火位点。全外显子的退火配对物由A(+65+85)表示,其为从该外显子的起点第65个和第85个核苷酸之间的位点。

II.构建反义寡核苷酸

本发明的示例性实施方案涉及具有含磷主链键的吗啉代寡核苷酸,如图1A-1C所示。优选的是磷酰二胺-连接的吗啉代寡核苷酸,诸如在图1C中所示,根据本发明的一个方面,其被修饰成含有带正电荷的基团,优选地在它的主链键的10%-50%。具有不带电荷的主链键的吗啉代寡核苷酸(包括反义寡核苷酸)详述在例如(Summerton和Weller 1997)和共同拥有的美国专利号5,698,685、5,217,866、5,142,047、5,034,506、5,166,315、5,185、444、5,521,063、5,506,337、8,076,476、8,299,206和7,943,762中,它们都明确地通过引用并入本文。

基于吗啉代的亚基的重要性能包括:1)以寡聚体形式通过稳定的、不带电荷的或带正电荷的主链键连接的能力;2)支持核苷酸碱基(例如腺嘌呤、胞嘧啶、鸟嘌呤、胸苷、尿嘧啶和肌苷)使得形成的聚合物可以与互补碱基靶核酸(包括靶RNA)杂交的能力,在相对短的寡核苷酸(例如,10-15个碱基)中,Tm值高于约45℃;3)寡核苷酸主动或被动运输进哺乳动物细胞中的能力;和4)反义寡核苷酸:RNA异源双链体分别耐受RNA酶和RNA酶H降解的能力。

要求保护的主题的反义寡核苷酸的示例性主链结构包括在图1D-G中所示的吗啉代亚基类型,每个通过不带电荷的或带正电荷的、含磷的亚基键而连接。图1D显示了形成五个原子重复单元主链的含磷键,其中吗啉代环通过1-原子磷酰胺键而连接。图1E显示了产生6原子重复单元主链的键。在该结构中,将5′吗啉代碳与磷基团连接的原子Y可以是硫、氮、碳,或优选地是氧。从磷伸出的X部分可以是氟、烷基或取代的烷基、烷氧基或取代的烷氧基、硫代烷氧基或取代的硫代烷氧基,或未被取代的、单取代的或二取代的氮,包括环状结构,诸如吗啉或哌啶。烷基、烷氧基和硫代烷氧基优选地包括1-6个碳原子。Z部分是硫或氧,优选地是氧。

在图1F和1G中所示的键是为7原子单元长度主链而设计的。在结构1F中,X部分如结构1E所示,且Y部分可以是亚甲基、硫,或优选地是氧。在结构1G中,X和Y部分如结构1E所示。特别优选的吗啉代寡核苷酸包括由图1E所示的形式的吗啉代亚基结构组成的那些,其中X=NH2、N(CH3)2或1-哌嗪或其它带电荷的基团,Y=O,且Z=O。

根据本发明的一个方面,可以将基本上不带电荷的寡核苷酸修饰成包括带电荷的键,例如,每2-5个不带电荷的键中至多约1个带电荷的键,诸如每10个不带电荷的键中约4-5个带电荷的键。在某些实施方案中,当约25%的主链键是阳离子型时,可以观察到反义活性的最佳改善。在某些实施方案中,用小数目例如10-20%的阳离子键,或在阳离子键的数目是在50-80%的范围内(诸如约60%)的情况下,可以观察到增强。

提供了具有任何数目的阳离子键的寡聚体,包括全阳离子连接的寡聚体。但是,优选地,寡聚体是部分带电荷的,具有例如10%-80%。在优选D实施方案中,约10%至60%和优选地20%至50%的键是阳离子的。

在一个实施方案中,阳离子键沿着主链散布。部分带电荷的寡聚体优选地含有至少两个连续的不带电荷的键;也就是说,寡聚体优选地沿着它的整个长度不具有严格交替的模式。

还考虑具有阳离子键块和不带电荷的键块的寡聚体;例如,中央不带电荷的键块可以侧接阳离子键块,或反之亦然。在一个实施方案中,寡聚体具有大约等长的5’、3’和中心区域,且在中心区域中的阳离子键的百分比大于约50%,优选地大于约70%。

在某些实施方案中,采用上文所引用的参考文献中和下文关于具有混合物或不带电荷的和阳离子的主链键的寡核苷酸的合成详述的方法,通过逐步固相合成,可以制备反义化合物。在某些情况下,可能合乎需要的是,向反义化合物添加另外的化学部分,例如,为了增强药代动力学或促进化合物的捕捉或检测。根据标准合成方法,可以共价地连接这些部分。例如,添加聚乙二醇部分或其它亲水聚合物,例如,具有1-100个单体亚基的亲水聚合物,可用于增强溶解性。

为了检测的目的,可以连接报告部分,诸如荧光素或放射性地标记的基团。可替换地,与寡聚体连接的报告标记可以是能够结合标记的抗体或抗生蛋白链菌素的配体,诸如抗原或生物素。在选择用于连接或修饰反义化合物的部分时,当然通常期望选择生物可相容的且可能被受试者耐受且没有不希望的副作用的基团的化合物。

用于反义应用的寡聚体的长度范围通常是约10至约50个亚基,更优选约10-30个亚基,且通常是15-25个碱基。例如,本发明具有19-20个亚基(对于反义化合物而言有用的长度)的寡聚体可以理想地具有2-10个(例如,4-8个)阳离子键,剩余的是不带电荷的键。具有14-15个亚基的寡聚体可以理想地具有2-7个(例如,3、4或5个)阳离子键,剩余的是不带电荷的键。在一个优选的实施方案中,所述寡聚体具有25-28个亚基。

每个吗啉代环结构支持碱基配对部分,以形成这样的碱基配对部分的序列:其通常被设计成与细胞中或正在治疗的受试者中选定的反义靶标杂交。碱基配对部分可以是在天然DNA或RNA(例如,A、G、C、T或U)或类似物诸如次黄嘌呤(核苷肌苷的碱基组分)或5-甲基胞嘧啶中发现的嘌呤或嘧啶。

如上面所指出的,某些实施方案涉及包含新颖的亚基间键的寡聚体,包括PMO-X寡聚体和具有经修饰的末端基团的那些。在某些实施方案中,这些寡聚体与对应的未修饰的寡聚体相比对DNA和RNA具有更高的亲和力,且与具有其它亚基间键的寡聚体相比表现出改善的细胞递送、效能和/或组织分布性能。在以下讨论中更详细地描述了各种键类型和寡聚体的结构特征和性能。这些和有关的寡聚体的合成描述在共同拥有的美国申请号13/118,298中,其通过引用整体并入。

在某些实施方案中,本发明提供了寡核苷酸及其药学上可接受的盐,所述寡核苷酸具有与人疾病的相关靶序列互补的序列、且包含具有下式的核苷酸序列:

其中Nu是核苷碱基;

R1具有下式

q是0、1或2;

R2选自氢、C1-C5烷基、C1-C5芳烷基和甲脒基,且

R3选自氢、C1-C10酰基、C1-C10氨基酰基、天然的或非天然的α或β氨基酸的酰基部分、C1-C10芳烷基和C1-C10烷基,或者

R2和R3连接以形成5-7元环,其中所述环可以任选地被选自C1-C10烷基、苯基、卤素和C1-C10芳烷基的取代基取代;

R4选自电子对、氢、C1-C6烷基和C1-C6芳烷基;

Rx选自肌氨酰胺、羟基、核苷酸、细胞穿透肽部分和哌嗪基;

Ry选自氢、C1-C6烷基、核苷酸、细胞穿透肽部分、氨基酸、甲脒基和C1-C6酰基;且

Rz选自电子对、氢、C1-C6烷基和C1-C6酰基其药学可接受的盐。

Nu可以选自腺嘌呤、鸟嘌呤、胸腺嘧啶、尿嘧啶、胞嘧啶和次黄嘌呤。更优选地Nu是胸腺嘧啶或尿嘧啶。

在优选的实施方案中,本发明提供了一种寡核苷酸及其药学上可接受的盐,所述寡核苷酸包含具有下式的核苷酸序列:

其中Nu是核苷碱基;

R1选自R1’和R1”,其中R1’是二甲基-氨基,且R1”具有下式

其中至少一个R1是R1”;

q是0、1或2;前提条件是,至少一个R1是哌啶基部分;

R2选自氢、C1-C5烷基、C1-C5芳烷基和甲脒基,且

R3选自氢、C1-C10酰基、C1-C10氨基酰基、天然的或非天然的α或β氨基酸的酰基部分、C1-C10芳烷基和C1-C10烷基,或者

R2和R3连接以形成5-7元环,其中所述环可以任选地被选自C1-C10烷基、苯基、卤素和C1-C10芳烷基的取代基取代;

R4选自电子对、氢、C1-C6烷基和芳烷基;

Rx选自肌氨酰胺、羟基、核苷酸、细胞穿透肽部分和哌嗪基;

Ry选自氢、C1-C6烷基、核苷酸、细胞穿透肽部分、氨基酸、甲脒基和C1-C6酰基;和、

Rz选自电子对、氢、C1-C6烷基和C1-C6酰基其药学可接受的盐。

Nu可以选自腺嘌呤、鸟嘌呤、胸腺嘧啶、尿嘧啶、胞嘧啶和次黄嘌呤。更优选地Nu是胸腺嘧啶或尿嘧啶。

约90-50%的R1基团是二甲基氨基(即R1’)。更优选地,90-50%的R1基团是二甲基氨基。最优选地,约66%的R1基团是二甲基氨基。

R1”可以选自

优选地,所述寡核苷酸的至少一个核苷酸具有下式:

其中Rx、Ry、Rz和Nu如上所述。最优选地,Nu是胸腺嘧啶或尿嘧啶。

尽管胸腺嘧啶(T)是含有上述化学修饰的优选碱基配对部分(Nu或Pi),本领域技术人员已知的任何碱基亚基可以用作碱基配对部分。

当每个分子中的足够数目的对应位置被可以彼此氢键合的核苷酸占据时,所述寡核苷酸和所述DNA或RNA彼此互补。因而,“可特异性地杂交的”和“互补的”是这样的术语:其用于指示足够的互补性程度或精确配对,使得在所述寡核苷酸和所述DNA或RNA靶标之间发生稳定的和特异性的结合。本领域中会理解,反义分子的序列不需要与它的可特异性地杂交的靶序列的序列100%互补。当化合物与靶DNA或RNA分子的结合会干扰靶DNA或RNA的正常功能以造成效用的损失时,反义分子是可特异性地杂交的,并且存在足够的互补性程度以避免在希望特异性结合的条件下(即,就体内测定或治疗性处理而言,在生理条件下,和就体外测定而言,在其中进行测定的条件下)反义化合物与非靶序列的非特异性结合。

