Gene for resisting plant diseases

文档序号:1835800 发布日期:2021-11-12 浏览:10次 中文

阅读说明:本技术 用于抗植物病害的基因 (Gene for resisting plant diseases ) 是由 O·特尔耶克 D·博尔夏特 M·雷科斯克 W·梅歇尔克 J·C·莱恩 B·舒尔茨 于 2019-02-18 设计创作,主要内容包括:通过提供根据本发明的抗性介导基因,能够实现抗植物病害的更有效育种或开发新的抗性品系;特别地,目标植物的抗性效果是由所鉴定基因的特性引起的。前面所述的本发明的实施方式和抗性介导基因提供了旨在开发新的抗性品种的额外应用,例如抗性基因等位基因在反式遗传途径中的用途。(By providing the resistance-mediating gene according to the present invention, more effective breeding against plant diseases or development of new resistant lines can be achieved; in particular, the resistance effect of the target plant is caused by the characteristics of the identified gene. The previously described embodiments of the invention and resistance mediating genes provide additional applications aimed at developing new resistant varieties, such as the use of resistance gene alleles in the trans-genetic pathway.)

1. A nucleic acid molecule encoding a polypeptide capable of conferring resistance to cercospora on a plant expressing said polypeptide, characterized in that said nucleic acid molecule comprises a nucleotide sequence selected from the group consisting of:

(a) encoding a polypeptide having an amino acid sequence according to SEQ ID NO: 3;

(b) comprising a sequence according to SEQ ID NO: 2;

(c) comprising a sequence according to SEQ ID NO: 1 or SEQ ID NO: 53, nucleotide sequence of the DNA sequence of seq id no;

(d) a nucleotide sequence that hybridizes under stringent conditions to the complement of the nucleotide sequence according to (a), (b) or (c);

(e) a nucleotide sequence encoding a polypeptide which differs from the polypeptide encoded by the nucleotide sequence according to (a), (b) or (c) by substitution, deletion and/or addition of one or more amino acids of said amino acid sequence;

(f) encoding a polypeptide having a sequence corresponding to that according to SEQ ID NO: 3, a nucleotide sequence of a polypeptide having an amino acid sequence at least 70% identical to the amino acid sequence of seq id no;

(g) and a polypeptide according to SEQ ID NO: 1 or SEQ ID NO: 2, a nucleotide sequence at least 70% identical to the DNA sequence of 2;

wherein the resistance to Cercospora is preferably resistance to Cercospora betana (Cercospora betacola), or the plant belongs to the subsp of beet (Beta vulgaris subsp.

2. A polypeptide encoded by a nucleic acid molecule according to claim 1.

3. A vector or expression cassette comprising a nucleic acid molecule according to claim 1.

4. A cell comprising a nucleic acid molecule according to claim 1 or a polypeptide according to claim 2.

5. Cercospora resistant plant or part thereof, characterized in that said plant or part thereof endogenously or transgenically comprises a nucleic acid molecule according to claim 1, wherein the plant endogenously comprising said nucleic acid molecule belongs to the beet subspecies.

6. Seed or progeny of a plant according to claim 5, wherein the seed or the progeny comprises the nucleic acid molecule according to claim 1 transgenically or endogenously.

7. Seed according to claim 6, which has been subjected to a technical treatment, wherein the technical treatment is selected from the group consisting of:

(a) the polishing is carried out on the mixture of the raw materials,

(b) the seed is dressed, preferably granulated,

(c) the envelope is made of a plastic material,

(d) and (4) coloring.

8. A method for increasing the resistance of a plant of the sugar beet species to the genus cercospora, comprising the steps of:

(i) integrating a nucleic acid molecule according to claim 1 into the genome of at least one cell of a plant of the beet species by homologous directed repair or homologous recombination, preferably facilitated by a site-directed nuclease, and optionally regenerating a plant from said plant cell; or

(ii) Increasing the expression of a nucleic acid molecule according to claim 1 in said plant, preferably by modifying the nucleotide sequence according to SEQ ID NO: 7 or by fusing said nucleic acid molecule to a heterologous promoter which exhibits higher activity than the native promoter, in particular after infection with cercospora; or

(iii) Increasing the activity and/or stability of a polypeptide according to claim 3 by modifying the nucleotide sequence of the nucleic acid molecule according to; or

(iv) Transforming a plant cell with a nucleic acid molecule according to claim or a vector or expression cassette according to claim 3 and regenerating a transgenic plant from the transformed plant cell.

9. A method for producing a cercospora resistant plant according to claim 5, comprising the steps of:

(Ia) transforming a plant cell with a nucleic acid molecule according to claim 1 or a vector or expression cassette according to claim 3; and

(Ib) regenerating a transgenic plant from the transformed plant cell; or

(IIa) introducing a site-directed nuclease and a repair matrix into a cell of a beta plant, wherein the site-directed nuclease is capable of generating at least one DNA double strand break in the genome of the cell and the repair matrix comprises a nucleic acid molecule according to claim 1;

(IIb) culturing the cell from (IIa) under conditions that allow homology-directed repair or homologous recombination, wherein the nucleic acid molecule is integrated from the repair matrix into the genome of the plant; and

(IIc) regenerating a plant from the cell modified in (b).

10. Method according to claim 9, characterized in that the at least one double strand break occurs in a sensitive allelic variant of the nucleic acid molecule according to claim 1, or the at least one double strand break occurs at a position of at most 10000 base pairs upstream or downstream of the sensitive allelic variant, wherein the allelic variant encodes a polypeptide that does not confer resistance to cercospora.

11. Method according to claim 10, characterized in that said sensitive allelic variant comprises a nucleotide sequence selected from the group consisting of:

(a) encoding a polypeptide comprising a sequence according to SEQ ID NO: 6, or a nucleotide sequence of a polypeptide of the amino acid sequence of,

(b) comprising a sequence according to SEQ ID NO: 5, or a nucleotide sequence of a sequence of SEQ ID NO,

(c) comprising a sequence according to SEQ ID NO: 4 in a sequence of the sequence of seq id no,

(d) a nucleotide sequence which hybridizes under stringent conditions to a sequence complementary to one of the nucleotide sequences according to (a), (b) or (c),

(e) a nucleotide sequence encoding a polypeptide which differs from the polypeptide encoded by the nucleotide sequence according to (a), (b) or (c) by substitution, deletion and/or addition of one or more amino acids of said amino acid sequence,

(f) encoding a polypeptide comprising a sequence identical to that according to SEQ ID NO: 6 an amino acid sequence which is at least 70% identical to the amino acid sequence of the polypeptide, or

(g) And a polypeptide according to SEQ ID NO: 4 or SEQ ID NO: 5 is at least 70% identical to the sequence of seq id no.

12. Method for identifying and optionally providing plants of sugar beet species resistant to the genus cercospora, characterized in that said method comprises at least steps (i) or (ii):

(i) detecting the presence and/or expression of a nucleic acid molecule according to claim 1, or the presence of a polypeptide according to claim 2, in said plant or part of said plant; and/or

(ii) Detecting at least one marker locus in the nucleotide sequence of the nucleic acid molecule according to claim 1 or in a co-segregating region, and

(iii) optionally selecting said Cercospora resistant plant,

preferably wherein the co-segregating region is a genomic region in sugar beet co-segregating with cercospora resistance conferred by a polypeptide according to claim 2 or with a nucleic acid molecule according to claim 1, more preferably the co-segregating region

a) Comprising markers sxh0678s01 and s4p0264s01 and flanked by markers sxh0678s01 and s4p0264s01, or

b) Comprising a sequence according to SEQ ID NO 74 and/or SEQ ID NO 75.

13. A method for growing plants of the sugar beet species, comprising:

(i) providing a plant according to claim 5, a plant of the beet species produced by a method according to one of claims 8 to 12, or a plant of the genus beta identified and selected by a method according to claim 12, and

(ii) (ii) cultivating the plant from (i) or its progeny,

wherein the method hinders infection of the cultivated plant with Cercospora.

14. An oligonucleotide of at least 15, 16, 17, 18, 19 or 20, preferably at least 21, 22, 23, 24 or 25, particularly preferably at least 30, 35, 40, 45 or 50, and particularly preferably at least 100, 200, 300 or 500 nucleotides in length, which oligonucleotide specifically hybridizes with a nucleotide sequence as defined in claim 1.

15. Method for producing an organism comprising a mutated form of a nucleic acid molecule according to claim 1 and/or a mutated form of a promoter comprising a nucleic acid sequence selected from the group consisting of:

(a)SEQ ID NO:7,

(b) a nucleotide sequence which hybridizes under stringent conditions to a sequence complementary to the sequence according to (a),

(c) and a polypeptide according to SEQ ID NO: 7 is at least 70% identical,

wherein the method comprises the steps of:

(I) providing an organism or cell comprising said nucleic acid molecule and/or said promoter,

(II) increasing the mutation rate of or mutagenizing the organism or the cell,

(III) phenotypic selection of organisms which, as a result of mutation, exhibit an altered resistance or altered level of resistance to Cercospora betaine, or

Genotyping an organism or cell comprising a mutation in said nucleic acid molecule and/or said promoter, wherein said mutation is caused by step (II)

And optionally

(IV) regenerating the organism from the cells obtained by step (III).

Technical Field

The present invention relates to nucleic acid molecules encoding polypeptides capable of conferring resistance to Cercospora, in particular the fungus Cercospora betanae (Cercospora betaca betacola), on plants expressing the polypeptides, in particular plants of the species beet (Beta vulgaris), and to polypeptides encoded by nucleic acid molecules according to the invention. In particular, the nucleic acid molecule according to the invention is characterized in that the resistance effect conferred by the polypeptide on Cercospora is dominant. Furthermore, the invention relates to a cercospora resistant plant, plant cell, plant organ, plant tissue, plant part or seed or progeny of a plant comprising the nucleic acid molecule or part thereof as an endogenous gene, as an editing gene, or as a transgene. Furthermore, the present invention also encompasses methods for increasing the resistance of plants of the sugar beet species to Cercospora, as well as methods for producing or identifying and possibly selecting anti-Cercospora plants. The invention also includes methods for monitoring infection by the pathogen cercospora betanae, as well as oligonucleotide probes and primers for hybridization to nucleic acid molecules according to the invention.

Background

Cercospora leaf spot is one of the most important, global epidemic leaf diseases in plants of the sugar beet species. It is caused by the fungus cercospora betanae. Plants infected with this disease typically form small, relatively round leaf spots (2-3mm), which are pale gray in the middle and reddish brown at the edges. When severely infested, the leaf spots overlap, thereby leaving the entire leaf dry. Small black spots (pseudostroma) were visible in the fully formed spots and a grey felt-like covering (conidia carrier with conidia) was formed mainly under moist conditions in the lower part of the leaf. Severely infected leaves first turn yellow, then brown and die. However, the growth of new leaves occurs in parallel, wherein the leaves are diseased again and die. First, the symptoms of injury are only visible on individual plants; however, as the disease spreads, persistent infection nests often form. Further spread throughout the land by rain and wind.

The pathogen cercospora betanae was first described in italy in the latter half of the 19 th century. Crop losses of up to 40% may be due to severe infestation, which may be caused by wet weather, early row closure (early row closure), high infection potential in the last few years, or strong irrigation. These losses are due to reduced yield and reduced sugar content of the sugar beet crops; see Holtschult ((2000) "Cerco beta-workbench distribution and emphasis" pp.5-16, in "Cerco beta Sacc.biology, agricultural influx and Control Measures in Sugar Beet" vol.2(M.J.C.Asher, B.Holtschult, M.R.Molard, F.Rosso, G.Steinru cken, R.Beckers, eds.) International Institute for Beet Research, Brussels, Belgium, 215 pp.). To combat this disease, intercropping or bactericidal agents are often used. Chemical control of the cercospora farinosa by the bactericide brings cost to farmers and pollutes the environment. Repeated application of the bactericide additionally increases the selective pressure of the bactericide-resistant cercospora betanae strain. This runs counter to sustainable agricultural practice.

Indirect countermeasures were performed by selecting varieties with healthy leaves and growing beets in at least 3 annual rings. Significantly better control of infestation can be achieved by combinations of resistant or resistant varieties. A variety of Neurospora sugar beet resistant to infection has been provided on The market since 2000 (Steinr ü cken 1997, "Die Z ü tung von Cercospora-resistance Zuckerr ü ben." [ "The weaving of Cercospora-resistance sugar beets"],für Pflanzenzüchtung[Lectures on Plant Breeding]Volume 37, feature symposium, March 4-5, 1997, Kiel). These varieties are quantitatively resistant to cercospora betanae. The resistance of these varieties is based on several genes and is quantitativeInherited, where the exact number of genes responsible for resistance is not known; see Weiland and Koch (2004) (Surgarbeet leaf spot disease (Cercosporia beta Sacc.), The Plant Journal, 5(3), 157-. Complex quantitative inheritance was confirmed by multiple Quantitative Trait Locus (QTL) analysis. This method allows for the localization of resistance to polygenic inheritance and is a reliable technique for identifying the number and location of genetic resistance factors on a genetic linkage map of a host plant. In this way, multiple pathogenic QTLs can be determined on each chromosome of sugar beet.

Mapping was performed using different cercospora resistance donors, where most of the QTL effects observed were minor. The maximum declared phenotype value is 5%.

A list of differentially expressed genes is described in the continuing study. In the Weltmeier et al study ((2011) Transcript profiles in sugar beets genes undercover timing and stripe of death reactions to Central microbial inoculum, Molecular plant-microbial interactions, 24(7), 758-772), whole genome expression profiles for various genotypes of sugar beet (i.e., Cercospora resistance, Cercospora tolerance, Cercospora sensitivity, etc.) were created during pathogen infection with microarray-based techniques to analyze leaf spot-related transcriptional changes in the expression profiles. Through these analyses, the authors created pathogen-induced transcription profiles and identified potential candidate genes in multiple tested genotypes of sugar beet. However, these genes have not been characterized in detail. The genetic and functional background of Cercospora resistance and the identity of the resistance gene (identity) are not known at all to date.

However, by quantitative inheritance of QTLs, not only the desired resistance to cercospora betaine is introduced into a plant, but also unwanted characteristics, such as reduced yield, are often introduced due to the inheritance of additional genes associated with the positive characteristics of cercospora resistance. This phenomenon is also referred to as "linkage drag". Furthermore, the enormous breeding costs required to select multiple resistance loci without reducing yield can negatively impact the vigor of the plant; see Weiland and Koch, 2004.

For more than a decade, breeding companies have offered varieties of cercospora species on the market. The resistance of these varieties is inherited through multiple resistance genes with little effect. However, these varieties have the disadvantage that, due to the complexity of the inheritance, the development of the varieties is very difficult and complex and, without infestation, these varieties have yield properties which are significantly lower than those of normal varieties. This may be associated, inter alia, with the epigenetic interaction of some resistance genes with genes responsible for sugar production, which leads to a reduced adaptability of the plant in the absence of pathogens.

Due to the complexity of genetics and the large number of genes involved in resistance development, many of which have not been identified and characterized, the use of new breeding techniques based on gene editing (e.g., by TALE nucleases or CRISPR systems, as well as transgenic approaches) is not possible in practice.

In order to achieve sustainable breeding against cercospora leaf spot (i.e. to eliminate the risk of cercospora variants overcoming resistance), it is necessary to continually identify new resistance genes and integrate them into the gene bank of cultivated plants (e.g. sugar beet). In particular, it is an object to provide suitable resistance genes which, when expressed in plants, themselves exert a very large dominant resistance effect against Cercospora betaine. According to the invention, this object is achieved by the embodiments described in the claims and the description.

Brief description of the invention

The present invention relates to nucleic acid molecules capable of conferring resistance to a plant, in particular a subsp. Thereby producing the polypeptide encoded by the nucleic acid molecule in the plant. The nucleic acid molecules which, when expressed, produce the polypeptide themselves exert a very large dominant resistance effect in plants against Cercospora betaine.

Furthermore, the present invention relates to a cercospora plant, plant cell, plant organ, plant tissue, plant part or seed, seed stock (seed stock) or progeny of a plant, comprising a nucleic acid molecule or part thereof. The nucleic acid can be constructed, for example, endogenously or transgenically. Furthermore, the nucleic acid may be constituted as an introgression (introgresson). Optionally, plants and their components obtained by basic biological processes are excluded.

The invention also encompasses methods for increasing the resistance of plants of the sugar beet species to Cercospora, as well as methods for generating or identifying and possibly selecting anti-Cercospora plants. The invention also encompasses methods for monitoring the infection by the pathogen cercospora betanae, as well as oligonucleotide probes and primers for hybridization with nucleic acid molecules according to the invention.

The invention thus relates to embodiments which are listed in the following points and illustrated in the examples and figures.

[1] A nucleic acid molecule encoding a polypeptide capable of conferring cercospora resistance to a plant in which it is expressed, comprising a nucleotide sequence selected from the group consisting of:

(a) encoding a polypeptide having an amino acid sequence according to SEQ ID NO: 3;

(b) comprising a sequence according to SEQ ID NO: 2;

(c) comprises a sequence selected from the group consisting of SEQ ID NO: 1 or SEQ ID NO: 53, nucleotide sequence of a DNA sequence of the group consisting of;

(d) a nucleotide sequence that hybridizes under stringent conditions to a nucleotide sequence complementary to the nucleotide sequence according to (a), (b) or (c);

(e) a nucleotide sequence encoding a polypeptide which differs from the polypeptide encoded by the nucleotide sequence according to (a), (b) or (c) by substitution, deletion and/or addition of one or more amino acids of the amino acid sequence;

(f) encoding a polypeptide having a sequence corresponding to that according to SEQ ID NO: 3, a nucleotide sequence of a polypeptide having an amino acid sequence at least 70% identical to the amino acid sequence of seq id no;

(g) and a polypeptide according to SEQ ID NO: 1 or SEQ ID NO: 2, a nucleotide sequence at least 70% identical to the DNA sequence of 2;

wherein the Cercospora resistance is preferably Cercospora farinosa resistance, or wherein the plant is preferably a beet subspecies plant, particularly preferably beet.

[2] The nucleic acid molecule according to [1], characterized in that the resistance effect conferred by the polypeptide to Cercospora is dominant in plants, preferably wherein the polypeptide confers a resistance effect on at least one scale score, and preferably confers a resistance effect on a plurality of scale scores, particularly preferably confers a resistance effect on at least two scale scores, particularly preferably confers a resistance effect on at least three scale scores, particularly preferably confers a resistance effect on at least four scale scores.

[3] The nucleic acid molecule according to [1] or [2], which is derived from sea beet (Beta vulgaris subsp.

[4] A polypeptide encoded by the nucleic acid molecule according to any one of [1] to [3 ].

[5] A vector or an expression cassette comprising a nucleic acid molecule according to any one of [1] to [3], wherein the nucleic acid molecule is preferably heterologous to the vector or the expression cassette.

[6] A cell comprising a nucleic acid molecule according to any one of [1] to [3] or a vector or expression cassette according to [5], wherein the nucleic acid molecule or the expression cassette is preferably present as an endogenous gene or transgene.

[7] anti-Cercospora plant or part thereof, characterized in that the plant or part thereof endogenously or transgenically comprises a nucleic acid molecule according to any one of [1] to [3] or a vector or expression cassette according to [5], wherein the plant endogenously comprising the nucleic acid molecule is a beet species (non-sea beet)) plant or a beet subspecies.

[8] The plant according to [7], characterized in that the plant is a hybrid plant.

[9] The plant according to [7] or [8], wherein the nucleic acid molecule is present in heterozygous or homozygous form in the genome of the plant.

[10] Seed or progeny of a plant according to any of [7] to [9], wherein the seed or progeny comprises the nucleic acid molecule according to any of [1] to [3] or the vector or expression cassette according to [5] transgenically or endogenously.

[11] A method for increasing resistance of a plant to cercospora, the method comprising the steps of:

(i) integrating the nucleic acid molecule according to any one of [1] to [3] or the vector or expression cassette according to [5] into the genome of at least one cell of a plant by homology directed repair or homologous recombination (preferably supported by site-directed nucleases) and optionally regenerating a plant from the at least one plant cell; or

(ii) In particular after infection with cercospora, preferably by modification, for example, comprising a sequence according to SEQ ID NO: 7, or by contacting a nucleic acid molecule according to any one of [1] to [3] with a nucleic acid molecule having a sequence as defined by a sequence comprising the DNA sequence according to SEQ ID NO: 7 to enhance expression of the nucleic acid molecule according to any one of [1] to [3] in at least one cell of the plant and optionally regenerating a plant from the at least one plant cell; or

(iii) Increasing the activity and/or stability of the polypeptide according to [4] in at least one cell of the plant by modifying the nucleotide sequence of the nucleic acid molecule according to any one of [1] to [3], and optionally regenerating a plant from the at least one plant cell; or

(iv) Transforming a plant cell with a nucleic acid molecule according to any one of [1] to [3] or a vector or expression cassette according to [5], and optionally regenerating a (transgenic) plant from the transformed plant cell;

wherein the Cercospora resistance is preferably Cercospora farinosa resistance, or the plant is preferably a plant of the species beet, preferably subspecies beet, especially beet.

[12] A method for producing a cercospora resistant plant according to any one of [7] to [9], the method comprising the steps of:

(a) transforming a plant cell with the nucleic acid molecule according to any one of [1] to [3] or the vector or expression cassette according to [5 ]; and

(b) regenerating a transgenic plant from the transformed plant cell; or

(i) Introducing a site-directed nuclease and a repair matrix into a cell of a plant of the sugar beet species, wherein the site-directed nuclease is capable of generating at least one DNA double strand break in the genome of the cell (preferably upstream and/or downstream of the target region) and the repair matrix comprises a nucleic acid molecule according to any one of [1] to [3 ];

(ii) (ii) culturing the cell of (i) under conditions that allow for homology-directed repair or homologous recombination, wherein the nucleic acid molecule is integrated into the genome of the plant from the repair matrix; and

(iii) (iii) regenerating a plant from the cell modified in (ii).

[13] The method according to [12], wherein the target region comprises an allelic variant of the nucleic acid molecule according to any one of [1] to [3], wherein the allelic variant encodes a polypeptide that does not confer Cercospora resistance or that has slight Cercospora resistance.

[14] The method according to [12] or [13], wherein the at least one double-strand break occurs at a position of at most 10000 base pairs upstream and/or downstream of the target region, or at a position of at most 10000 base pairs away from the allelic variant defined in [13 ].