尽管以上方法可以用于选择能够从蛋白(其能够被缩短,而不影响它的生物学功能)内删除任意外显子的反义分子,但是所述外显子删除应当不会在缩短的转录的mRNA中导致读框移位。因而,如果在三个外显子的线性序列中,第一个外显子的末端编码密码子中的三个核苷酸中的两个且下一个外显子被删除,那么所述线性序列中的第三个外显子必须用能够完成密码子的核苷酸三联体的单个核苷酸开始。如果第三个外显子没有用单个核苷酸开始,将存在导致截短的或无功能的蛋白的产生的读框移位。

应当理解,在结构蛋白的外显子末端处的密码子排列可能不总是在密码子的末端处断裂,所以,可能需要从前-mRNA删除超过一个外显子以确保mRNA的框架内阅读。在这样的情况下,可能需要通过本发明的方法选择多个反义寡核苷酸,其中每个针对负责诱导要删除的外显子中的剪接的不同区域。

反义分子的长度可以变化,只要它能够选择性地结合前-mRNA分子内的预期位置即可。根据本文描述的选择规程,可以确定这样的序列的长度。通常,所述反义分子将是约10个核苷酸的长度直到约50个核苷酸的长度。但是,应当明白,在该范围内的核苷酸的任何长度可以用在所述方法中。优选地,反义分子的长度是在10-30个核苷酸长度之间。

最常见的产生反义分子的方法是2′羟基核糖位置的甲基化,并且硫代磷酸酯主链的掺入会产生这样的分子:其表面上类似于RNA,但是其对核酸酶降解的抵抗力高得多。

为了避免与反义分子形成双链体的过程中前-mRNA的降解,可以改造在所述方法中使用的反义分子,以使内源性RNA酶H的切割最小化或被阻止。该特性是非常优选的,因为用未甲基化的寡核苷酸(在细胞内或在含有RNA酶H的粗提取物中)处理RNA会导致前-mRNA:反义寡核苷酸双链体的降解。在本发明的方法中可以使用任何形式的能够绕过或不会诱导这样的降解的经修饰的反义分子。当与RNA形成双链体时不会被细胞的RNA酶H切割的反义分子的一个例子是2′-O-甲基衍生物。2′-O-甲基-寡核糖核苷酸在细胞环境中和在动物组织中是非常稳定的,并且它们与RNA的双链体具有比它们的核糖-或脱氧核糖-相应物更高的Tm值。

根据已知技术(参见,例如,美国专利号5,149,797),可以制备不会活化RNA酶H的反义分子。这样的反义分子(其可以是脱氧核糖核苷酸或核糖核苷酸序列)仅仅含有在空间上阻碍或阻止RNA酶H与双链体分子的结合的任何结构修饰,所述双链体分子含有寡核苷酸作为其一个成员,所述结构修饰不会实质上阻碍或破坏双链体形成。因为寡核苷酸的参与双链体形成的部分实质上不同于参与RNA酶H与其结合的那些部分,可得到众多不会活化RNA酶H的反义分子。例如,这样的反义分子可以是寡核苷酸,其中至少一个或所有的核苷酸间桥连磷酸酯残基是经修饰的磷酸酯,诸如甲基膦酸酯、甲基硫代磷酸酯、phosphoromorpholidate、phosphoropiperazidate和氨基磷酸酯。例如,每隔一个核苷酸间桥连磷酸酯残基可以如所述进行修饰。在另一个非限制性实施例中,这样的反义分子是其中至少一个或所有的核苷酸含有2′低级烷基部分(例如,C1-C4、直链或支链、饱和的或不饱和的烷基,诸如甲基、乙基、乙烯基、丙基、1-丙烯基、2-丙烯基和异丙基)的分子。例如,每隔一个核苷酸可以如所述进行修饰。

尽管反义寡核苷酸是反义分子的优选形式,本发明包括其它寡聚体反义分子,包括、但不限于寡核苷酸模拟物,诸如下述的那些。

在本发明中有用的优选反义化合物的具体例子包括含有经修饰的主链或非天然的核苷间键的寡核苷酸。如在本说明书中定义的,具有经修饰的主链的寡核苷酸包括在主链中保留磷原子的那些和在主链中不具有磷原子的那些。为了本说明书的目的,且如在本领域中有时提及的,在它们的核苷间主链中不具有磷原子的经修饰的寡核苷酸也可以视作寡核苷。

在其它优选的寡核苷酸模拟物中,核苷酸单元的糖和核苷间键(即,主链)被新颖的基团替代。维持碱基单元用于与适当的核酸目标化合物杂交。一种这样的寡聚体化合物(已经被证实具有优良杂交性能的寡核苷酸模拟物)被称作肽核酸(PNA)。在PNA化合物中,寡核苷酸的糖-主链被含有酰胺的主链(特别是氨基乙基甘氨酸主链)替换。核-碱基被保留且直接地或间接地结合主链的酰胺部分的氮杂氮原子。

经修饰的寡核苷酸还可以含有一个或多个被取代的糖部分。寡核苷酸还可以包括核苷碱基(在本领域中经常简称为“碱基”)修饰或置换。对于增加本发明的寡聚体化合物的结合亲和力而言,某些核-碱基是特别有用的。这些包括5-取代的嘧啶、6-氮杂嘧啶以及N-2、N-6和O-6取代的嘌呤,包括2-氨基丙基腺嘌呤、5-丙炔基尿嘧啶和5-丙炔基胞嘧啶。已经证实5-甲基胞嘧啶置换会使核酸双链体稳定性增加0.6-1.2℃,且是目前优选的碱基置换,甚至更特别地当与2′-O-甲氧基乙基糖修饰组合时。

本发明的寡核苷酸的另一种修饰涉及给所述寡核苷酸化学连接一个或多个部分或缀合物,所述部分或缀合物增强所述寡核苷酸的活性、细胞分布或细胞摄取。这样的部分包括、但不限于:脂质部分诸如胆固醇部分,胆酸,硫醚,例如,己基-5-三苯甲基硫醇,硫代胆甾醇,脂族链,例如,十二烷二醇或十一烷基残基,磷脂,例如,双-十六烷基-消旋-甘油或三乙基铵1,2-二-O-十六烷基-消旋-甘油-3-H-膦酸盐,多胺或聚乙二醇链,或金刚烷乙酸,棕榈基部分,或十八烷基胺或己基氨基-羰基-羟胆甾醇部分。

给定的化合物中的所有位置不一定均匀地修饰,且实际上超过一种前述修饰可以掺入在单一化合物中或甚至在寡核苷酸内的单个核苷处。本发明还包括其为嵌合化合物的反义化合物。在本发明的上下文中,“嵌合的”反义化合物或“嵌合体”是反义分子,特别是寡核苷酸,其含有2个或更多个化学上不同的区域,每个区域由至少一个单体单元(即,就寡核苷酸化合物而言,核苷酸)构成。这些寡核苷酸通常含有至少一个区域,其中所述寡核苷酸经过修饰从而赋予增加的对核酸酶降解的抵抗力、增加的细胞摄取,和用于增加对靶核酸的结合亲和力的另一个区域。

III.肽转运蛋白

本发明的反义化合物可以包括与CPP缀合的寡核苷酸部分,优选有效地增强化合物向细胞中的运输的、富含精氨酸的肽运输部分。所述运输部分优选地连接至寡聚体的末端,如例如在图1B和1C中显示的。所述肽具有在给定细胞培养物群体的30%、40%、50%、60%、70%、80%、90%或100%(包括之间的所有整数)的细胞内诱导细胞穿透的能力,并允许在全身施用后在多个体内组织中的大分子易位。在一个实施方案中,所述细胞穿透肽可以是富含精氨酸的肽转运蛋白。在另一个实施方案中,所述细胞穿透肽可以是穿透素(Penetratin)或Tat肽。这些肽是本领域众所周知的,且公开在例如美国公开号2010-0016215A1中,其通过引用整体并入。将肽与反义寡核苷酸缀合的一个特别优选的方案可以参见PCT公开WO2012/150960,其通过引用整体并入。本发明的肽缀合的寡核苷酸的一个优选的实施方案利用甘氨酸作为CPP和反义寡核苷酸之间的接头。例如,一种优选的肽缀合的PMO由R6-G-PMO组成。

已经证实,与在没有连接的运输部分存在下寡聚体的摄取相比,如上所述的运输部分会极大地增强连接的寡聚体的细胞进入。与未缀合的化合物相比,摄取优选地增强至少10倍,且更优选20倍。

富含精氨酸的肽转运蛋白(即,细胞穿透肽)的应用在实践本发明中是特别有用的。已经证实某些肽转运蛋白非常有效地将反义化合物递送进原代细胞(包括肌细胞)中(Marshall,Oda等人.2007;Jearawiriyapaisam,Moulton等人.2008;Wu,Moulton等人.2008)。此外,与其它已知肽转运蛋白诸如穿透素和Tat肽相比,当与反义PMO缀合时,本文描述的肽转运蛋白表现出增强的改变几种基因转录物的剪接的能力(Marshall,Oda等人.2007)。

在下面表1中给出了示例性的肽转运蛋白,不包括接头。

表1.示例性的肽转运蛋白

名称(命名) 序列 SEQ ID NO<sup>A</sup>
rTAT RRRQRRKKR 876
Tat RKKRRQRRR 877
R<sub>9</sub>F<sub>2</sub> RRRRRRRRRFF 878
R<sub>5</sub>F<sub>2</sub>R<sub>4</sub> RRRRRFFRRRR 879
R<sub>4</sub> RRRR 880
R<sub>5</sub> RRRRR 881
R<sub>6</sub> RRRRRR 882
R<sub>7</sub> RRRRRRR 883
R<sub>8</sub> RRRRRRRR 884
R<sub>9</sub> RRRRRRRRR 885
(RX)<sub>8</sub> RXRXRXRXRXRXRXRX 886
(RAhxR)<sub>4</sub>;(P007) RAhxRRAhxRRAhxRRAhxR 887
(RAhxR)<sub>5</sub>;(CP04057) RAhxRRAhxRRAhxRRAhxRRAhxR 888
(RAhxRRBR)<sub>2</sub>;(CP06062) RAhxRRBRRAhxRRBR 889
(RAR)<sub>4</sub>F<sub>2</sub> RARRARRARRARFF 890
(RGR)<sub>4</sub>F<sub>2</sub> RGRRGRRGRRGRFF 891

A分配给SEQ ID NO的序列不包括连接部分(例如,C、G、P、Ahx、B、AhxB,其中Ahx和B分别表示6-氨基己酸和β-丙氨酸)。

IV.制剂和治疗

在某些实施方案中,本发明提供了适合用于治疗性递送如本文中所述的反义寡聚体的制剂和组合物。因此,在某些实施方案中,本发明提供了药学上可接受的组合物,其包含治疗有效量的一种或多种本文描述的寡聚体,所述寡聚体与一种或多种药学上可接受的载体(添加剂)和/或稀释剂一起配制。尽管可能单独施用本发明的寡聚体,但是优选的是,施用所述化合物作为药物制剂(组合物)。