[15] The method according to [12] or [13], wherein the allelic variant of the nucleic acid molecule comprises a nucleotide sequence selected from the group consisting of:

(a) encoding a polypeptide having an amino acid sequence according to SEQ ID NO: 6;

(b) comprising a sequence according to SEQ ID NO: 5, a nucleotide sequence of the DNA sequence of seq id no;

(c) comprising a sequence according to SEQ ID NO: 4, or a nucleotide sequence of the DNA sequence of 4;

(d) a nucleotide sequence that hybridizes under stringent conditions to a nucleotide sequence that is complementary to a nucleotide sequence according to (a), (b) or (c);

(e) a nucleotide sequence encoding a polypeptide which differs from the polypeptide encoded by the nucleotide sequence according to (a), (b) or (c) by substitution, deletion and/or addition of one or more amino acids of the amino acid sequence; or

(f) Encoding a polypeptide having a sequence corresponding to that according to SEQ ID NO: 6, and a polypeptide having an amino acid sequence at least 80% identical to the amino acid sequence of seq id No. 6.

[16] A plant or part thereof obtained or obtainable by a method according to any one of [12] to [15 ].

[17] Method for identifying and optionally providing a plant of a Saccharum sinensis species resistant to Cercospora, characterized in that the method comprises at least steps (i) or (ii):

(i) detecting the presence and/or expression of a nucleic acid molecule according to any one of [1] to [3] or detecting the presence of a polypeptide according to [4] in the plant or the plant part; and/or

(ii) Detecting at least one marker locus in the nucleotide sequence of the nucleic acid molecule according to any one of [1] to [3], or in the co-segregating region; and

(iii) it is possible to select plants resistant to Cercospora betaine.

[18] A method for identifying a nucleic acid molecule encoding a polypeptide capable of conferring cercospora resistance on a beet species plant expressing the polypeptide, the method comprising the steps of:

(i) aligning the amino acid sequence of the polypeptide according to [4] with amino acid sequences in sequence databases or identifying allelic variants encoding the polypeptide according to [4] in the genotype of a sugar beet species;

(ii) identifying an amino acid sequence or an allelic variant encoding the amino acid sequence, wherein the amino acid sequence is at least 80% identical to the amino acid sequence of the polypeptide according to [4 ];

(iii) introducing a nucleic acid molecule or allelic variant encoding the identified amino acid sequence into a plant of the beet species and expressing the nucleic acid molecule in the plant; and

(iv) resistance to Cercospora was tested.

[19] A method for growing a plant of the sugar beet species, the method comprising:

(i) providing a plant according to any of [7] to [9], producing a plant of the beet species by a method according to any of [12] to [15], or identifying and selecting a plant of the genus beta by a method according to [17 ]; and

(ii) (ii) growing the plant obtained in (i) or its progeny,

wherein the method prevents Cercospora infestation of the cultivated plant.

[20] An oligonucleotide of at least 15, 16, 17, 18, 19 or 20, preferably at least 21, 22, 23, 24 or 25, particularly preferably at least 30, 35, 40, 45 or 50, particularly preferably at least 100, 200, 300 or 500 nucleotides in length which hybridizes to a nucleotide sequence as defined in any one of [1] to [3 ].

[21] A pair of oligonucleotides, preferably oligonucleotides according to [20] or a kit comprising these oligonucleotides, wherein the oligonucleotides are suitable for hybridization as forward and reverse primers into regions of the sugar beet genome which are co-isolated with the cercospora resistance conferred by the polypeptide according to [4] or which are co-isolated with the nucleic acid molecule according to any one of [1] to [3 ].

[22] Use of a nucleic acid molecule according to any one of [1] to [3] for the production of a plant of the subspecies betanae genus, resistant to cercospora.

[23] A method for producing an organism comprising a mutant form according to [1] and/or a mutant form of a promoter comprising a nucleic acid sequence selected from the group consisting of:

(a)SEQ ID NO:7

(b) nucleotide sequence hybridizing under stringent conditions with a sequence complementary to a sequence according to (a)

(c) And a polypeptide according to SEQ ID NO: 7 nucleotide sequence at least 70% identical in sequence

Wherein, the method comprises the following steps:

(I) providing an organism or cell comprising the nucleic acid molecule and/or the promoter

(II) increasing the mutation rate of the organism or the cell, or

Mutagenizing the organism or the cell

(III) selection of a phenotype of an organism which, as a result of a mutation, exhibits an altered resistance or an altered level of resistance to Cercospora betaine or

Selecting the genotype of the organism or cell comprising the mutation in the nucleic acid molecule and/or the promoter, wherein the mutation is generated by step (II)

And optionally

(IV) regenerating the organism from the cells obtained in step (III).

[24] The method according to [23], wherein the organism is a plant.

[25] The method according to [24], wherein the plant is a beet, preferably a beet subspecies, more preferably a beet.

First, some terms used in the present application will be explained in detail below:

a "grade score" in the sense of the present invention is understood as a qualitative assessment of the resistance to infection by cercospora, expressed using a scale from 1 to 9 (where 1 is strong resistance and 9 is no resistance).

Table 1A: grade 9 resistance rating of Cercospora

The genus Cercospora encompasses various species such as Cercospora arachidicola (Cercospora arachidicola), Cercospora arimeriensis, Asparagus officinalis (Cercospora asparagus), Cercospora bertoreae, Cercospora saccharina, Cercospora bizzozeriana, Cercospora variabilis (Cercospora encensis), Cercospora carota (Cercospora carota), Umbiospora odorifera (Cercospora cheopodii), Cercospora cinerea, Cercospora citrina, Sporospora sporotrichioides (Cercospora clathrata), Cercospora diazu, Cercospora durcanae, Cercospora erygiensis, Cercospora harea (Cercospora echinospora), Cercospora japonica (Cercospora aurora), Cercospora nigra (Cercospora), Cercospora cornucospora officinalis (Cercospora cornucopora), Cercospora officinalis (Cercospora cornucopora officinalis (Cercospora cornucopora), Cercospora cornucopora (Cercospora cornucopora), Cercospora (Cercospora coera), Cercospora (Cercospora cornucopora (Cercospora), or Cercospora (Cercospora), Cercospora (Cercospora), or Cercospora (Cercospora), or), Cercospora (Cercospora), or Cercospora (Cercospora), Cercospora (Cercospora), or Cercospora (Cercospora), or Cercospora), or (Cercospora), or), Cercospora (Cercospora), or (Cercospora), or (Cercospora), Cercospora (Cercospora), or Cercospora (Cercospora), or (Cercospora), or), Cercospora (Cercospora), or (Cercospora), or Cercospora (Cercospora), or (Cercospora), or Cercospora), Cercospora (Cercospora), or Cercospora (Cercospora), Cercospora (Cercospora), or (Cercospora.

The term "about" as used in connection with the length of a nucleotide sequence refers to a +/-200 base pair deviation, preferably a +/-100 base pair deviation, and particularly preferably a +/-50 base pair deviation.

"plants of the genus beta" belong to the family Amaranthaceae (amaranth family/Amaranthaceae). These plants include plants of the species Beta macrocarpa, beet (Beta vulgaris), Beta logonona, Beta macrorrhiza, Beta cororoliflora, Beta trigyna and Beta nana. In particular, the plants of the beet species are plants of the beet subspecies. Examples include Beta vulgaris subsp. vulgaris var. album (beet in the narrower sense), Beta vulgaris ssp. vulgaris var. vulgaris (beet leaf), Beta vulgaris ssp. vulgaris var. album (beet root/red beet), Beta vulgaris ssp. vregas var. album (beet leaf), crara/alba (beet for feeding). It should be noted that the nucleic acids according to the invention do not occur naturally in sugar beet, leaf beet, sugar beet root or fodder beet, but can be introduced into them by human action.

"functional fragment" of a nucleotide sequence refers to a segment of a nucleotide sequence whose functionality is identical or equivalent to the functionality of the complete nucleotide sequence from which it is derived. Thus, a functional fragment may be a nucleotide sequence that is identical or homologous to the total nucleotide sequence over at least 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 92%, 94%, 96%, 97%, 98%, or 99% of its length. This also explicitly covers the range of 90-100%. Furthermore, a "functional fragment" of a nucleotide sequence may also refer to a fragment of a nucleotide sequence that modifies the functionality of the entire nucleotide sequence, e.g., post-transcriptionally or during transcriptional gene silencing. Thus, a functional fragment of a nucleotide sequence may comprise at least 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24 or 25, preferably at least 30, 35, 40, 45, 50, 60, 70, 80, 90, 100, 120 or 140, particularly preferably at least 160, 180, 200, 250, 300, 350, 400, 450, 500, 600, 700, 800, 900 or 1,000 consecutive nucleotides in the total nucleotide sequence. This also explicitly covers the range of 21 to 50 nucleotides.

"functional part" of a protein refers to a segment of the protein or a portion of the amino acid sequence encoding the protein, wherein the segment can perform the same or equivalent function as the intact protein in a plant cell. A functional portion of a protein is an amino acid sequence that is the same or similar (allowing for conservative and semi-conservative amino acid exchanges) as the protein from which it is derived over at least 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 92%, 94%, 96%, 97%, 98% or 99% of its length.

The term "heterologous" means that the introduced polynucleotide originates from a cell or organism with a different genetic background, belonging to the same species or a different species, or that it is homologous to a prokaryotic or eukaryotic host cell, but is then located in a different genetic environment and thus different from the corresponding polynucleotide which may be naturally present. In addition to the corresponding endogenous gene, a heterologous polynucleotide may be present.

"homologues" in the sense of the present invention are to be understood as proteins having the same phylogenetic origin; "analogs" are understood as proteins which exert the same function but have a different phylogenetic origin; "orthologues" are to be understood as proteins from different species which exert the same function; "paralogs" are to be understood as proteins which occur within a species as a result of replication, wherein such copies retain the same protein function, alter their expression template without altering function, alter their protein function, or melon divide (divide up) the original gene function between two copies.

"hybridization" is understood to mean a process in which a single-stranded nucleic acid molecule binds to a nucleic acid strand which is complementary to it to the greatest possible extent, i.e.forms base pairs with it. Standard methods of hybridization are described, for example, in Sambrook et al, Molecular Cloning: a Laboratory Manual, third edition, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 2001. It is thus preferably to be understood that at least 60%, more preferably at least 65%, 70%, 75%, 80% or 85%, and particularly preferably 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% of the bases of the nucleic acid molecules form base pairs with the most complementary nucleic acid strand. The feasibility of such annealing depends on the stringency of the hybridization conditions. The term "stringency" relates to hybridization conditions. High stringency exists when base pairing is more difficult. When base pairing is easier, then low stringency exists. For example, the stringency of hybridization conditions depends on salt concentration or ionic strength and temperature. Generally, stringency can be increased by increasing the temperature and/or decreasing the salt content. "stringent hybridization conditions" are to be understood as meaning conditions under which hybridization predominantly occurs only between homologous nucleic acid molecules. The term "hybridization conditions" thus relates not only to the conditions prevailing in the actual addition of nucleic acids, but also to the conditions prevailing in the subsequent washing steps. For example, stringent hybridization conditions refer primarily to hybridization, under such conditions, only those nucleic acid molecules having at least 70%, preferably, at least 75%, at least 80%, at least 85%, at least 90%, or at least 95% sequence identity. Stringent hybridization conditions were: for example, hybridization in 4 XSSC at 65 ℃ followed by repeated washes in 0.1 XSSC at 65 ℃ for about 1 hour. Hybridization preferably occurs under stringent conditions.

For nucleic acids in the form of double-stranded DNA, a "complementary" nucleotide sequence refers to a second DNA strand that is complementary to the first DNA strand, having nucleotides corresponding to the bases of the first strand, according to the base pairing rules. The complementary sequence is preferably completely complementary to the anti-sequence and therefore preferably of the same length.

An "isolated nucleic acid molecule" is understood to be a nucleic acid molecule that has been extracted from its natural or original environment. The term also includes synthetically produced nucleic acid molecules. An "isolated polypeptide" is understood to be a polypeptide that is extracted from its natural or original environment. The term also includes synthetically produced polypeptides.

A "molecular marker" is a nucleic acid that has a polymorphism in a population of plants and serves as a reference or targeting point. The marker used to detect the recombination event should be suitable for monitoring differences or polymorphisms within the plant population. Thus, such markers are capable of detecting and distinguishing the status of various alleles (alleles). The term "molecular marker" also relates to a nucleotide sequence that is complementary, or at least largely complementary or homologous to a genomic sequence, for example a nucleic acid used as a probe or primer. These differences at the DNA level can be found as markers and are, for example, polynucleotide sequence differences such as SSR (simple sequence repeat), RFLP (restriction fragment length polymorphism), FLP (fragment length polymorphism) or SNP (single nucleotide polymorphism). The tag may be derived from genomic or expressed nucleic acid, such as spliced RNA, cDNA or EST, and may also be associated with nucleic acid used as a probe or primer pair, and is therefore suitable for amplification of sequence fragments using PCR-based methods. Markers that describe Genetic polymorphisms (between various parts of the population) can be detected using methods well established in the art (An Introduction to Genetic Analysis, 7 th edition, Griffiths, Miller, Suzuki et al, 2000). For example, DNA sequencing, PCR-based sequence specific amplification, RFLP validation, polynucleotide polymorphism validation by Allele Specific Hybridization (ASH), detection of amplified variable sequences of plant genomes, detection of 3SR (autonomous sequence replication), detection of SSR, SNP, RFLP or AFLP (amplified fragment length polymorphism) are included among others. In addition, methods for detecting ESTs (expressed sequence tags) and SSR markers derived from EST sequences and RAPDs (randomly amplified polymorphic DNA) are also known. Depending on the context, the term "marker" in the specification may also refer to a specific chromosomal location in the genome of a species in which a specific marker (e.g., a SNP) may be found.

Labels also include synthetic oligonucleotides that can be linked to one or more detection molecules that can be used to detect a reaction or signal generation within the context of a validation method. The synthetic oligonucleotides also include labeled primers. Synthetic oligonucleotides and labeled primers are artificial compounds that do not exist in nature and cannot be isolated from nature. The production of such compounds is further illustrated below.

A "promoter" is a non-translated regulatory DNA sequence, usually upstream of a coding region, which contains a binding site for RNA polymerase and initiates transcription of DNA. Promoters also contain other elements (e.g., cis-regulatory elements) that act as regulatory genes for gene expression. A "core or minimal promoter" is a promoter (e.g., a TATA box and/or initiator) that has essential elements required to initiate transcription.

"pathogen" refers to an organism that interacts with a plant to cause disease symptoms in one or more organs of the plant. For example, animal, fungal, bacterial or viral organisms or oomycetes are included among these pathogens.

By "pathogenic infection" is understood the earliest point in time at which a pathogen interacts with plant host tissue. In this sense, "infestation" refers to contact between a pathogen and a host. With the anchorage of pathogens on the host (e.g., fungal spores on the surface of plant leaves), the mechanisms of pathogen detection and signaling begin in the plant host cell. In the case of cercospora betanae, conidia are formed in humid and warm weather and transferred to neighboring plants by rain and wind. New infections usually first show a single leaf spot on the outer, physiologically older leaf. These are usually clearly separated from healthy leaf tissue by brown rings. The brown conidia carriers of the fungus were observed in the middle of the spots with the aid of a magnifying glass (rating score 3). The number of these brown spots increased rapidly, with the sporozoites initially overlapping with smaller necrotic areas (grade score 5). During further progression of the disease (now also extending to the inner lobe), the outer lobe first necroses (grade score 7) and then almost all the leaves die (grade score 9). The course of the disease and the severity of symptoms strongly depend on the location and the weather conditions that fluctuate year by year.

Plant "organ" means, for example, a leaf, shoot (shoot), stem, root, hypocotyl, vegetative bud, meristem, embryo, anther, ovule, seed, or fruit. "plant parts" include, but are not limited to, shoots or stems (stalk), leaves, flowers, inflorescences, roots, fruits and seeds, and pollen. The term "plant part" also refers to a combination of organs, such as flowers or seeds, or a portion of an organ, such as a cross-section through a young branch of a plant. Plant "tissue" is for example callus, storage tissue, meristem, leaf tissue, shoot tissue, root tissue, plant tumor tissue or reproductive tissue, as well as neogenetic tissue, parenchyma tissue, vascular tissue, sclerenchyma tissue and epidermis. However, the organization is not limited to those listed. For example, a plant "cell" is understood to be, for example, an isolated cell having a cell wall or an aggregate or protoplast thereof.

In connection with the present invention, the term "control sequence" relates to a nucleotide sequence which influences the specificity and/or the strength of expression, for example in that the control sequence confers a defined tissue specificity. For example, such regulatory sequences may be located upstream of the transcription start point of the minimal promoter, but may also be located downstream thereof, in the transcribed but untranslated leader sequence or in the intron.

The term "resistance" is to be understood in a broad sense and covers the range of protection from delaying until completely preventing the development of the disease. An example of an important pathogen is cercospora betanae. The resistant plant cells of the invention or the resistant plants of the invention preferably achieve resistance to cercospora betanae. Resistance to a pathogen is equivalent to resistance to a disease caused by such a pathogen; for example, resistance to cercospora betanae is also resistance to leaf spot. For example, an increase in resistance can be measured by a decrease in fungal biomass on the host plant; to this end, fungal DNA can be determined by means of quantitative PCR in comparison with plant DNA in infected plant tissues. Another method of resistance measurement is optical rating, where the awarded rating scores 1 (not susceptible) to 9 (very susceptible).

"transgenic plant" refers to a plant having at least one polynucleotide integrated into its genome. Thus, it may be a heterologous polynucleotide. Preferably, the polynucleotide is stably integrated, which means that the integrated polynucleotide is stably maintained in the plant and is expressed and may also be stably transmitted to progeny. Stably introducing the polynucleotide into the genome of the plant also includes integration into the genome of the last parent plant, wherein the polynucleotide may be further stably delivered. The term "heterologous" means that the introduced polynucleotide originates from a cell or organism of the same species or of a different species with a different genetic background, or is homologous to a prokaryotic or eukaryotic host cell, for example, but is located in a different genetic environment, and thus is different from the corresponding polynucleotide that may be naturally occurring. In addition to the corresponding endogenous gene, a heterologous polynucleotide may be present.

"feedstock for industrial sugar production" means plant material that can be fed to a sugar production plant dedicated to the extraction of sugar from sugar beets. This material is usually the beet body (main root) of the harvested beets. To ensure consistency with the extraction process, the sugar beet bodies need to have sufficient mass, volume and conical shape so that the raw material can be mechanically cut into strips (beet strips). These beet strips maximize the surface area of sugar extraction and have low levels of sodium, potassium and nitrogen for efficient extraction. After extraction, the remaining beet pulp is pressed, dried and used as animal feed.

"sucrose concentration" is expressed as a percentage of the fresh weight of the root.

By "single embryo" is meant that the seed grows completely into one plant, while multiple embryo (polygerm) seeds (also known as "seedballs") grow into several plants.

"bolting" is the creation of one or more flower stems from sugar beet in an attempt to naturally produce seeds and propagate. Bolting was triggered due to low temperature stress (e.g. overwintering). However, before bolting, commercially grown beets are harvested because this process reduces the sugar content in the beets.

By "introgression" is meant that a nucleotide sequence has been transferred into the genome of a plant, wherein the nucleotide sequence originates from a plant not belonging to the same species or subspecies. For example, this may mean that the nucleotide sequence from a plant of the sea beet subspecies has been transferred into a plant of the beet (Beta vulgaris vulgaris vulgaris) subspecies.

The design and embodiments of the present invention are described by way of example with reference to the accompanying (pending) sequences and figures.

FIG. 1: protein sequence alignment between a resistance protein (a protein conferring resistance to Cercospora species of plants) and a sensitivity protein (a protein not conferring resistance to Cercospora species of plants). Polymorphisms are highlighted in gray.

FIG. 2: protein sequence alignment between a resistance protein (a protein conferring resistance to Cercospora species of plants) and a sensitivity protein (a protein not conferring resistance to Cercospora species of plants). Polymorphisms are highlighted in gray.

FIG. 3: vector diagram of the vector pZFN-nptII comprising the LRR region.

FIG. 4: statistical boxplot evaluation of data generated 8 days after infection during transgene validation of resistance genes.

FIG. 5: statistical boxplot evaluation of data generated 11 days after infection during transgene validation of the resistance gene.

FIG. 6: statistical boxplot evaluation of data generated 8 days after infection during transgene validation of resistance genes.

FIG. 7: statistical boxed plot evaluation of data generated 15 days after infection during transgene validation of resistance genes.

Detailed Description

The present invention relates to a nucleic acid molecule capable of conferring resistance to Cercospora species of plants (in particular, subspecies betanae) expressing a polypeptide encoded by the nucleic acid molecule. According to a preferred embodiment of the invention, the pathogen is the fungus cercospora betanae, which is one of the most important and destructive leaf pathogens of sugar beets, beetroot and leaf beets, etc., and can cause crop losses of more than 40%. The fungus produces a secondary metabolite cercosporin which reacts with oxygen under light and forms Reactive Oxygen Species (ROS). ROS cause a great deal of cell damage in the leaf tissue of infected plants, appearing as necrosis.

The present invention is based on the genetic fine-mapping, identification, isolation and characterization of genes or loci derived from donor sea beet, whose presence in plants (especially in the sugar beet subspecies) is linked to or responsible for the resistance of plants to cercospora leaf spot. The starting material was a sea beet population, which was cultivated from 37 parts of sea beet material from different sources.

The nucleotide and amino acid coding sequences of the nucleic acid molecules according to the invention are characterized by a plurality of polymorphisms which distinguish the NPS-LRR gene identified according to the invention from "sensitive" variants of this gene, i.e.variants of the gene which do not confer resistance to Cercospora. Examples of polymorphisms are shown in FIG. 1.

The nucleic acid molecule according to the invention may be an isolated nucleic acid molecule. Preferably DNA, particularly preferably cDNA (coding DNA). The polypeptides encoded by the nucleic acid molecules according to the invention preferably confer resistance to the pathogen cercospora betanae which causes cercospora leaf spot. Furthermore, the polypeptides encoded by the nucleic acid molecules according to the invention confer resistance, in particular to the beta plants, to this pathogen. The plant is preferably a plant of the beet species, particularly preferably a plant of the beet subspecies; these include, for example, the varieties beet, beet root, fodder beet, leaf beet and swiss beet.

In one embodiment of the invention, the nucleic acid molecule according to the invention comprises a nucleic acid sequence encoding a polypeptide having an amino acid sequence according to SEQ ID NO: 3 and/or an amino acid sequence according to SEQ ID NO: 2, and a nucleotide sequence encoding a polypeptide of the DNA sequence of (2). Furthermore, the present invention provides a nucleotide sequence comprising a nucleotide sequence according to SEQ ID NO: 1 and SEQ ID NO: 53 in a DNA sequence of SEQ ID NO.