本发明的组合物可以单独地或与另一种治疗剂联合地施用。可以在施用本发明的组合物之前、并行地或随后施用所述另一种治疗剂。例如,所述组合物可以与类固醇和/或抗生素联合施用。所述类固醇可以是糖皮质激素或泼尼松。糖皮质激素诸如皮质醇控制碳水化合物、脂肪和蛋白代谢,并且通过阻止磷脂释放、减少嗜酸性粒细胞作用和许多其它机制而抗炎。盐皮质激素诸如醛固酮控制电解质和水的水平,主要是通过促进钠在肾中的保留。皮质类固醇是一类化学物质,其包括在脊椎动物的肾上腺皮质中天然地产生的类固醇激素和在实验室中合成的这些激素的类似物。皮质类固醇参与宽范围的生理学过程,包括应激应答、免疫应答和炎症的调节、碳水化合物代谢、蛋白分解代谢、血液电解质水平和行为。皮质类固醇包括倍他米松、布地奈德、可的松、地塞米松、氢化可的松、甲泼尼龙、泼尼松龙和泼尼松。

可以施用的其它药剂包括兰尼碱受体的拮抗剂,诸如丹曲林,其已经被证实会增强患者细胞和DMD小鼠模型中的反义介导的外显子跳跃(G.Kendall等人.Sci Tranl Med 4164ra160(2012),其通过引用并入本文)。

用于递送核酸分子的方法描述于例如Akhtar等人,1992,Trends Cell Bio.,2:139;和Delivery Strategies for Antisense Oligonucleotide Therapeutics,Akhtar编;Sullivan等人,PCT WO 94/02595。这些和其它方案可以用于递送基本上任何核酸分子,包括本发明的分离的寡聚体。

如下文详述的,本发明的药物组合物可以特别配制用于以固体或液体形式施用,包括适用于以下的那些:(1)口服施用,例如,灌服剂(水性或非水性溶液或混悬液),片剂,例如,用于含服、舌下、及全身吸收的那些,丸剂,粉剂,颗粒剂,用于应用至舌的糊剂;(2)胃肠外施用,例如,通过皮下、肌肉内、静脉内或硬膜外注射,例如,作为无菌溶液或混悬液,或持续释放制剂;(3)局部施用,例如,作为乳膏剂、软膏剂、或应用于皮肤的控释贴剂或喷雾剂;(4)阴道内地或直肠内地,例如,作为子宫托、乳膏剂或泡沫;(5)舌下地;(6)经眼地;(7)透皮地;或(8)鼻地。

本文使用的短语“药学上可接受的”表示这样的化合物、物质、组合物和/或剂型:在合理的医学判断范围内,其适用于接触人类和动物的组织,而没有过度的毒性、刺激、变应性应答或其它问题或并发症,与合理的收益/风险比相称。

本文中使用的短语“药学上可接受的载体”是指药学上可接受的物质、组合物或媒介物,例如液体或固体填充剂、稀释剂、赋形剂、生产助剂(例如,润滑剂、滑石、硬脂酸镁、硬脂酸钙或硬脂酸锌、或硬脂酸),或这样的溶剂包封材料:其参与将主题化合物从一个器官或身体部分运输或转运至另一个器官或身体部分。每种载体必须是“可接受的”,其含义是,与制剂的其它成分相容,且对患者无害。

可以充当药学上可接受的载体的材料的一些例子包括、但不限于:(1)糖类,诸如乳糖、葡萄糖和蔗糖;(2)淀粉类,诸如玉米淀粉和马铃薯淀粉;(3)纤维素和它的衍生物,诸如羧甲基纤维素钠、乙基纤维素和醋酸纤维素;(4)黄蓍胶粉末;(5)麦芽;(6)明胶;(7)滑石;(8)赋形剂,诸如可可脂和栓剂蜡;(9)油,诸如花生油、棉籽油、红花油、芝麻油、橄榄油、玉米油和大豆油;(10)二醇类,诸如丙二醇;(11)多元醇,诸如甘油、山梨醇、甘露醇和聚乙二醇;(12)酯类,诸如油酸乙酯和月桂酸乙酯;(13)琼脂;(14)缓冲剂,诸如氢氧化镁和氢氧化铝;(15)海藻酸;(16)无热原水;(17)等张盐水;(18)林格氏溶液;(19)乙醇;(20)pH缓冲溶液;(21)聚酯、聚碳酸酯和/或聚酸酐;和(22)在药物制剂中采用的其它无毒的相容物质。

适合用于与本发明的反义寡聚体一起配制的试剂的其它非限制性例子包括:PEG缀合的核酸,磷脂缀合的核酸,含有亲脂部分的核酸,硫代磷酸酯,可以增强药物向多种组织中的进入的P-糖蛋白抑制剂(诸如Pluronic P85);可生物降解的聚合物,诸如植入后持续释放递送的DL-丙交酯-乙交酯共聚物微球(Emerich,D F等人,1999,Cell Transplant,8,47-58)Alkermes,Inc.Cambridge,Mass.;和装载的纳米颗粒,诸如由聚丁基氰基丙烯酸酯制成的那些,其可以递送药物穿过血管脑屏障并可以改变神经元摄取机制(ProgNeuropsychopharmacol Biol Psychiatry,23,941-949,1999)。

本发明还表征了包含含有聚(乙二醇)脂质的表面修饰的脂质体(PEG-修饰的、支链的和直链的或它们的组合,或长循环脂质体或隐形脂质体)的组合物的用途。本发明的寡聚体也可以包含多种分子量的共价连接的PEG分子。这些制剂会提供增加药物在靶组织中的积累的方法。这类药物载体会耐受调理素作用和单核巨噬细胞系统(MPS或RES)的清除,由此实现封装的药物的更长血液循环时间和增强的组织暴露(Lasic等人.Chem.Rev.1995,95,2601-2627;Ishiwata等人,Chem.Pharm.Bull.1995,43,1005-1011)。已经证实这样的脂质体会选择性地积累于肿瘤中,推测是通过溢出和捕获在新血管化的靶组织中(Lasic等人,Science 1995,267,1275-1276;Oku等人,1995,Biochim.Biophys.Acta,1238,86-90)。特别是与已知在MPS的组织中积累的常规阳离子脂质体相比,长循环脂质体会增强DNA和RNA的药代动力学和药效动力学(Liu等人,J.Biol.Chem.1995,42,24864-24870;Choi等人,国际PCT公开号WO 96/10391;Ansell等人,国际PCT公开号WO 96/10390;Holland等人,国际PCT公开号WO 96/10392)。基于它们的避免在代谢活跃的MPS组织(诸如肝和脾)中积累的能力,与阳离子脂质体相比,长循环脂质体也可能在更大程度上保护药物免受核酸酶降解。

在另一个实施方案中,本发明包括制备用于递送的寡聚体组合物,如在美国专利号6,692,911、7,163,695和7,070,807中所述。在这点上,在一个实施方案中,本发明提供了在包含赖氨酸和组氨酸(HK)的共聚物的组合物(如在美国专利号7,163,695、7,070,807和6,692,911中所述)中的本发明的寡聚体,其是单独的或与PEG(例如,支链或直链PEG或二者的混合物)组合,与PEG和靶向部分组合、或与交联剂组合的前述任一种。在某些实施方案中,本发明提供了在包含葡萄糖酸修饰的聚组氨酸或葡糖酰化的聚组氨酸/转铁蛋白-聚赖氨酸的组合物中的反义寡聚体。本领域技术人员还会认识到,所述组合物内具有与His和Lys类似的特性的氨基酸可以被置换。

本文描述的寡聚体的某些实施方案可以含有碱性官能团,诸如氨基或烷基氨基,且因而能够与药学上可接受的酸形成药学上可接受的盐。在这方面,术语“药学上可接受的盐”表示本发明的化合物的相对无毒的、无机和有机酸加成盐。这些盐可以在施用媒介物或剂型制备过程中原位制备,或者如下制备:单独地使纯化的本发明的化合物以其游离碱形式与合适的有机或无机酸反应,并在后续纯化过程中分离如此形成的盐。代表性的盐包括:氢溴酸盐、盐酸盐、硫酸盐、硫酸氢盐、磷酸盐、硝酸盐、乙酸盐、戊酸盐、油酸盐、棕榈酸盐、硬脂酸盐、月桂酸盐、苯甲酸盐、乳酸盐、磷酸盐、甲苯磺酸盐、柠檬酸盐、马来酸盐、富马酸盐、琥珀酸盐、酒石酸盐、萘酸盐(napthylate)、甲磺酸盐、葡庚糖酸盐、乳糖酸盐和月桂基磺酸盐等(参见,例如,Berge等人(1977)“Pharmaceutical Salts”,J.Pharm.Sci.66:1-19)。

主题寡聚体的药学上可接受的盐包括所述化合物的常规无毒盐或季铵盐,例如,得自无毒的有机或无机酸。例如,这样的常规无毒的盐包括:从无机酸衍生出的那些,所述无机酸例如盐酸、氢溴酸、硫酸、氨基磺酸、磷酸、硝酸等;以及从有机酸制备的盐,所述有机酸例如乙酸、丙酸、琥珀酸、羟乙酸、硬脂酸、乳酸、苹果酸、酒石酸、柠檬酸、抗坏血酸、棕榈酸、马来酸、羟基马来酸、苯乙酸、谷氨酸、苯甲酸、水杨酸、对氨基苯磺酸、2-乙酰氧基苯甲酸、富马酸、甲苯磺酸、甲磺酸、乙烷二磺酸、草酸、羟乙磺酸等。

在某些实施方案中,本发明的寡聚体可以含有一个或多个酸性官能团,且因而能够与药学上可接受的碱形成药学上可接受的盐。在这些情况中,术语“药学上可接受的盐”表示本发明的化合物的相对无毒的、无机和有机碱加成盐。这些盐同样可以在施用媒介物或剂型制备过程中原位制备,或者如下制备:单独地使纯化的化合物以其游离酸形式与合适的碱(诸如药学上可接受的金属阳离子的氢氧化物、碳酸盐或碳酸氢盐)反应,与氨、或者与药学上可接受的有机伯、仲或叔胺反应。代表性的碱金属或碱土金属盐包括锂、钠、钾、钙、镁和铝盐等。可用于形成碱加成盐的代表性的有机胺包括:乙胺、二乙胺、乙二胺、乙醇胺、二乙醇胺、哌嗪等(参见,例如,Berge等人,出处同上)。