The genes identified according to the invention are NBS-LRR type resistance genes/proteins characterized by specific structural motifs. The general structure of such resistance proteins in plants has been well studied (Martin et al, Annual Plant Biology Annual Review (Martin et al, Annual Review Plant Biology 54(2003), 23-61), however, the principles of the structural embodiments-in particular the principles of the known LRR domains, this domain is a potential detection domain for most unknown pathogenic effectors-is unpredictable, and the functional background (i.e., genetic structure) of resistance genes is often largely unknown.therefore, it is not possible to identify genes or proteins that confer resistance to Cercospora based solely on known structural motifs. Which contain tandem repeats with very high sequence homology, make the development of diagnostic markers and the assembly of sequence data particularly difficult.

By means of the establishment of more than 4000 dividing progeny populations and the development of special recombination screens, the target region was reduced and further isolated by analysis of informative recombinants (genotype and phenotype) in a series of resistance tests. Genetic mapping and the creation of physical maps with WHG sequencing ("whole genome sequencing"), comparative BAC (BAC-by-BAC) sequencing and bioinformatics analysis led to the identification of three recombinant genotypes (1 in adjacent genes on the one hand and 2 in adjacent genes on the other hand) that identified the resistance gene. In view of the special requirements, the present inventors placed highly repetitive structures in the target region, including tandem repeats with very high sequence homology, which made marker development and informative recombinant identification more difficult. The following steps are particularly decisive for the localization of the genetic structure of the resistance gene:

development of markers s4p0264s01, s4p2271s01, sxh0678s01, s4p4293s01, s4p4295s01, s4p4301s01 (see table 1B).

Fine localization in combination with dense phenotypes. In greenhouse trials, phenotypes are identified by 90-180 progeny per plant and intensive statistical methods (e.g., t-test, power analysis, etc.).

-identifying and sequencing BAC clones from BAC pools of resistance genotypes.

Sequence assessment, and comparison of sequences and proteins between RR (i.e. resistance) and ss (i.e. sensitivity) genotypes; therefore, due to sequence complexity, unambiguous assembly of RR and ss sequence data is not always possible.

Table 1B: a marker in the target region; the information in square brackets [ X/Y ] indicates the diagnostic SNP, where X indicates the sensitivity genotype and Y indicates the resistance genotype.

The compounds provided in table 1B may be used as molecular markers according to the present invention.

Analysis showed that the LRR gene was homologous to a moderate protein from tomato (UNIPROT | Q41397_ SOLPI p. Cf-2.1) to the Cf-2 resistance protein (sequence identity 322/830 ═ 38%). In fact, the identified protein conferring Cercospora resistance is the best betaine protein homologue of the Cf-2 tomato resistance protein. The Cf-2 resistance protein from tomato confers resistance to the tomato mold phyllospora cassiicola (a black mold) by interacting with the avirulent protein Avr2 from tomato mold phyllosporium fulvum (US 6,287,865B 1). This leads to the activation of the plant's immune defenses against pathogens; see Dixon et al, 1996(Dixon, Mark S., et al., "The tomato Cf-2 discrete resistance locations comprising two functional genes encoding results-rich repeat proteins" Cell 84.3 (1996): 451-. Due to sequence homology between the Cf-2 gene and the identified LRR gene, it can be assumed, but without being bound by a theory, that a similar defense mechanism underlying cercospora resistance also exists in sugar beet. However, different mechanisms are not excluded because of the moderate sequence homology.

Furthermore, substitutions, deletions, insertions, additions and/or any other alterations, alone or in combination, which do in fact alter the nucleotide sequence, may be introduced into the nucleotide sequence according to the invention, wherein, however, the modified nucleotide sequence may perform the same function as the original sequence. The present application relates to the coding of amino acid sequences conferring resistance to cercospora leaf spot. Thus, in a further embodiment, the invention comprises a nucleotide sequence encoding a polypeptide representing a derivative of a polypeptide encoded by a nucleotide sequence according to the invention, or comprising an amino acid sequence according to the invention. The derivative amino acid sequence having at least one substitution, deletion, insertion or addition of one or more amino acids represents a derivative of the polypeptide in which the functionality of the encoded polypeptide/protein is retained. Thus, substitutions, deletions, insertions, additions and/or any other alterations, taken alone or in combination, may be introduced into a nucleotide sequence using conventional methods which do in fact alter the nucleotide sequence but perform the same function as the starting sequence, as are known in the art, e.g., by site-directed mutagenesis, PCR-mediated mutagenesis, transposon mutagenesis, genome editing, and the like.

The substitution of an amino acid by a different amino acid having the same or equivalent or similar chemical/physical properties is referred to as "conservative substitution" or "semi-conservative substitution". Examples of the physical/chemical properties of amino acids are hydrophobicity or charge. Which amino acid substitutions represent conservative or semi-conservative substitutions are known to those skilled in the art. Moreover, general expertise allows one skilled in the art to identify, identify and detect which amino acid deletions and additions are not detrimental to the function of the resistance protein, and at which positions are feasible. The person skilled in the art knows that in case the NBS-LRR protein of the invention is used to modify an amino acid (substitution, deletion, insertion or addition of one or more amino acids), the functionality of especially conserved domains must be preserved and therefore only limited modifications as described above are feasible in these domains.

Accordingly, the present invention includes functional fragments of the nucleotide sequences according to the present invention. Thus, the term "fragment" includes a gene having a nucleotide sequence sufficiently similar to the above-described nucleotide sequence. The term "sufficiently similar" means that a first nucleotide sequence or amino acid sequence has a sufficient or minimal number of identical or equivalent nucleotide or amino acid groups relative to a second nucleotide sequence or second amino acid sequence.

With regard to the amino acid sequences, they also have a common domain and/or have a common functional activity after modification by the above-described methods. Herein, a nucleotide sequence or amino acid sequence having at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or at least about 100% identity to a nucleotide sequence or amino acid sequence according to the invention is defined as sufficiently similar. This also explicitly covers the range of 90% to 100%. For functional fragments, sufficient similarity is established if the nucleotide sequence or amino acid sequence generally has the same properties as the previously specified nucleotide sequence or amino acid sequence of the invention. Those nucleotide sequences which code for derivatives or for amino acid sequences derived therefrom are generated directly or indirectly (e.g. by amplification or replication steps) from an initial nucleotide sequence which corresponds over the entire length or at least in part to a nucleotide sequence according to the invention.

Thus, the present invention includes nucleotide sequences that are capable of hybridizing under stringent conditions to nucleotide sequences that are complementary to the nucleotide sequences according to the present invention or to nucleotide sequences encoding amino acid sequences according to the present invention.

In another embodiment, the nucleic acid molecule according to the invention is characterized in that, after expression in a plant, it itself has conferred a resistance effect against a pathogen (preferably against Cercospora species, or it encodes a polypeptide capable of exerting a dominant resistance effect against Cercospora species, in a preferred embodiment the nucleic acid molecule or the polypeptide confers a resistance effect on at least one scale score, preferably on at least two scales, particularly preferably on three to four scales. And are expensive and, in the absence of infection, the crop yields of these varieties are significantly lower than normal. This may be associated, inter alia, with the epigenetic interaction of some resistance genes with sugar-producing genes, which leads to a reduced adaptability of the plant in the absence of pathogens.

Therefore, the present inventors have for the first time provided a Cercospora resistance gene useful for simplified breeding. By adding this gene to elite lines, it is now possible to develop very high-yielding varieties with high Cercospora resistance very rapidly. Thus, within the framework of the present invention, for the first time, sugar beet plants, leaf beet plants (hard plants), red or sugar beet root plants, fodder beet plants having resistance to Cercospora sp according to the invention are provided and are therefore encompassed by the present invention. Since the listed plants are all cultivated plants, crops or plants which are suitable for agricultural cultivation and which have the resistance according to the invention are part of the invention. In particular, such crops are part of the present invention as follows: comprising a product, raw material or underground storage organ of industrial origin which can be used as sugar, and comprising a resistance according to the invention, constitute a further aspect of the invention. The storage organs can be, for example, sugar beet bodies of sugar beets, edible beet bodies of red beets or feedable beet bodies of feed beets. The sum of underground storage organs can be as high as 50% or more, and for sugar beet it is even more than 70% of the total mass of adult plants. Furthermore, seeds or sowing materials of these plants are also part of the present invention. The seeds or seeding material may be treated technically as follows.

In this context, the invention also comprises a polypeptide encoding a polypeptide according to SEQ ID NO: 3, wherein, in a specific embodiment, the nucleic acid sequence according to SEQ ID NO: 1.

Furthermore, the present invention relates to recombinant and/or heterologous DNA molecules comprising the sequence of a nucleic acid molecule according to the invention. Furthermore, the DNA molecule preferably has regulatory sequences. Thus, it may be operably linked to or affected by the regulatory sequence. The control sequence is preferably a promoter sequence and/or other sequences of transcriptional or translational control elements, such as cis-elements. Regulatory sequences which control the expression of the genes comprising the nucleic acid molecules of the invention are preferably sequences which are capable of conferring or regulating expression as a result of infection by a pathogen. The promoter is preferably capable of controlling expression of the DNA sequence, particularly in plant leaves. The control sequences may be heterologous to the expression sequences. The advantage of this method is that the person skilled in the art, because of the selection of the regulatory sequences which are most suitable for the respective use case, can better regulate the expression rate of the expression sequences, the tissue in which the expression takes place and the point in time at which the expression takes place. The heterologous DNA sequence preferably comprises a nucleotide sequence which codes for a component of the plant's pathogen defence (e.g.a resistance gene (R-gene) or a gene which codes for an enzyme involved in signal transmission, such as a kinase or a phosphatase, for a G-protein, or for a pathogenic effector (known as an avirulence gene (avr))). The heterologous DNA sequence may be one of the DNA sequences according to the invention. The heterologous DNA sequence may additionally encode other components of the plant pathogen defence. Thus, a heterologous DNA sequence can be designed such that, upon transcription thereof, a polycistronic mRNA is produced.

The invention also relates to polypeptides which can be encoded by the nucleic acid molecules according to the invention and functional and/or immunologically active fragments thereof, as well as antibodies which specifically bind to the polypeptides or fragments thereof. The polypeptide particularly preferably has an amino acid sequence according to SEQ ID No: 3. Recombinant Production of Proteins, polypeptides and fragments is familiar to the person skilled in the art (Sambrook et al, Molecular Cloning: A Laboratory Manual, third edition, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 2001, or Wingfield, P.T., 2008, Production of Recombinant Proteins, Current Protocols in Protein Science, 52:5.0: 5.0.1-5.0.4). Polyclonal or monoclonal Antibodies to proteins according to the invention may be generated by a person skilled in the art according to known methods (e.g. edited by Harlow et al, Antibodies: A Laboratory Manual (1988)). Production of monoclonal antibodies and FabF (ab')2Can be carried out by various conventional methods (Goding, Monoclonal Antibodies: Principles and Practice, pp. 98-118, New York: Academic Press (1983)). The antibodies can then be used to screen expression cDNA libraries to identify identical, homologous, or heterologous genes by immunological screening (Sambrook et al, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1989, or Ausubel et al, 1994, "Current Protocols in Molecular biology," John Wiley&Sons) or can be used for western blot analysis. In particular, the present invention relates to antibodies which selectively detect the polypeptide encoded by the cercospora resistance-conferring allele according to the invention and which do not substantially detect the polypeptide encoded by the corresponding sensitive allele, i.e. they detect 2-fold less, preferably 5-fold less, more preferably 10-fold or more less of the polypeptide encoded by the corresponding sensitive allele than the polypeptide encoded by the cercospora resistance-conferring allele according to the invention.

In a preferred embodiment, the antibody according to the invention is characterized in that it is a synthetic polypeptide which does not occur in nature.

Furthermore, the antibodies according to the invention may be linked to a fluorescent dye so as to be useful, for example, in immunohistochemical methods and to cause staining of the antibodies. The fluorescent dye may be a fluorescent dye. The antibodies according to the invention can also be present in conjunction with other signal molecules. Including, for example, biotin, a radioisotope, a reporter enzyme (e.g., alkaline phosphatase), or an oligonucleotide.

Another subject of the invention is a vector or expression cassette comprising a nucleic acid molecule or a recombinant DNA molecule according to the invention, possibly under the control of regulatory elements, and in particular functional regulatory elements in plants, said vector or expression cassette further comprising a negative and/or positive selection marker. Thus, the vector backbone is heterologous to the nucleic acid molecule according to the invention, which means that such vectors do not exist in nature and cannot be isolated from nature. The vector is a plasmid, cosmid, phage or expression vector, transformation vector, shuttle vector or cloning vector; it may be double-stranded or single-stranded, linear or circular; or it may be transformed extrachromosomally into prokaryotic or eukaryotic organisms by integration into its genome. The nucleic acid molecule or DNA molecule according to the invention in an expression vector or cassette is preferably operably linked to one or more regulatory sequences which allow transcription and optionally expression in prokaryotic or eukaryotic cells; (Sambrook et al, Molecular Cloning: A Laboratory Manual, third edition, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 2001). These regulatory sequences are preferably promoters or terminators, in particular transcription initiation sites, ribosome binding sites, RNA processing signals, transcription termination sites and/or polyadenylation signals. For example, the nucleic acid molecule is here under the control of a suitable promoter and/or terminator. Suitable promoters may be constitutive promoters (for example the 35s promoter from Cauliflower mosaic virus (Odell et al, Nature 313(1985), 810-812)), those which are pathogen-inducible are particularly suitable (for example the PR1 promoter from parsley (Rushton et al, EMBO J.15(1996), 5,690-5, 700)). A particularly suitable pathogen-inducible promoter is a synthetic or chimeric promoter which does not occur in Nature and which consists of a multiplicity of elements and contains a minimal promoter and has at least one cis-regulatory element upstream of the minimal promoter, where at least one cis-regulatory element serves as a binding site for a particular transcription factor. Suitable terminators are nos terminators (Depicker et al, J.mol.J.mol.appl.Genet.1(1982), 561-. Suitable promoters and terminators may also be natural promoters and natural terminators whose DNA sequences are duplicated in SEQ ID NO: 7 and SEQ ID NO: 8 in (c). The vector or expression cassette additionally comprises a conventional indicator/reporter gene or resistance gene for detecting the transfer of the desired vector or DNA molecule/nucleic acid molecule and for selecting individuals comprising the vector or DNA molecule/nucleic acid molecule, since direct detection by gene expression is probably quite difficult.

Since the nucleic acid molecule according to the invention here itself encodes a polypeptide which confers resistance to Cercospora leaf spot, it is not necessary for expression in a plant cell to provide an additional resistance gene; however, to allow for quick selection, it is suggested to employ this approach.

Examples of indicator/reporter genes are, for example, the luciferase gene and the gene encoding Green Fluorescent Protein (GFP). Furthermore, these indicator/reporter genes also allow testing of the activity and/or regulation of the gene promoter. Examples of resistance genes, in particular for plant transformation, are the neomycin phosphotransferase gene, the hygromycin phosphotransferase gene, or the gene encoding phosphinothricin acetyltransferase. Additional positive selection markers may be enzymes that provide advantages in the selection of transformed plants relative to untransformed plants-particularly a nutritional advantage, such as mannose-6-phosphate isomerase or xylose isomerase. However, this does not exclude other indicator/reporter genes or resistance genes known to the person skilled in the art. In a preferred embodiment, the vector is a plant vector. Furthermore, the expression cassette may be present in a form which is integrated into the genome of the plant.

In another aspect, the invention relates to a cell comprising a vector, a recombinant DNA molecule and/or a nucleic acid molecule according to the invention. A cell in the sense of the present invention may be a prokaryotic cell (e.g.a bacterium) or a eukaryotic cell (e.g.a plant cell or a yeast cell). The cell is preferably an Agrobacterium, such as an Agrobacterium tumefaciens (Agrobacterium tumefaciens) or Agrobacterium rhizogenes (Agrobacterium rhizogenes), Escherichia coli (Escherichia coli) cell or plant cell; the plant cells are particularly preferably cells of plants of the genus beta, of the species beet or of the subspecies beet. The cells may also be present as a culture. Accordingly, the invention also encompasses cell cultures comprising such cells. The cell culture is preferably a pure culture or an isolate free of other cell types.

Known to the person skilled in the art are various methods, for example conjugation or electroporation, with which he can introduce nucleic acid molecules according to the invention, recombinant DNA molecules and/or vectors or expression cassettes according to the invention into Agrobacterium, and methods such as various transformation methods (biotransformation, Agrobacterium-mediated transformation) with which he can introduce nucleic acid molecules, DNA molecules according to the invention and/or vectors according to the invention into plant cells (Sambrook et al, Molecular Cloning: A Laboratory Manual, 3rd ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 2001).

Furthermore, the present invention preferably relates to a cercospora plant, preferably a subspecies betaine plant or a part thereof, comprising a nucleic acid molecule conferring cercospora resistance according to the present invention. The Cercospora plant may comprise a nucleic acid molecule according to the invention as a transgene or as an endosome. Within the scope of the present invention, plants of the subspecies lycii containing the nucleic acid molecule according to the invention are produced for the first time. The invention also encompasses plants of the subspecies lycii, which comprise the nucleic acid molecules according to the invention as an endosome.

Thus, a portion may be a cell, a tissue, an organ, or a combination of multiple cells, tissues, or organs. The combination of multiple organs is, for example, a flower or a seed. The cercospora-resistant plants of the invention exhibit a higher resistance to cercospora, in particular cercospora betaine, than corresponding plants (control plants) which do not contain the nucleic acid molecule according to the invention. Ideally, the control plant has the same genotype as the transgenic plant and is cultured under the same conditions, but does not contain the resistance-conferring nucleic acid molecule. By determining the grade score, the level of resistance of the beta plant, for example to cercospora betaine, can be qualitatively determined. Higher resistance is manifested by improved resistance by at least one rating score, at least two rating scores, preferably at least three or more rating scores.

The plant cells or plants of the invention or parts thereof, in particular plants of the genus beta, which comprise a nucleic acid molecule according to the invention preferably exhibit a higher resistance to pathogens, in particular to cercospora betanae, than corresponding plant cells or plants or parts thereof which do not comprise a nucleic acid molecule according to the invention or comprise a sensitive allelic variant of a nucleic acid molecule. By determining the grade score, the level of resistance of the beta plant, for example to cercospora betaine, can be established qualitatively. Higher resistance is manifested by improved resistance by at least one rating score, at least two rating scores, preferably at least three or more rating scores.

In the case of transgenic plant cells or plants or parts thereof, they comprise the nucleic acid molecules or DNA molecules according to the invention as transgenes or as vectors or expression cassettes according to the invention. Such transgenic plant cells or plants or parts thereof are, for example, preferably stably transformed with a nucleic acid molecule, a DNA molecule according to the invention or with a vector or expression cassette according to the invention. In a preferred embodiment, the nucleic acid molecule is operably linked to one or more regulatory sequences which allow transcription and optionally expression in a plant cell. The overall structure consisting of the nucleic acid molecule according to the invention and the regulatory sequences then represents a transgene. Such regulatory sequences are, for example, promoters or terminators. Many functional promoters and terminators suitable for plants are known to those skilled in the art.

The invention also includes vacuoles of cells according to the invention, and contents stored therein.

Furthermore, the invention relates to cell extracts from cells, preferably plant cells, particularly preferably sugar beet cells, and particularly preferably cells from one of the following crops: sugar beet, leaf beet (chard) or beetroot. No plants can be regenerated from the cell extract.

The invention likewise comprises plant genomes comprising the nucleic acids according to the invention. Plants cannot be regenerated from the plant genome.

Thus, the sugar concentration of the cell extract may be increased relative to cells that are not cells according to the invention but belong to the same species or crop. This applies in particular to the case of infection with Cercospora.

The invention also encompasses the use of the cell extract for the production of sugar (sucrose) or for the production of juice, preferably beetroot juice.

The invention also encompasses sugars, in particular sucrose, contained in the cells according to the invention and in their vacuoles.

Another aspect of the invention is a stock comprising seeds containing a nucleic acid according to the invention. The nucleic acid molecules according to the invention can be transgenic or present endogenously. Stock and seeds may be subjected to technical treatment. Thus, the invention also encompasses technically treated stock and technically treated seed. Various embodiments of the technically processed stock are described in detail below, wherein the term stock also includes seeds. The technically processed stock exists in a form capable of being polished. The outermost layer of the seed is thus removed, so that the seed assumes a more rounded form. This is helpful in sowing where the optimal uniform shape results in a uniform distribution of the seed particles. Technically processed breeders also include pelleted breeders. Thereby embedding the stock seeds in the pelleted mass to protect the stock seeds contained therein and to result in greater mass, so that the pelleted stock seeds exhibit greater resistance to wind drift and are therefore less likely to be blown away by wind, while more accurate positioning during sowing is achieved. In a preferred embodiment of the invention, all of the granulated elite grains of a given sold batch or unit have substantially the same shape and the same quality. The deviation in diameter and mass may be 5%. However, the deviation is preferably not more than 1%. As one of the main components, the granulated mass may contain, for example, mineral compounds such as clay, bentonite, kaolin, humus and/or peat. Binder materials like polyacrylamide may be added. Other possible components are cited in US 4,067,141. Furthermore, the granulated mass may contain other chemical agents which in practice have a positive effect on cultivation. These may be materials that are counted as fertilizer applicators. Including compounds rich in one or more of the following elements: nitrogen, phosphorus and potassium (macronutrients). Thus, the fertilising ingredients may comprise, for example, nitrate nitrogen, ammonium nitrogen, magnesium nitrate, calcium ammonium nitrate, monoammonium phosphate, monopotassium phosphate and potassium nitrate. In addition, the granulated mass may contain fungicides, insecticides and/or antifeedants. The bactericide may be thiram and/or hymexazol and/or other bactericide. The pesticide may be a neonicotinoid. The neonicotinoid is preferably imidacloprid (ATC code: QP53AX17) and/or clothianidin (CAS number: 210880-92-5). In addition, the insecticide may be cyfluthrin (CAS number: 68359-37-5), lambda-cyhalothrin or tefluthrin. It is worth mentioning that the compounds contained in the seed dressing or granulated substance are taken up by the plant and show a systemic effect, thus providing a suitable protection of the whole plant. Thus, the plants produced from the granulated seeds comprising one or more pesticides are different from the natural plants and show better performance under biotic stress conditions. In this context, the invention also comprises mixtures of granulated material and seeds according to the invention. Furthermore, the present invention also comprises a method for producing a granulated seed according to the invention, comprising the steps of:

a) providing a sugar beet plant seed comprising a nucleic acid according to the invention,

b) embedding the sugar beet plant seeds in a granulating substance,

c) allowing the granulated substance to dry, wherein the seed may optionally be a prepared (prime) or pre-germinated seed, or the seed may be allowed to prepare during step b).