润湿剂、乳化剂和润滑剂(诸如月桂基硫酸钠和硬脂酸镁)、以及着色剂、脱模剂、包衣剂、甜味剂、矫味剂和芳香剂、防腐剂和抗氧化剂,也可以存在于所述组合物中。

药学上可接受的抗氧化剂的例子包括:(1)水溶性抗氧化剂,如抗坏血酸、盐酸半胱氨酸、硫酸氢钠、偏亚硫酸氢钠、亚硫酸钠等;(2)油溶性抗氧化剂,如抗坏血酸棕榈酸酯、丁羟茴醚(BHA)、丁羟甲苯(BHT)、卵磷脂、没食子酸丙酯、α-生育酚等;和(3)金属螯合剂,如柠檬酸、乙二胺四乙酸(EDTA)、山梨醇、酒石酸、磷酸等。

本发明的制剂包括适合于口服、鼻、局部(包括含服的和舌下)、直肠、阴道和/或胃肠外施用的那些。所述制剂可以方便地以单位剂型呈现,且可以通过药学领域众所周知的任意方法制备。可以与载体材料组合以产生单一剂型的活性成分的量将随正在治疗的宿主、特定施用模式而变化。可以与载体材料组合以产生单一剂型的活性成分的量通常是产生治疗效果的化合物的量。通常,在百分之一百中,该量的范围为约0.1%至约99%的活性成分,优选约5%至约70%,最优选约10%至约30%。

在某些实施方案中,本发明的制剂包含:赋形剂,其选自环糊精、纤维素、脂质体、胶束形成剂(例如,胆汁酸)和聚合载体(例如,聚酯和聚酸酐);和本发明的寡聚体。在某些实施方案中,前述的制剂使本发明的寡聚体是口服地生物可利用的。

制备这些制剂或组合物的方法包括使本发明的寡聚体与载体和任选的一种或多种助剂结合的步骤。一般而言,如下制备所述制剂:使本发明的化合物与液体载体或精细粉碎的固体载体或两者均匀地且密切地结合,然后,如果必要的话,使产品成形。

本发明的适合用于口服施用的制剂可以呈胶囊剂、扁囊剂、丸剂、片剂、锭剂(使用经调味的基质,通常为蔗糖和阿拉伯胶或黄蓍胶)、粉剂、颗粒剂的形式,或者作为在水性或非水性液体中的溶液或混悬液,或者作为水包油或油包水液体乳剂,或者作为酏剂或糖浆剂,或者作为软锭剂(使用惰性基质,诸如明胶和甘油、或蔗糖和阿拉伯胶)和/或作为口腔洗剂等,每种含有预定量的本发明化合物作为活性成分。本发明的寡聚体也可以作为大丸剂、药糖剂或糊剂施用。

在用于口服施用的本发明的固体剂型(胶囊剂、片剂、丸剂、糖衣丸、粉剂、颗粒、锭剂等)中,活性成分可以与一种或多种药学上可接受的载体(诸如柠檬酸钠或磷酸二钙)和/或任何以下物质混合:(1)填充剂或增量剂,诸如淀粉、乳糖、蔗糖、葡萄糖、甘露醇和/或硅酸;(2)粘合剂,例如,羧甲基纤维素、海藻酸盐、明胶、聚乙烯吡咯烷酮、蔗糖和/或阿拉伯胶;(3)保湿剂,诸如甘油;(4)崩解剂,诸如琼脂、碳酸钙、马铃薯或木薯淀粉、海藻酸、某些硅酸盐和碳酸钠;(5)溶液阻滞剂,诸如石蜡;(6)吸收促进剂,诸如季铵化合物和表面活性剂,诸如泊洛沙姆和月桂基硫酸钠;(7)润湿剂,例如,鲸蜡醇、单硬脂酸甘油酯和非离子型表面活性剂;(8)吸收剂,诸如高岭土和皂粘土粘土;(9)润滑剂,诸如滑石、硬脂酸钙、硬脂酸镁、固体聚乙二醇、月桂基硫酸钠、硬脂酸锌、硬脂酸钠、硬脂酸、及其混合物;(10)着色剂;和(11)控释剂诸如交聚维酮或乙基纤维素。在胶囊剂、片剂和丸剂的情况下,所述药物组合物还可以包含缓冲剂。类似类型的固体组合物还可以用作软和硬壳明胶胶囊中的填充剂,并使用诸如乳糖或奶糖以及高分子量聚乙二醇等的赋形剂。

通过任选地与一种或多种助剂一起压缩或模塑,可以制备片剂。使用粘合剂(例如,明胶或羟丙基甲基纤维素)、润滑剂、惰性稀释剂、防腐剂、崩解剂(例如,淀粉羟乙酸钠或交联的羧甲基纤维素钠)、表面活性剂或分散剂,可以制备压制的片剂。通过在合适的机械中模塑用惰性液体稀释剂润湿的粉末状化合物的混合物,可以制备模铸的片剂。

本发明的药物组合物的片剂和其它固体剂型(诸如糖衣丸、胶囊剂、丸剂和颗粒)可以任选地刻痕,或者用包衣剂和壳(诸如肠溶包衣和药物配制领域中众所周知的其它包衣剂)制备。它们也可使用例如各种比例的羟丙基甲基纤维素(以提供所需的释放曲线)、其它聚合物基质、脂质体和/或微球体来配制,从而提供其中的活性成分的缓慢释放或控制释放。它们可以配制用于快速释放,例如,冷冻干燥。它们可以如下灭菌:例如,通过细菌截留滤器而过滤,或通过包含可溶于无菌水的无菌固体组合物形式的灭菌剂,或通过在临用前包含某些其它无菌可注射的介质。这些组合物也可以任选地含有遮光剂并且可以是这样的组合物,去仅释放活性成分,或优选地在胃肠道的某些部分中释放活性成分,任选地,以延迟方式释放活性成分。可以使用的包埋组合物的例子包括聚合物质和蜡类。活性成分也可以微囊形式存在,如果合适的话,与一种或多种上述赋形剂一起。

本发明化合物的口服施用液体剂型包括药学上可接受的乳剂、微乳剂、溶液、混悬液、糖浆剂和酏剂。除活性成分以外,所述液体剂型可以含有本领域中常用的惰性稀释剂,例如,水或其它溶剂、增溶剂和乳化剂,诸如乙醇、异丙醇、碳酸乙酯、乙酸乙酯、苯甲醇、苯甲酸苄酯、丙二醇、1,3-丁二醇、油(具体地,棉籽油、花生油、玉米油、胚芽油、橄榄油、蓖麻油和芝麻油)、甘油、四氢呋喃醇、聚乙二醇和脱水山梨糖醇的脂肪酸酯、及其混合物。

除惰性稀释剂以外,口服组合物还可以包含佐剂诸如润湿剂、乳化和助悬剂、甜味剂、调味剂、着色剂、芳香剂和防腐剂。

除活性化合物以外,混悬液还可以含有助悬剂,例如,乙氧基化的异硬脂醇、聚氧乙烯山梨醇和脱水山梨糖醇酯、微晶纤维素、氢氧化铝氧化物、皂粘土、琼脂和黄蓍胶、及其混合物。

用于直肠或阴道施用的制剂可以作为栓剂呈现,其可以如下制备:将一种或多种本发明的化合物与一种或多种合适的无刺激性的赋形剂或载体混合,所述赋形剂或载体包括,例如可可脂、聚乙二醇、栓剂蜡或水杨酸盐,并且其在室温为固体,但在体温为液体,并且因此将在直肠或阴道腔中融化并释放活性化合物。

用于局部或透皮施用如本文中提供的寡聚体的制剂或剂型包括粉剂、喷雾剂、软膏剂、糊剂、乳膏剂、洗剂、凝胶剂、溶液剂、贴剂和吸入剂。活性寡聚体可以在无菌条件下与药学上可接受的载体,和与可能需要的任何防腐剂、缓冲剂或推进剂混合。除本发明的活性化合物以外,所述软膏剂、糊剂、乳膏剂和凝胶剂还可以含有赋形剂,诸如动物和植物脂肪、油、蜡、石蜡、淀粉、黄蓍胶、纤维素衍生物、聚乙二醇、有机硅、皂粘土、硅酸、滑石和氧化锌、或其混合物。

除了本发明的寡聚体以外,粉剂和喷雾剂还可含有赋形剂诸如乳糖、滑石、硅酸、氢氧化铝、硅酸钙和聚酰胺粉末,或者这些物质的混合物。喷雾剂可以另外含有常规推进剂,诸如氯氟烃和挥发性的未被取代的烃,诸如丁烷和丙烷。

透皮贴剂具有提供本发明的寡聚体向身体的受控递送的附加优点。这样的剂型可以通过将寡聚体溶解于或分散于适当介质中而制得。还可以使用吸收增强剂来增加所述试剂透过皮肤的流量。这样的通量速率可以如下控制:除了本领域已知的其它方法以外,提供速率控制膜,或者将所述药剂分散于聚合物基质或凝胶中。

适合于胃肠外施用的药物组合物可以包含与一种或多种药学上可接受的无菌的等渗水性或非水性溶液、分散体、混悬液或乳剂组合的一种或多种本发明的寡聚体,或在即将使用前可重构为无菌可注射溶液或分散体的无菌粉剂,其可以含有糖、醇、抗氧化剂、缓冲剂、抑菌剂、使所述制剂与预定的受体的血液等渗的溶质或者助悬剂或增稠剂。

可以用于本发明的药物组合物中的合适的水性和非水性载体的例子包括水、乙醇、多元醇(如甘油、丙二醇、聚乙二醇等)及其适当的混合物,植物油,诸如橄榄油,以及可注射的有机酯,如油酸乙酯。可以维持适当的流动性,例如,通过使用包衣材料如卵磷脂,在分散体的情况下通过维持所需粒度,以及通过使用表面活性剂。

这些组合物还可以含有辅助剂诸如防腐剂、润湿剂、乳化剂和分散剂。预防微生物对主题寡聚体的作用可以通过包含各种抗细菌剂和抗真菌剂(例如,对羟基苯甲酸酯、三氯叔丁醇、苯酚、山梨酸等)来确保。也可能需要在组合物中包含等渗剂,诸如糖、氯化钠等。此外,通过包含延迟吸收的试剂诸如单硬脂酸铝和明胶,可以实现可注射的药物形式的延长吸收。

在某些情况下,为了延长药物的作用,需要减慢来自皮下或肌肉内注射的药物的吸收。这可以如下实现:除了本领域已知的其它方法以外,使用具有差水溶性的结晶或无定形物的液体混悬液。药物的吸收速率然后取决于其溶出速率,所述溶出速率又可以取决于晶体大小和晶型。可替换地,通过将药物溶解或悬浮在油媒介物中,实现胃肠外施用的药物形式的延迟吸收。

通过在可生物降解的聚合物诸如聚丙交酯-聚乙醇酸交酯中形成主题寡聚体的微胶囊基体,制备可注射的贮库形式。根据寡聚体与聚合物的比率以及所用的特定聚合物的性质,可以控制寡聚体释放的速率。其它可生物降解聚合物的例子包括聚(原酸酯)和聚(酸酐)。通过将药物包埋在与身体组织相容的脂质体或微乳中,也可以制备可注射的贮库制剂。

当将本发明的寡聚体作为药物来施用给人类和动物时,它们可以原样施用,或作为含有例如与药学上可接受的载体组合的0.1-99%(更优选地,10-30%)的活性成分的药物组合物施用。

如上面所指出的,本发明的制剂或制品可以口服地、胃肠外地、全身性地、局部地、直肠地或肌肉内地施用。它们通常以适合于每种施用途径的形式施用。例如,它们以片剂或胶囊形式通过注射、吸入、眼洗剂、软膏剂、栓剂等施用,通过注射、输注或吸入施用;通过洗剂或软膏剂局部地施用;和通过栓剂直肠施用。

本文中使用的短语“胃肠外施用”和“胃肠外地施用”是指通常通过注射进行的除了肠内和局部施用以外的施用模式,并且包括、但不限于,静脉内、肌肉内、动脉内、鞘内、囊内、眶内、心内、真皮内、腹膜内、经气管、皮下、表皮下、关节内、囊下、蛛网膜下、椎管内和胸骨内注射和输注。

本文中使用的短语“全身施用”、“全身性地施用”、“周围施用”和“周围地施用”是指,向中枢神经系统中直接施用之外的化合物、药物或其它物质的施用,使得其进入患者的系统,并因而进行代谢和其它类似的过程,例如皮下施用。

无论所选的施用途径,可以以合适的水合形式使用的本发明的寡聚体,和/或通过本领域技术人员已知的常规方法可以将本发明的药物组合物配制成药学上可接受的剂型。本发明的药物组合物中的活性成分的实际剂量水平可以变化,从而获得对于特定患者、组合物和施用模式而言有效达到期望的治疗应答且对患者没有不可接受的毒性的活性成分的量。

所选的剂量水平取决于多种因素,包括所用的本发明的特定寡聚体或其酯、盐或酰胺的活性,施用途径,施用时间,所用的特定寡聚体的排泄或代谢速率,吸收速率和程度,治疗持续时间,与所用的特定寡聚体联合使用的其它药物、化合物和/或材料,所治疗的患者的年龄、性别、重量、状况、一般健康和先前医疗史,和医学领域中众所周知的类似因素。

具有本领域的普通技术的医师或兽医可以容易地确定和规定所需要的药物组合物的有效量。例如,医师或兽医可以以比为实现期望的治疗效果所需的水平低的水平开始在药物组合物中所用的本发明化合物的剂量,并逐渐增加剂量直到实现期望的作用。一般而言,本发明的化合物的合适的每日剂量是这样的该化合物的量:其是有效产生治疗效果的最低剂量。这样的有效剂量通常取决于上述因素。通常,当用于指定效果时,对于患者而言,本发明的化合物的口服、静脉内、脑室内、肌肉内和皮下剂量范围是每天每千克体重约0.0001至约100mg。

施用的本发明的寡聚体(例如,磷酰二胺吗啉代寡聚体;eteplirsen)的优选剂量通常是约20-100mg/kg。在某些情况下,大于100mg/kg的剂量可能是必要的。对于静脉内施用而言,优选的剂量是约0.5mg至100mg/kg。在某些实施方案中,以约20mg/kg、21mg/kg、25mg/kg、26mg/kg、27mg/kg、28mg/kg、29mg/kg、30mg/kg、31mg/kg、32mg/kg、33mg/kg、34mg/kg、35mg/kg、36mg/kg、37mg/kg、38mg/kg、39mg/kg、40mg/kg、41mg/kg、42mg/kg、43mg/kg、44mg/kg、45mg/kg、46mg/kg、47mg/kg、48mg/kg、49mg/kg 50mg/kg、51mg/kg、52mg/kg、53mg/kg、54mg/kg、55mg/kg、56mg/kg、57mg/kg、58mg/kg、59mg/kg、60mg/kg、65mg/kg、70mg/kg、75mg/kg、80mg/kg、85mg/kg、90mg/kg、95mg/kg、100mg/kg(包括之间的所有整数)的剂量施用所述寡聚体。在一个优选的实施方案中,以30mg/kg施用所述寡聚体。在另一个优选的实施方案中,以50mg/kg施用所述寡聚体。

如果需要的话,活性化合物的有效每日剂量可以任选地以单位剂型在全天作为以适当间隔分开施用的2、3、4、5、6个或更多个亚剂量施用。在某些情况下,给药是每天一次施用。在某些实施方案中,给药是根据需要每2、3、4、5、6、7、8、9、10、11、12、13、14天或每1、2、3、4、5、6、7、8、9、10、11、12周或每1、2、3、4、5、6、7、8、9、10、11、12个月施用一次或多次,以维持期望的功能性肌养蛋白表达。

在某些实施方案中,通常以规律的间隔(例如,每天、每周、每2周、每月、每2月)施用本发明的寡聚体(例如,磷酰二胺吗啉代寡聚体;eteplirsen)。可以以规律的间隔施用寡聚体,例如,每天1次;每2天1次;每3天1次;每3-7天1次;每3-10天1次;每7-10天1次;每周1次;每2周1次;每月1次。例如,可以通过静脉内输注每周一次地施用寡聚体。可以在更长的时间段内间歇地施用寡聚体,例如,持续几周、几个月或几年。例如,可以每1、2、3、4、5、6、7、8、9、10、11或12个月1次地施用寡聚体。另外,可以每1、2、3、4或5年1次地施用寡聚体。可以在施用抗生素、类固醇或其它治疗剂之前或同时施用。基于在治疗下的受试者的免疫测定的结果、其它生化试验和生理学检查,可以根据指示调节治疗方案(剂量、频率、途径等)。

通过熟悉本领域的人已知的多种方法,可以将核酸分子施用给细胞,所述方法包括、但不限于如本文中所述的和本领域已知的封装在脂质体中、离子透入法、或掺入其它媒介物(诸如水凝胶、环糊精、可生物降解的纳米囊和生物粘附微球)中。在某些实施方案中,可以利用微乳化技术改善亲脂的(不溶于水的)药学试剂的生物利用度。例子包括Trimetrine(Dordunoo,S.K.,等人,Drug Development and Industrial Pharmacy,17(12),1685-1713,1991和REV 5901(Sheen,P.C.,等人,J Pharm Sci 80(7),712-714,1991)。除了其它益处以外,微乳化还如下提供增强的生物利用度:优先将吸收定向至淋巴系统而不是循环系统,由此绕过肝脏,并防止化合物在肝胆循环中的破坏。

在本发明的一个方面,所述制剂含有由如本文提供的寡聚体和至少一种两亲载体形成的胶束,其中所述胶束具有小于约100nm的平均直径。更优选的实施方案提供了具有小于约50nm的平均直径的胶束,且甚至更优选的实施方案提供了具有小于约30nm或甚至小于约20nm的平均直径的胶束。

尽管预见到所有合适的两亲载体,但是目前优选的载体通常是具有公认为安全的(GRAS)状态的那些,并且其可以溶解本发明的化合物和在当溶液与复合水相(例如在人胃肠道中发现的)接触时在稍后阶段将其微乳化。通常,满足这些要求的两亲成分具有2-20的HLB(亲水亲脂比率平衡)值,且它们的结构含有在C-6至C-20范围内的直链脂族残基。例子是聚乙烯-乙二醇化的脂肪酸甘油酯和聚乙二醇。

两亲载体的例子包括饱和的和单不饱和的聚乙二醇化的脂肪酸甘油酯,诸如从完全地或部分地氢化的各种植物油得到的那些。这样的油可以有利地由三-、二-、和单-脂肪酸甘油酯和相应脂肪酸的二-和单-聚乙二醇酯组成,特别优选的脂肪酸组合物包括癸酸4-10%、癸酸3-9%、月桂酸40-50%、肉豆蔻酸14-24%、棕榈酸4-14%和硬脂酸5-15%。另一类有用的两亲载体包括部分地酯化的脱水山梨糖醇和/或山梨醇,其具有饱和的或单不饱和脂肪酸(SPAN-系列)或对应的乙氧基化的类似物(TWEEN-系列)。

商购可得的两亲载体可以是特别有用的,包括Gelucire-系列、Labrafil、Labrasol或Lauroglycol(都由Gattefosse Corporation,Saint Priest,France制造和销售)、PEG-单-油酸酯、PEG-二-油酸酯、PEG-单-月桂酸酯和二-月桂酸酯、卵磷脂、聚山梨酯80等(由美国和全世界的许多公司生产和销售)。

在某些实施方案中,递送可以通过使用脂质体、纳米囊、微粒、微球、脂质颗粒、囊泡等进行,用于将本发明的组合物引入合适的宿主细胞内。具体地,可以配制本发明的组合物用于通过封装在脂质颗粒、脂质体、囊泡、纳米球、纳米颗粒等中进行递送。使用已知的和常规的技术,可以进行这样的递送媒介物的配制和使用。

适合用在本发明中的亲水聚合物是这样的亲水聚合物:其易溶于水,可以共价地连接至形成囊泡的脂质,并且其在体内被耐受,且没有毒性效应(即,是生物相容的)。合适的聚合物包括聚乙二醇(PEG)、聚乳酸(也称为聚丙交酯)、聚乙醇酸(也称为聚乙醇酸交酯)、聚乳酸-聚乙醇酸共聚物和聚乙烯醇。在某些实施方案中,聚合物具有约100或120道尔顿直到约5,000或10,000道尔顿、或约300道尔顿至约5,000道尔顿的分子量。在其它实施方案中,所述聚合物是具有约100至约5,000道尔顿的分子量或者具有约300至约5,000道尔顿的分子量的聚乙二醇。在某些实施方案中,所述聚合物是750道尔顿的聚乙二醇(PEG(750))。聚合物也可以通过其中的单体的数目来限定;本发明的一个优选的实施方案利用至少约3个单体的聚合物,这样的PEG聚合物由3个单体组成(大约150道尔顿)。

可能适合用在本发明中的其它亲水聚合物包括聚乙烯吡咯烷酮、聚甲基噁唑啉(polymethoxazoline)、聚乙基噁唑啉、聚羟丙基甲基丙烯酰胺、聚甲基丙烯酰胺、聚二甲基丙烯酰胺和衍生化的纤维素诸如羟甲基纤维素或羟乙基纤维素。

在某些实施方案中,本发明的制剂包含生物相容的聚合物,其选自:聚酰胺、聚碳酸酯、聚烯烃(polyalkylene)、丙烯酸和甲基丙烯酸酯的聚合物、聚乙烯基聚合物、聚乙醇酸交酯、聚硅氧烷、聚氨酯及其共聚物、纤维素、聚丙烯、聚乙烯、聚苯乙烯、乳酸和羟乙酸的聚合物、聚酸酐、聚(原)酯、聚(丁酸)、聚(戊酸)、丙交酯-己内酯共聚物、多糖、蛋白、聚透明质酸、聚氰基丙烯酸酯及其掺合物、混合物或共聚物。