The pelleted stock is a specific example of a dressed stock. In this context, technically processed stocks also include dressed stocks. However, the present invention is not limited to pelleted stocks, but can be applied in any form of dressed stock. Thus, the present invention also relates to a dressed stock, including, but not limited to, a pelleted stock. Therefore, dry seed dressing, wet seed dressing and suspension seed dressing are also included. The seed dressing agent may therefore also comprise at least one dye (dye), so that the seed-dressed stock can be rapidly distinguished from the seed-unsorted stock and good visibility in the environment after sowing is ensured. Seed dressings may also comprise those agrochemicals described in the context of granulated materials. The invention therefore encompasses seed-dressed stock, whereby the seed dressing contains at least one antifeedant, such as a pesticide and/or at least one fungicide. Optionally, so-called electric seed dressing (dressing by applying electric energy) may be employed. However, electric seed dressing is not a strict seed dressing.

Another form of technically processed stock is the encapsidated stock. In this case, so-called coatings and stocks treated with coatings have also been proposed. The difference with the granulated seed is that the kernel retains its original shape, wherein the process is particularly economical. This process is described, for example, in EP 0334258 a 1. Another form of technically processed stock is germinated or prepared stock. Germinating stocks are pre-treated by pregermination, whereas prepared stocks have been pre-treated by preparation ("germination"). Pregermination and prepared stock have the advantage of short emergence times. Meanwhile, the time points of seedling emergence after sowing are more synchronous. This enables better agronomic processing during cultivation, in particular during harvesting, and, in addition, an increase in yield. In pregermination, the stock seeds germinate until the radicles leave the shell of the stock seeds, and the process is then stopped. At the time of initiation, the process was stopped before the radicle left the primordial shell. The primed stock is not sensitive to the pressure of redrying compared to the germinated stock, and after redrying, has a longer shelf life compared to the germinated stock, which is generally not recommended. In this case, the technically pretreated stock also includes the initiated and redried stock. The process of pregermination is described in US 4,905,411 a. Various examples of initiation are described in EP 0686340 a 1. In addition, the granulation and the preparation of the stock can be carried out simultaneously in one process. This process is described in EP 2002702B 1. The invention includes prepared stock that is additionally subjected to granulation.

The technically treated stock may additionally provide one or more of the above herbicide resistances. This allows further improvement of agricultural technical cultivation, since the technically treated stock can be deployed on fields that have previously been treated with herbicides and are therefore weed-free.

The invention also encompasses, inter alia, mixtures comprising the stock according to the invention or the seed according to the invention and the dressing as defined above. Therefore, the seed dressing briquette is preferably implemented as a granulated briquette as described above.

For storage of the stock according to the invention, it is preferred to select storage conditions which do not negatively affect the stability or shelf life of the stock. Fluctuations in humidity can be particularly adversely affected here. Part of the invention is a method of storing stock seeds in a bag or container that is both waterproof and breathable. Such bags or containers may be designed as cartons or packages. Such cartons or packages may optionally have an internal moisture barrier. If the carton or package is designed as a double-ply carton, its stability is increased. Containers, bags, cartons or packages containing the stock according to the present invention or treated stock according to the techniques of the present invention are also part of the present invention. Likewise, it is also part of the present invention to store the stock according to the present invention or the stock treated according to the techniques of the present invention in such bags, containers, packages or cartons.

In one embodiment, the plant according to the invention is a hybrid plant or a doubled haploid plant. Hybrid and doubled haploid plants do not occur in nature and cannot be isolated from nature. In another embodiment of the plant according to the invention, the nucleic acid molecule according to the invention is present in heterozygous or homozygous form. In the case of hybrid plants, the nucleic acid molecules may also be present in hemizygous form. The invention also encompasses hybrid seeds and doubled haploid seeds containing a nucleic acid molecule according to the invention or a polypeptide according to the invention.

Another embodiment of the invention comprises a plant, preferably a sugar beet species, characterized in that the plant has a further increased resistance to cercospora. This can be achieved, for example, by "gene stacking", i.e.using this dose effect to increase resistance. For this purpose, plants according to the invention which contain an allele which confers resistance to Cercospora are over-transformed with this resistant allele in order to increase the amount of transcription of the gene in the plant. Alternative approaches include gene editing/site-directed mutagenesis or TILLING-mediated modification of the native promoter of the resistance-conferring allele to increase its expression rate, or modification of the resistance-conferring LRR gene allele itself to increase its activity or stability. Such methods of increasing activity by modifying resistance genes are described, for example, in WO 2006/128444 a2 and can be achieved by techniques known to those skilled in the art. Additional approaches may include fusing the nucleic acid molecule according to the invention with a heterologous promoter exhibiting higher activity than the native promoter, especially after infection with Cercospora.

Another embodiment of the invention relates to sugar beet plants or pelleted seeds of such plants, which are harvestable prior to bolting because no bolting of the beet plants occurs during the first 10, 11, 12, 13, 14 or 15 months during which the development of the beet bodies is complete.

In one embodiment of the invention, the sugar beet plant or the granulated seed of such a plant has a genome which allows bodies of beet to develop into a sum of their masses which amounts to at least 50%, 60%, 70%, 80% or even 90% of the total mass of the mature plant.

In another embodiment of the invention, the sugar beet plant or the granulated seed of such a plant has a genome which allows the bodies of beet to develop by photosynthesis with a minimum mass of 200g, 250g, 300g, 350g, 400g, 450g or 500g and a maximum mass of 100g, 1100g, 1200g, 1300g, 1400g, 1500g, 1600g, 1700g, 1800g, 1900g or even 2000 g.

Another embodiment of the invention relates to a sugar beet plant or a pelleted seed of such a plant, wherein the genome of the sugar beet plant allows the bodies of beet to develop with a sucrose concentration of at least 10%, 11%, 12%, 13%, 14%, 15%, 16%, 17%, 18%, 19% or even 20%.

In one embodiment of the invention, the sugar beet plant or the pelleted seed of such plant comprises a nucleotide sequence relative to SEQ ID NO: 4, at least one, at least two, at least three, at least four, at least five, at least ten, at least twenty, or even at least thirty mutations.

A method of producing an organism comprising a mutated form of a nucleic acid molecule according to the above-given embodiment [1] and/or a mutated form of a promoter comprising a nucleic acid sequence consisting of: (a) SEQ ID NO: 7. (b) a nucleotide sequence that hybridizes under stringent conditions to the sequence complementary to the sequence according to (a), and (c) a nucleotide sequence that hybridizes to the sequence according to SEQ ID NO: 7, wherein the method comprises the steps of:

(I) providing an organism or cell comprising a nucleic acid molecule and/or a promoter;

(II) increasing the mutation rate of the organism or cell or

Mutagenesis of an organism or cell;

(III) phenotypically selecting an organism that exhibits altered resistance or altered level of resistance to cercospora betanae due to a mutation, or genotypically selecting an organism or cell comprising a mutation in a nucleic acid molecule and/or a promoter, wherein the mutation is produced by step (II);

and, optionally

(IV) regenerating the organism from the cells obtained by step (III).

The organism may be a plant. Preferably, the plant is sugar beet. However, unicellular organisms such as bacteria may also be used. The bacterium may be Escherichia coli. If the organism is a plant, the method can be used in vivo and in vitro. If the organism is a plant and the method is applied in vitro, a cell culture of the plant can be established and the mutation rate or mutagenesis can be increased in the cell culture. Increasing the mutation rate includes, for example, the use of mutagens such as 5-bromouracil or Ethylmethylsulfonate (EMS), or the use of physical mutagens such as ionizing radiation or ultraviolet light. Mutagenesis also includes targeted mutagenesis. Targeted mutagenesis can be achieved by precise methods such as gene editing (as explained further below). Regeneration of organisms from cells is explained in various standard references in cell biology. For example, in the standard reference "Plant biotechnology: regeneration of plants is described in comprehensive biotechnology, second supplement "(Michael W.Fowler, Graham Warren, Murray Moo-Young-Pergamon Press-1992). In Lindsey & Gallois "Transformation of sugarbottom (Beta vulgaris) by Agrobacterium tumefaciens" Journal of experimental botanic 41.5 (1990): 529-536 describes the regeneration of sugar beet from cell cultures.

These references also describe how to establish plant cell cultures. As explained further above, the mutated form of each of the nucleic acid molecule and the promoter preferably manifests itself because the expression rate of the resistance-conferring nucleic acid molecule increases due to the mutation). This effect may also depend on the presence of several mutations. For example, two, three, four, five or more mutations can be introduced into a promoter or nucleic acid molecule.

By introducing mutations, proteins or proteins conferring more resistance can be constructed in cells with better results. Thus, resistance may be increased, for example, by at least 1%, 2%, 3%, 4%, 5% or more, compared to a control plant comprising an unaltered nucleic acid according to the present invention. This increase can be measured as described further below. In addition, resistance due to one or more mutations may increase at least one rating score. Determination of the rating score is described elsewhere herein. Furthermore, the resistance protein may-due to mutation-confer an altered effect and in some cases may exhibit an effect on such pathogens which have adapted themselves to the initial resistance mechanism. In this case, the invention also encompasses such mutants of the nucleic acids according to the invention and mutants of the proteins according to the invention. Preferably, the present invention includes such variants which do not exist in nature and cannot be isolated from nature to ensure that the pathogen has no opportunity to adapt itself to such variants. The above-described method for producing organisms comprising mutated forms of nucleic acid molecules may also comprise a further step in which those organisms or the respective plants are identified which have a further increased resistance as a result of one or more mutations. If resistance has increased, it can be determined by ranking the scores or measuring the level of resistance as described herein.

In addition to the above-described methods for producing organisms comprising mutated forms of nucleic acid molecules or promoters, the corresponding nucleic acids can also be chemically modified in the isolated state in order to achieve the desired effect (e.g.as described above). The advantage of this approach is that compounds can be edited more precisely. To this end, the following method is provided:

producing a chemically modified nucleic acid molecule according to the given embodiment [1] above and/or a chemically modified promoter comprising a nucleotide sequence selected from the group consisting of:

(a)SEQ ID NO:7;

(b) a nucleotide sequence that hybridizes under stringent conditions to a nucleotide sequence according to (a);

(c) and a polypeptide according to SEQ ID NO: 7 is at least 70% identical;

wherein the method comprises the steps of:

(I) providing the above-described nucleic acid molecule in isolated form;

(II) chemically modifying the nucleic acid molecule or promoter by one of the following steps:

(IIa) subjecting the mixture to a mutagenesis,

(IIb) editing of the gene,

(IIc) restriction and ligation, insertion or deletion, respectively.