环糊精是由6、7或8个葡萄糖单元组成的环状寡糖,分别用希腊字母α、β或γ命名。葡萄糖单元通过α-1,4-糖苷键连接。作为糖单元的椅型构象的结果,所有仲羟基(在C-2、C-3处)都位于环的一侧上,而在C-6处的所有伯羟基都位于另一侧上。所以,外部面是亲水的,从而使得环糊精是水溶性的。相反,环糊精的腔体是疏水的,因为它们通过原子C-3和C-5的氢和通过醚样氧而连接。这些基质允许与多种相对疏水的化合物复合,包括、例如,类固醇化合物诸如17α-雌二醇(参见,例如,van Uden等人.Plant Cell Tiss.Org.Cult.38:1-3-113(1994))。通过范德华相互作用和通过氢键形成而发生复合。关于环糊精的化学性质的一般综述,参见,Wenz,Agnew.Chem.Int.Ed.Engl.,33:803-822(1994)。

环糊精衍生物的物理化学性能强烈地依赖于取代的种类和程度。例如,它们在水中的溶解度范围是从不溶(例如,三乙酰基-β-环糊精)至147%可溶(w/v)(G-2-β-环糊精)。此外,它们可溶于许多有机溶剂。环糊精的性能使得能够通过增加或减小它们的溶解度来控制各种制剂组分的溶解度。

已经描述了众多环糊精及其制备方法。例如Parmeter(I),等人(美国专利号3,453,259)和Gramera,等人(美国专利号3,459,731)描述了电中性的环糊精。其它衍生物包括具有阳离子特性的环糊精[Parmeter(II),美国专利号3,453,257]、不溶性的交联环糊精(Solms,美国专利号3,420,788)和具有阴离子特性的环糊精[Parmeter(III),美国专利号3,426,011]。在具有阴离子特性的环糊精衍生物中,羧酸、亚磷酸、三价膦酸、膦酸、磷酸、硫代膦酸、硫代亚磺酸和磺酸已经附加至母体环糊精[参见,Parmeter(III),出处同上]。此外,Stella,等人(美国专利号5,134,127)已经描述了硫代烷基醚环糊精衍生物。

脂质体由至少一个包封水性内部隔室的脂质双层膜组成。脂质体可以通过膜类型和大小来表征。小单层囊泡(SUV)具有单层膜,其直径范围通常是在0.02-0.05μm之间;大单层囊泡(LUV)通常大于0.05μm。多层大囊泡和多层囊泡具有多个通常同心的膜层,并且通常大于0.1μm。具有几个非同心膜的脂质体(即,被包含在较大囊泡中的几个较小囊泡)被称为多泡囊泡。

本发明的一个方面涉及包含含有本发明的寡聚体的脂质体的制剂,其中将脂质体膜配制成提供具有增加的携带能力的脂质体。可替换地或另外,本发明的化合物可以包含在脂质体的脂质体双层内或吸附在其表面上。本发明的寡聚体可以用脂质表面活性剂聚集并在脂质体的内部空间内运载;在这些情况下,将脂质体膜配制成耐受活性剂-表面活性剂聚集体的破坏作用。

根据本发明的一个实施方案,脂质体的脂质双层含有用聚乙二醇(PEG)衍生化的脂质,使得PEG链从脂质双层的内表面延伸进被脂质体封装的内部空间中,并从脂质双层的外部延伸进周围环境中。

包含在本发明的脂质体内的活性剂是呈溶解形式。可以将表面活性剂和活性剂(诸如含有目标活性剂的乳剂或胶束)的聚集体捕获在根据本发明的脂质体的内部空间中。表面活性剂起分散和溶解活性剂的作用,并且可以选自任意合适的脂族、环脂族或芳族表面活性剂,包括、但不限于不同链长度(例如,约C14至约C20)的生物相容的溶血磷脂酰胆碱(LPG)。聚合物-衍生化的脂质(诸如PEG-脂质)也可以用于胶束形成,因为它们将起抑制胶束/膜融合的作用,且因为聚合物向表面活性剂分子的添加会减少表面活性剂的CMC并辅助胶束形成。优选的是具有在微摩尔范围内的CMO的表面活性剂;较高CMC表面活性剂可以用于制备捕获在本发明的脂质体内的胶束。

通过本领域已知的多种技术中的任一种,可以制备根据本发明的脂质体。参见,例如,美国专利号4,235,871;公开的PCT申请WO 96/14057;New RRC,Liposomes:A practicalapproach,IRL Press,Oxford(1990),第33-104页;Lasic DD,Liposomes from physics toapplications,Elsevier Science Publishers BV,Amsterdam,1993。例如,可以如下制备本发明的脂质体:将用亲水聚合物衍生化的脂质扩散到预成形的脂质体内,诸如以对应于在脂质体中期望的衍生化的脂质的最终摩尔百分比的脂质浓度,将预成形的脂质体暴露于由脂质接枝的聚合物组成的胶束。通过本领域已知的均质、脂质场水合或挤压技术,也可以形成含有亲水聚合物的脂质体。

在另一个示例性的制剂程序中,首先通过在容易溶解疏水分子的溶血磷脂酰胆碱或其它低CMC表面活性剂(包括聚合物接枝的脂质)中的声处理来分散活性剂。然后将得到的活性剂的胶束混悬液用于再水合干燥的脂质样品,所述脂质样品含有合适摩尔百分比的聚合物接枝的脂质或胆固醇。然后使用本领域已知的挤出技术,将脂质和活性剂混悬液形成脂质体,并通过标准柱分离将得到的脂质体与未封装的溶液分离。

在本发明的一个方面,将脂质体制备成具有在选定大小范围内的基本上均匀的大小。一种有效的设定大小的方法包括:穿过一系列具有选定的均匀孔径的聚碳酸酯膜,挤出脂质体的水性悬浮液;膜的孔径将大致对应于穿过该膜挤出所产生的脂质体的最大尺寸。参见例如,美国专利号4,737,323(1988年4月12日)。在某些实施方案中,试剂诸如可以用于将多核苷酸或蛋白引入细胞中。

本发明的制剂的释放特征取决于包封材料、封装的药物的浓度、和释放修饰剂的存在。例如,可以将释放操作成pH依赖性的,例如,使用仅在低pH(如在胃中)或较高pH(如在肠中)释放的pH敏感性包衣。可以使用肠溶包衣防止发生释放直至通过胃之后。封装在不同材料中的多种包衣剂或氰胺混合物可以用于得到在胃中的初始释放,随后在肠中稍晚释放。还可以通过包含盐或孔形成剂来操作释放,它们可以通过从胶囊扩散来增加药物的水摄取或释放。修饰药物溶解度的赋形剂也可以用于控制释放速率。还可以掺入增强基质降解或从基质释放的试剂。它们可添加至药物中,作为单独相(即作为微粒)添加,或可以共溶解在聚合物相中,取决于化合物。在大多数情况下,量应该是在0.1-30%(w/w聚合物)之间。降解增强剂的类型包括:无机盐诸如硫酸铵和氯化铵,有机酸诸如柠檬酸、苯甲酸和抗坏血酸,无机碱诸如碳酸钠、碳酸钾、碳酸钙、碳酸锌和氢氧化锌,和有机碱诸如硫酸鱼精蛋白、精胺、胆碱、乙醇胺、二乙醇胺和三乙醇胺,和表面活性剂诸如添加作为微粒的孔形成剂(即,水溶性的化合物诸如无机盐和糖),其向基质添加微结构。范围通常是在1-30%(w/w聚合物)之间。

还可以通过改变颗粒在肠中的停留时间来操作摄取。这可以如下实现:例如,用粘膜粘附聚合物包被颗粒,或者选择粘膜粘附聚合物作为包封材料。例子包括大部分具有游离羧基的聚合物,诸如壳聚糖、纤维素和特别是聚丙烯酸酯(本文中使用的聚丙烯酸酯表示包括丙烯酸酯基和修饰的丙烯酸酯基的聚合物,诸如氰基丙烯酸酯和甲基丙烯酸酯)。

可以将寡聚体配制成包含在外科手术或医疗装置或植入物中,或改造成通过外科手术或医疗装置或植入物释放。在某些方面,可以用寡聚体包被或以其它方式处理植入物。例如,水凝胶或其它聚合物(诸如生物相容的和/或可生物降解的聚合物)可以用于与本发明的组合物一起包被植入物(即,通过使用水凝胶或其它聚合物,所述组合物可以适合与医疗装置一起使用)。用于与试剂一起包被医疗装置的聚合物和共聚物是本领域众所周知。植入物的例子包括、但不限于支架、药物洗脱支架、缝线、假体、血管导管、透析导管、血管移植物、人工心脏瓣膜、心脏起搏器、可植入的心律转变器除颤器、静脉内针,用于骨骼固定和形成的装置(诸如销子、螺钉、板和其它装置),以及用于伤口愈合的人工组织基质。

除了本文提供的方法之外,通过用其它药物类推,根据本发明使用的寡聚体可以配制成用于以任何方便的用在人药或兽药中的方式施用。在肌营养不良的治疗中,反义寡聚体和它们的相应制剂可以单独地或与其它治疗策略联合地施用,所述其它治疗策略是例如成肌细胞移植、干细胞疗法、氨基糖苷抗生素的施用、蛋白酶体抑制剂和上调疗法(例如,上调utrophin,即肌养蛋白的常染色体旁系同源物)。

描述的施用途径仅仅意图作为引导,因为熟练的从业人员能够容易地确定对于任何特定动物和病症而言最适的施用途径和任何剂量。已经尝试了多个将功能性的新遗传物质引入体外和体内细胞中的方案(Friedmann(1989)Science,244:1275-1280)。这些方案包括要表达的基因向经修饰的逆转录病毒中的整合(Friedmann(1989)出处同上;Rosenberg(1991)Cancer Research 51(18),增刊:5074S-5079S);整合进非-逆转录病毒载体(例如,腺相关的病毒载体)(Rosenfeld,等人(1992)Cell,68:143-155;Rosenfeld,等人(1991)Science,252:431-434);或经由脂质体递送与异源启动子-增强子元件连接的转基因(Friedmann(1989),出处同上;Brigham,等人(1989)Am.J.Med.Sci.,298:278-281;Nabel,等人(1990)Science,249:1285-1288;Hazinski,等人(1991)Am.J.Resp.CellMolec.Biol.,4:206-209;和Wang和Huang(1987)Proc.Natl.Acad.Sci.(USA),84:7851-7855);偶联至配体特异性的、基于阳离子的运输系统(Wu和Wu(1988)J.Biol.Chem.,263:14621-14624)或使用裸露DNA表达载体(Nabel等人(1990),出处同上);Wolff等人(1990)Science,247:1465-1468)。转基因向组织中的直接注射仅产生定位表达(Rosenfeld(1992)出处同上);Rosenfeld等人(1991)出处同上;Brigham等人(1989)出处同上;Nabel(1990)出处同上;和Hazinski等人(1991)出处同上)。Brigham等人小组(Am.J.Med.Sci.(1989)298:278-281和Clinical Research(1991)39(摘要))已经报道了在静脉内或气管内施用DNA脂质体复合物以后仅小鼠的肺的体内转染。人基因治疗程序的综述文章的一个例子是:Anderson,Science(1992)256:808-813。

V.试剂盒

本发明还提供了用于治疗具有遗传性疾病的患者的试剂盒,所述试剂盒至少包含与它的使用说明书一起包装在合适的容器中的反义分子(例如,一种或多种反义寡核苷酸,其能够与肌养蛋白基因的外显子1-79(例如,在本文表3和4中阐述的外显子51)中的任意一个或多个特异性地杂交)。所述试剂盒还可以含有次要试剂诸如缓冲剂、稳定剂等。本领域中的普通技术人员应当明白,对于鉴别适合用于治疗许多其它疾病的反义分子而言,以上方法的应用具有广泛用途。

VII.实施例

材料和方法

患者

合格的患者是在7-13岁(包括端点)之间,具有可以通过跳跃外显子51来纠正的DMD基因的框架外缺失。在招募之前至少24周,确认患者具有稳定的心脏和肺功能以及稳定剂量的糖皮质激素。仅招募在基线时可以在6-分钟行走试验(6MWT)中行走200-400米(±10%)之间的患者。

研究设计

该1年试验分2个阶段进行:(1)治疗直到第24周是双盲的,和(2)此后开放标记。主要终点是通过6-分钟行走试验(6MWT)测量的肌养蛋白纤维和离床活动的变化百分比。

研究201是eteplirsen的单位点的、随机化的、双盲的、安慰剂对照的、多剂量效力、安全性和耐受性试验。将12位具有DMD的患者随机化至3个组之一:eteplirsen 30mg/kg/周(组群1);eteplirsen 50mg/kg/周(组群2);或安慰剂/延迟的eteplirsen(组群3)。所有患者接受每周静脉内的eteplirsen或安慰剂/延迟的eteplirsen给药。安慰剂治疗的患者在第25周时转换至每周eteplirsen 30(n=2)或50mg/kg(n=2)。在计划的就诊时评估效力和安全性,并且独立的数据安全性监测委员会(Data Safety Monitoring Board)确保所有患者的福利。所有患者在基线时具有二头肌活组织检查。对于50mg/kg组和2位安慰剂治疗的患者而言在第12周和对于30mg/kg组和2位安慰剂治疗的患者而言在第24周,在相对臂(二头肌)中进行随访活组织检查。

患者在研究202(一项长期的开放标记的延伸研究)下继续每周30或50mg/kgeteplirsen给药。在研究202期间,继续进行所有效力评估,包括在所有患者中在第48周的第三次活组织检查(在左三角肌中)。贯穿研究继续不利事件的监测。研究设计的示意图显示在图2中。

研究药物

Sarepta Therapeutics,Inc.在一次性使用的管形瓶的磷酸盐缓冲盐水中提供Eteplirsen[序列5’-CTCCAACATCAAGGAAGATGGCATTTCTAG-3’](SEQ ID NO:1)(100mg/ml)。将Eteplirsen用150ml生理盐水重构,并历时60分钟输入。将在研究201的前24周中施用的安慰剂作为相同管形瓶的磷酸盐缓冲盐水供给,并以与eteplirsen相同的方式施用。

安全性和耐受性监测

通过评价不利事件、生命体征、体格检查、心电图、超声心动图和临床实验室试验,评估安全性。另外,通过定期评估血清半胱氨酸蛋白酶抑制剂C以及尿半胱氨酸蛋白酶抑制剂C和KIM-1,监测肾功能。

药代动力学和免疫评估

与荧光检测生物分析方法一起使用经验证的和灵敏的阴离子交换高效液相色谱法,从在第十二次给药以后采取的血浆和尿建立eteplirsen的药代动力学参数。在第24、25和36周采取用于分析血浆浓度的单一样品。按照以前公开的方法,用ELISPOT每6周测量对新颖肌养蛋白的免疫应答直至24周。

生化效力评估

治疗前和治疗后肌养蛋白表达研究是基于MANDYS106[Glen Morris,MDAMonoclonal Antibody Library赠送],即在eteplirsen和其它外显子跳跃候选物的先前研究中使用的肌养蛋白的非常灵敏的标志物。将3个10μm冷冻切片(隔开至少200μm)用MANDYS106染色,随后用第二抗体(Alexa Fluor 594山羊抗小鼠抗体)染色。通过将阳性纤维的数目除以计数的总纤维,计算肌养蛋白阳性纤维百分比。由于正常的肌肉样品具有100%的肌养蛋白阳性纤维,将肌养蛋白阳性纤维百分比表达为正常值的百分比。将相同的抗体染色的切片用于使用Bioquant图像分析软件的肌养蛋白定量。将总肌养蛋白荧光信号强度报告为正常值的百分比。

支持性测量包括肌聚糖复合物(β,γ)的组分的表达、神经元NOS和蛋白质印迹(使用得自Novacastra的抗-肌养蛋白抗体NCL-Dys1)。使用如前所述的肌养蛋白-特异性的反向引物,在400ng总RNA上进行用于证实外显子跳跃的RT-PCR分析。

临床效力评估

使用McDonald,等人(Muscle Nerve,2010;42:966-74,其通过引用并入本文)为具有DMD的患者建立的方案,施用6MWT。探究性的功能结果包括北极星走动评估、定量肌肉试验、9-洞桩试验、肺功能试验(PFT)、定时功能试验和生活质量的评估。

统计分析

将SAS 9.3版(Cary,NC)用于所有统计分析。使用混合模型,其中治疗作为固定效应、停留在治疗内的受试者作为随机效应、基线值和自DMD诊断以后的时间作为用于分析肌肉活组织检查数据的协变量。使用混合模型重复测量(MMRM),其中治疗、时间和治疗×时间(treatment-by-time)相互作用术语作为固定效应,停留在治疗内的受试者作为随机效应、且基线值和自DMD诊断以后的时间作为用于分析6MWT数据的协变量。对意图治疗群体进行安全性和肌肉活组织检查分析;离床活动相关的结果的分析(包括6MWT)使用改进的意图治疗(mITT)群体,其不包括组群1中的2个患者,所述2个患者表现出疾病进展的征象和在招募的数周内在6MWT上的显著下降,并且在第24周或以后不能进行离床活动的测量。

实施例1:受试者特征

在该研究中的12位患者的基线特征总结在表2中。在研究群体中表现了5个易受外显子51跳跃影响的不同基因型。在基线时在6-分钟行走试验(6MWT)上的平均距离类似于在具有DMD的儿童的其它研究中的那些,且如预期的,远远低于在年龄匹配的健康儿童中通常观察到的600多米。由于取样的随机性质,30mg/kg组群与其它组群相比稍微更老、更重和更高,且具有更低的基线平均6MWT距离。所有患者接受所有研究药物输注作为计划的和完成的所有评估。

表2

实施例2:安全性和不利事件的缺失

Eteplirsen被良好耐受,在48周治疗中没有治疗相关的不利事件、严重的不利事件、停药或错过给药。此外,没有观察到体格检查或生命体征的临床上重要的变化。心电图、超声心动图和PFT保持稳定,且化学试验没有表明血液功能、肾功能、凝血功能或肝功能的临床上重要的变化。在单一安慰剂治疗的受试者中观察到轻微的和暂时的蛋白尿。

实施例3:药代动力学分布

在第12周时PK参数的分析揭示了快速的吸收。血浆清除率的平均值为339±75.8mL/hr/kg(对于30mg/kg)和319±125mL/hr/kg(对于50mg/kg)。半衰期平均值为3.30±0.341小时(对于30mg/kg)和3.17±0.249小时(对于50mg/kg),肾清除占总全身清除的大约65-70%。

实施例4:效力

在第48周,eteplirsen造成了肌养蛋白阳性纤维的数目和强度的稳健增加。如在图3中所示,没有间断地接受30或50mg/kg eteplirsen 48周的患者表现出与基线相比达到正常值的47%(p≤0.001)的肌养蛋白阳性纤维百分比的平均增加。当分别分析30(52%;p≤0.001)和50(43%;p≤0.008)mg/kg组群时,增加是类似的,从而提示,eteplirsen对新颖肌养蛋白的产生的影响独立于在该剂量范围内的剂量。

在错开的时间点(参见图2)进行活组织检查,以评价治疗持续时间对新颖肌养蛋白产生的影响。在第12周,50mg/kg组群具有不可检测的新颖肌养蛋白水平。在第24周,30mg/kg组群表现出达到正常值的23%(p≤0.002)的肌养蛋白阳性纤维百分比的增加,且在第48周,在用30或50mg/kg eteplirsen治疗24周以后,安慰剂/延迟的eteplirsen组群中的4位患者表现出与基线相比达到正常值的38%的增加(p≤0.009)。总之,这些数据提示,治疗持续时间在eteplirsen的均匀地恢复新颖肌养蛋白产生的能力中起重要作用。与这些发现相一致,eteplirsen也在所有3个治疗组中显著地增加在第48周的平均荧光信号强度(所有p-值≤0.023)。

图4解释了eteplirsen对肌养蛋白阳性纤维百分比的时间依赖性的影响(图A),其伴有在肌膜处的β-和γ-肌聚糖和nNOSμ的恢复(图B)。通过蛋白质印迹和RT-PCR在所有患者中证实肌养蛋白表达和外显子跳跃。得自代表性患者的RT-PCR结果显示在图C中。这些数据证实了患者中的功能性肌养蛋白的增加。

实施例5:功能结果

行走能力的渐近性丧失是DMD的一个通用标志,大多数患者在7或8岁之前表现出功能受损,且在10-14岁之前变得依赖于轮椅。与此相一致,在该研究中分配至安慰剂/延迟的eteplirsen组群的男孩在第12周以后以通过先前研究预测的速率表现出行走能力的下降,在第48周之前达到大约60米丧失的顶点(图5)。在显著的对比中,eteplirsen治疗的患者在研究期间维持稳定的行走距离,在第48周之前从基线平均增加约7米。eteplirsen治疗的患者和安慰剂/延迟的eteplirsen组群中的那些患者之间的差异在第32周首次变成统计上显著的(39-米差异;p≤0.05)。令人感兴趣的是,在安慰剂/延迟的eteplirsen组群中的患者在第36周以后(即,在第25周开始用eteplirsen治疗以后12-24周之间)显得稳定。如前面指出的,从该分析排除2个男孩,他们表现出快速疾病进展的征象和在招募数周内在6MWT上的显著下降,并且在24周或以后不能进行离床活动的测量。但是,二者直到第48周保持eteplirsen治疗,没有治疗相关的不利事件并维持稳定的肺和上肢功能,如分别通过PFT和9-洞桩试验所测量的。

值得注意的是,可在6MWT(n=6)上评价的接受eteplirsen 48周的患者与安慰剂/延迟的组群相比在6MWT上显著地(p≤0.001)改善(67.3m)。

如下所述,两个组群在120周中维持稳定的6MWT结果。在120周,在能够进行6MWT的30mg/kg和50mg/kg eteplirsen组群(改进的意图治疗或mITT群体;n=6)中的患者经历总体稳定性,行走能力从基线稍微下降13.9米或小于5%。与在24周的安慰剂以后在第25周开始治疗的安慰剂/延迟治疗组群(n=4)相比,对于mITT群体观察到64.9米的统计上显著的治疗益处(p≤0.006)。在研究早期(在用etiplersen治疗之前)经历大幅下降以后,安慰剂/延迟治疗组群也表现出行走能力的稳定超过1.5年(从第36周至第120周),在该阶段可能产生有意义水平的肌养蛋白,在该时间范围内下降9.5米。这些分析是基于当在连续2天进行试验时的最大6MWT评分。

实施例6:免疫应答

在任何评估的时间点(包括第24周),在eteplirsen-和安慰剂-治疗的患者之间不存在干扰素-γ诱导的斑点形成菌落的数目相对于肌养蛋白肽集合(遍及整个蛋白延伸)的差异,从而指示eteplirsen治疗的患者中新表达的肌养蛋白没有引起T-细胞应答。

实施例7:肺功能

如通过最大吸气压和呼气压(MIP和MEP)测量的,在两个给药组群中从基线至第120周的呼吸肌功能表现出14.6%的MIP平均增加和15.0%的MEP平均增加。预测的MIP%(针对重量调节的MIP)和预测的MEP%(针对年龄调节的MEP)的分析证实预测的MIP%从在基线时的90.2%至在第120周时的95.2%的平均增加以及预测的MEP%从在基线时的79.3%至在第120周时的79.6%的轻微平均增加。另外,存在用力肺活量(FVC)(肺容积的量度)从基线至第120周的8.7%的平均增加,且预测的FVC%(针对年龄和高度调节的FVC)在第120周之前维持高于90%的平均值,在基线时为101%,且在第120周时为93%。

*********************

在本说明书中引用的所有出版物和专利申请通过引用并入本文,如同明确地且单独地指出每篇单独的出版物或专利申请通过引用并入。

参考文献

1.Emery AEH.Population frequencies of inherited neuromusculardiseases-a world survey.Neuromuscul Disord 1991;1:19-29.

2.Mendell JR,Shilling C,Leslie ND,Flanigan KM,al-Dahhak R,Gastier-Foster,J,等人.Evidence-based path to newborn screening for Duchenne musculardystrophy.Ann Neurol 2012;71:304-13.

3.McDonald CM,Abresch RT,Carter GT,Fowler WM Jr,Johnson ER,Kilmer DD,等人.Profiles of neuromuscular diseases.Duchenne muscular dystrophy.Am J PhysMed Rehabil 1995;74:S70-S92.

4.Bushby K,Finkel R,Birnkrant DJ,Case LE,Clemens PR,Cripe L,等人.Diagnosis and management of Duchenne muscular dystrophy,part 1:diagnosis,andpharmacological and psychosocial management.Lancet Neurol 2010;9:77-93.

5.Kohler M,Clarenbach CF,L,Brack T,Russi EW,Bloch KE.Quality oflife,physical disability and respiratory impairment in Duchenne musculardystrophy.Am J Respir Crit Care Med 2005;172:1032-6.

6.Mendell JR,Moxley RT,Griggs RC,Brooke MH,Fenichel GM,Miller JP,等人.Randomized,double-blind six-month trial of prednisone in Duchenne′smuscular dystrophy.N Engl J Med 1989;320:1592-97.

7.Manzur AY,Kuntzer T,Pike M,Swan A.Glucocorticoid corticosteroidsfor Duchenne muscular dystrophy.Cochrane Database Syst Rev.2004;(2):CD003725.

8.van Deutekom JC,Janson AA,Ginjaar IB,Frankhuizen WS,Aartsma-Rus A,Bremmer-Bout M,等人.Local dystrophin restoration with antisenseoligonucleotide PRO051.N Engl J Med 2007;357:2677-86.

9.Kinali M,Arechavala-Gomeza V,Feng L,Cirak S,Hunt D,Adkin C,等人.Local restoration of dystrophin expression with the morpholino oligomer AVI-4658 in Duchenne muscular dystrophy:a single-blind,placebo-controlled,dose-escalation,proof-of-concept study.Lancet Neurol 2009;8:918-28.

10.Goemans NM,Tulinius M,van den Akker JT,Burm BE,Ekhart PF,Heuvelmans N,等人.Systemic administration of PRO051 in Duchenne’s musculardystrophy.N Engl J Med 2011;364:1513-22.

11.Cirak S,Arechavala-Gomeza V,Guglieri M,Feng L,Torelli S,Anthony K,等人.Exon skipping and dystrophin restoration in patients with Duchennemuscular dystrophy after systemic phosphorodiamidate morpholino oligomertreatment:an open-label,phase 2,dose-escalation study.Lancet 2011;378:595-605.

12.Aartsma-Rus A,Fokkema I,Verschuuren J,Ginjaar I,van Deutekom J,vanOmmen GJ,等人.Theoretic applicability of antisense-mediated exon skipping forDuchenne muscular dystrophy mutations.Hum Mutat 2009;30:293-99.

13.Muntoni F,Torelli S,Ferlini A.Dystrophin and mutations:one gene,several proteins,multiple phenotypes.Lancet Neurol.2003;2:731-40.

14.Bushby KM,Gardner-Medwin D.The clinical,genetic and dystrophincharacteristics of Becker muscular dystrophy.I.Natural history.J Neurol 1993;240:98-104.

15.Arechavala-Gomeza V,Graham IR,Popplewell LJ,Adams AM,Aartsma-RusA,Kinali M,等人.Comparative analysis of antisense oligonucleotide sequencesfor targeted skipping of exon 51 during dystrophin pre-mRNA splicing in humanmuscle.Hum Gene Ther 2007;18:798-810.

16.Mendell JR,Campbell K,Rodino-Klapac L,Sahenk Z,Shilling C,Lewis S,等人.Dystrophin immunity revealed by gene therapy in Duchenne musculardystrophy.N Engl J Med 2010;363:1429-37.

17.Nguyen TM,Morris GE.Use of epitope libraries to identify exon-specific monoclonal antibodies for characterization of altered dystrophins inmuscular dystrophy.Am J Hum Genet 1993;52:1057-66.

18.Arechavala-Gomeza V,Kinali M,Feng L,Brown SC,Sewry C,Morgan JE,等人.Immunohistological intensity measurements as a tool to assess sarcolemma-associated protein expression.Neuropathol Appl Neurobiol 2010;36:265-74.

19.McDonald CM,Henricson EK,Han JJ,Abresch RT,Nicorici A,Elfring GL,等人.The 6-minute walk test as a new outcome measure in Duchenne musculardystrophy.Muscle Nerve 2010;41:500-10.

20.Mazzone E,Vasco G,Sormani MP,Torrente Y,Berardinelli A,Messina S,等人.Functional changes in Duchenne muscular dystrophy:a 12-monthlongitudinal cohort study.Neurology 2011;77(3):250-6.

21.McDonald CM,Henricson EK,Han JJ,Abresch RT,Nicorici A,Atkinson L,等人.The 6-minute walk test in Duchenne/Becker muscular dystrophy:longitudinal observations.Muscle Nerve2010;42:966-74.

22.Strober JB.Therapeutics in Duchenne muscular dystrophy.NeuroRX2006;3:225-34.

23.Hoffman EP,Fischbeck KH,Brown RH,Johnson M,Medori R,Loike JD,等人.Characterization of dystrophin in muscle-biopsy specimens from patients withDuchenne’s or Becker’s muscular dystrophy.N Engl J Med 1988;318:1363-68.

24.Azofeifa J,Voit T,Hubner C,Cremer M.X-chromosome methylation inmanifesting and healthy carriers of dystrophinopathies:concordance ofactivation ratios among first degree female relatives and skewed inactivationas cause of the affected phenotypes.Hum Genet 1995;96:167-76.

25.van Putten M,Hulsker M,Nadarajah VD,van Heiningen SH,van Huizen E,van Iterson M,等人.The Effects of Low Levels of Dystrophin on Mouse MuscleFunction and Pathology.PLoS ONE 2012;7:e31937.

26.Brooke MH,Fenichel GM,Griggs RC,Mendell JR,Moxley R,Miller JP,等人.Clinical investigation in Duchenne dystrophy:2.Determination of the“power”of therapeutic trials based on the natural history.Muscle Nerve.1983;6:91-103.

27.Ahmad A,Brinson M,Hodges BL,Chamberlain JS,Amalfitano A.Mdx miceinducibly expressing dystrophin provide insights into the potential of genetherapy for Duchenne muscular dystrophy.Hum Mol Genet 2000;9:2507-15.

28.Hoffman EP,Bronson A,Levin AA,Takeda S,Yokota T,Baudy AR,ConnorEM..Restoring dystrophin expression in Duchenne muscular dystrophy muscle:Progress in exon skipping and stop codon read through.Am J Path 2011;179:12-22.

29.Merlini L,Gennari M,Malaspina E,Cecconi I,Armaroli A,Gnudi S,等人.Early corticosteroid treatment in 4 Duchenne muscular dystrophy patients:14-year follow-up.Muscle Nerve 2012;45:796-802.

30.Fletcher S,Honeyman K,Fall AM,Harding PL,Johnsen RD,Steinhaus JP,等人.Morpholino oligomer-mediated exon skipping averts the onset ofdystrophic pathology in the mdx mouse.Mol Ther 2007;15:1587-92.

31.Yokota T,Lu QL,Partridge T,Kobayashi M,Nakamura A,Takeda S,等人.Efficacy of systemic morpholino exon-skipping in Duchenne dystrophy dogs.AnnNeurol 2009;65:667-76.

32.Aartsma-Rus A,Janson AA,Kaman WE,Bremmer-Bout M,van Ommen GJ,denDunnen JT,等人.Antisense-induced multiexon skipping for Duchenne musculardystrophy makes more sense.Am J Hum Genet 2004;74:83-92。

216页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种用于神经阻滞可显影的高黏附药物缓释体的制备方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!