Furthermore, in the case of allelic variants, chemical modifications may be generated by methods as described elsewhere herein. The gene editing given in step (II) is equivalent to the term "genome editing". Optionally, the chemically modified nucleic acid molecule or the chemically modified promoter may be subsequently introduced into a cell or stably integrated. With the aid of such cells, chemically modified nucleic acid molecules and modified promoters can be propagated in the context of cell proliferation. They can then be isolated in large quantities and can be subjected to expression analysis. Expression analysis is particularly suitable when the chemical modification involves a promoter. Cells can be harvested and chemically modified resistance proteins isolated for chemical analysis. If the cell comprising the chemically modified nucleic acid molecule or modified promoter is a plant cell, an intact plant can be regenerated from the cell. The methods described in this paragraph can be carried out following the methods given above for producing modified forms of nucleic acid molecules and/or modified promoters, and the variants obtained are also part of the invention. Furthermore, plants comprising chemically modified nucleic acid molecules or modified promoters are also part of the present invention. The invention therefore also relates to plants obtained by this method. Furthermore, the invention relates to chemically modified nucleic acid molecules and encoded polypeptides obtained by this method. These compounds may be optimized versions of the original (unmodified) compounds, wherein the level of acquired resistance (as further explained above) may be increased by at least 1%, 2%, 3%, 4%, 5% or more percent, or at least one rating score may be increased. In this respect, the method for producing a chemically modified nucleic acid molecule is also a method for optimizing a nucleic acid molecule. The optimized method may further comprise an additional step wherein those modified variants of the nucleic acid molecule are identified which result in an increased resistance in the plant compared to the unmodified variants.

In another embodiment, the plant of the invention further comprises, transgenically or endogenously, a second nucleic acid molecule located at a different position in the genome which encodes a polypeptide capable of conferring cercospora resistance to a plant in which it is expressed. For example, one or more resistance genes or resistance loci described in the prior art can be introduced into the plant by means of crossing, transformation, homologous directed repair or homologous recombination, as long as they are not already present in the initial genotype. These include, for example, the Podospora betanae disease resistance RZ1(Lewellen, R.T., I.O.Skoyen, and A.W.Erichsen, "Breeding Sugar bed for resistance to rhizobia: Evaluation of host-plant reactions and selection for and resistance to resistance, 50th Winter consistency of the International organization for Sugar bed Research, Brussels bed), Feb.11-12, 1987 IIRB Secretariat General, 1987), or the Podospora betanae disease resistance RZ3(WO 2014/202044).

The invention also relates to a method for enhancing the resistance of a plant of the sugar beet species to Cercospora, wherein the increase in resistance occurs in the absence of the resistance-conferring genes according to the invention compared to isogenic plants.

Resistance can be increased by integrating a nucleic acid molecule according to the invention into the genome of at least one cell of a plant of the sugar beet species, and by regenerating plants from the plant cells. Integration can be carried out by sexual crossing (for example with one of the above-mentioned sea beets) and subsequent selection steps, as well as by homologous targeted repair or homologous recombination. The latter two methods cited are preferably supported by site-directed nucleases, which can be selected from, but are not limited to, the following: CRISPR nucleases including Cas9, CasX, CasY or Cpf1 nucleases, TALE nucleases, zinc finger nucleases, homing endonucleases, Argonaut nucleases, restriction endonucleases (including fokl or variants thereof), recombinases, or two site-specific nicking endonucleases.

The introduction of the resistance conferring gene into the beet subspecies by CRISPR mediated homologous recombination is shown in example 1.

Alternative approaches include increasing the expression of the nucleic acid molecule according to the invention in plants. This can be achieved by modifying the native promoter, which can be done by modifying the native promoter, preferably by gene editing or site-directed mutagenesis (which is mediated by site-directed nucleases) and optionally a repair model. Examples of such nucleases are listed above. The expression of the nucleic acid molecules according to the invention can likewise be increased by fusing the nucleic acid molecules with heterologous promoters which exhibit a higher activity than the native promoters, in particular after infection with Cercospora. Fusion can also be performed by site-directed nucleases and repair models, or by direct insertion after double strand breaks.

As mentioned above, the method for increasing Cercospora resistance may also lead to an increase in the activity and/or stability of the polypeptide according to the invention by modifying the nucleotide sequence of the nucleic acid molecule according to the invention. Such methods of increasing activity by modification of resistance genes are described, for example, in WO 2006/128444 a2 and can be carried out by techniques known to those skilled in the art. This method will be described in detail below.

Alternatively, Cercospora resistance can be increased by generating a Cercospora resistance genotype from a Cercospora sensitivity genotype by random or directed mutagenesis of the nucleic acid sequence of the sensitivity gene. An example of polymorphisms that distinguish between sensitive and resistant alleles is presented in fig. 1.

For example, sensitive alleles can be modified by genetic mutations, either by TALE nucleases (TALENs) or Zinc Finger Nucleases (ZFNs), and by CRISPR/Cas systems described by way of example in WO 2014/144155 a1 (Engineering plant genomes using CRISPR/Cas systems) and Osakabe & Osakabe, plant Cell physiology, 56(2015), 389-. This can also be achieved by using the method named TILLING (Targeted Induced Local mutations in genes), where it is described, for example, in german patent application DE 102013101617 how to cause point mutations in sensitive genes and then selecting plants exhibiting suitable (resistance-conferring) mutations, for example, barley resistant to yellow mosaic virus; see DE 102013101617 pages 4, 8 and 12, paragraphs [0014], [0026] and [0038 ]. The TILLING method is also described in detail in the publication by Henikoff et al (Henikoff et al, Plant Physiol.135, 2004, 630-.

These methods preferably result in an increase in resistance by at least one rating score, particularly preferably by at least two, three or more rating scores. After mutagenesis of the plant cell followed by regeneration of the plant from the mutagenized plant cell, or after mutagenesis of the plant, plants can be identified that exhibit one or more mutations in the endogenous nucleic acid molecule, as shown in FIG. 1. In this context, plants according to the invention which have been mentioned are characterized in that the resistance is increased by at least one rating score, preferably by at least two or more rating scores. Alternatively, the resistance of a plant according to the invention may be increased, for example by at least 1%, 2%, 3%, 4%, 5% or more, compared to a control plant which does not comprise a nucleic acid according to the invention. The increase can be measured by inoculating a healthy leaf with isolates of the pathogen separately and determining the infected surface after 15 days. A 5% reduction in infected surface corresponds to a 5% increase in resistance. Further parameters for carrying out the measurements can be derived from the example "resistance test" given below.

Another embodiment of the present invention is a method for producing a cercospora plant, which can be achieved by: transformation of plant cells with a nucleic acid molecule, a recombinant DNA molecule or with a vector or an expression cassette according to the invention and regeneration of transgenic plants from the transformed plant cells (see example 2) and generation of Cercospora resistance genotypes by random or targeted mutagenesis of the nucleic acid sequence of the sensitive gene, as described above, or by hybridization and selection, for example using one of the above-mentioned sea beets. The vectors or expression cassettes, and methods for transforming plants have been described above.

As described above, the method for producing a cercospora plant may further comprise: introducing a site-directed nuclease and a repair matrix into a cell of a plant of the sugar beet species, wherein the site-directed nuclease is capable of generating at least one DNA double strand break in the genome of the cell, preferably upstream and/or downstream of the region of interest, and the repair matrix comprises a nucleic acid molecule according to the invention. The method further comprises culturing the cell under conditions that allow for homology-directed repair or homologous recombination, wherein the nucleic acid molecule is incorporated into the genome of the plant from the repair matrix. Furthermore, the regeneration of plants from the modified plant cells is also encompassed (see example 1).

In a preferred embodiment, the target region is an allelic variant of the nucleic acid molecule according to the invention, wherein the allelic variant encodes a polypeptide which does not confer Cercospora resistance. In another preferred embodiment, the allelic variant comprises a nucleotide sequence encoding a polypeptide having an amino acid sequence according to SEQ ID NO: 6, and/or comprises a sequence of nucleotides according to the amino acid sequence of SEQ ID NO: 5 or a DNA sequence according to SEQ ID NO: 4.

As described in connection with the nucleic acid molecules according to the invention, substitutions, deletions, insertions, additions and/or any other alterations may be introduced which, alone or in combination, alter the nucleotide sequence but perform the same function as the original sequence, here the nucleotide sequence of an allelic variant of a nucleic acid molecule according to the invention. Thus, in another embodiment, the invention comprises a nucleotide sequence encoding a polypeptide representing a derivative of a polypeptide encoded by or comprising the amino acid sequence of an allelic variant of a nucleic acid molecule according to the invention. A derivative amino acid sequence (which has at least one substitution, deletion, insertion or addition of one or more amino acids, wherein the function of the encoded polypeptide/protein is retained) represents a derivative of the polypeptide. The nucleotide sequence may thus be altered by introducing it by substitution, deletion, insertion, addition and/or any other change (either alone or in combination with a gene) using conventional methods known in the art, e.g., by site-directed mutagenesis, PCR-mediated mutagenesis, transposon mutagenesis, genome editing, etc., but performing the same function as the original sequence.

With regard to the amino acid sequences, they also have a common domain and/or have a common functional activity after modification by the above-described methods. A nucleotide sequence or amino acid sequence that is at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or at least about 100% identical to the nucleotide sequence or amino acid sequence of a referenced allelic variant of a nucleic acid molecule according to the invention is defined herein as sufficiently similar. The invention therefore encompasses nucleotide sequences which are capable of hybridizing under stringent conditions to the nucleotide sequence of an allelic variant of a nucleic acid molecule according to the invention or to a nucleotide sequence which is complementary to a nucleotide sequence encoding the corresponding amino acid sequence.

In another preferred embodiment, the method according to the invention is characterized in that the double strand break occurs in an allelic variant of the nucleic acid molecule according to embodiment [1], or the at least one double strand break occurs at a position of at least 10000 base pairs upstream or downstream of the allelic variant, wherein the allelic variant encodes a polypeptide which does not confer cercospora resistance.

It will be clear to the person skilled in the art that many different sensitive sequences may be present, which are derived from the nucleic acid molecule according to the invention, but which do not confer resistance to Cercospora, and therefore the above-mentioned sequences (SEQ ID Nos.4, 5, 6) should be regarded only as examples of sequences and the invention is not limited to the above-mentioned allelic variants of the nucleic acid molecule according to the invention. Such allelic variants may comprise a nucleotide sequence selected from:

(a) encoding a polypeptide having an amino acid sequence according to SEQ ID NO: 6;

(b) comprising a sequence according to SEQ ID NO: 5, a nucleotide sequence of the DNA sequence of seq id no;

(c) comprising a sequence according to SEQ ID NO: 4, or a nucleotide sequence of the DNA sequence of 4;

(d) a nucleotide sequence that hybridizes under stringent conditions to the complement of a sequence according to (a), (b) or (c);

(e) a nucleotide sequence encoding a polypeptide which differs from the polypeptide encoded by the nucleotide sequence according to (a), (b) or (c) by substitution, deletion and/or addition of one or more amino acids of the amino acid sequence;

(f) encoding a polypeptide having a sequence corresponding to that according to SEQ ID NO: 6, at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identical to the amino acid sequence of the polypeptide;

(g) and a polypeptide according to SEQ ID NO: 4 or SEQ ID NO: 5, a nucleotide sequence that is at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identical to the DNA sequence of seq id no;

as described above, by quantitative inheritance of QTLs, not only is desirable resistance often introduced into plants, but undesirable characteristics (e.g., reduced yield) are often also introduced into plants because other genes unrelated to the positive characteristics of resistance are inherited. This situation occurs more and more if, like cercospora resistance, resistance is inherited in previously available varieties through many resistance genes and the effect is small. Thus, in a preferred embodiment, the introduction of a nucleic acid molecule according to the invention (which already shows a dominant resistance effect itself) or the introduction of a vector or expression cassette is independent of the introduction of undesired characteristics, wherein the yield is preferably not negatively affected. Furthermore, the invention comprises plants obtained by such a method.

Although actual QTL can be detected using QTL analysis known from the prior art, potential genomic regions showing QTL effects also mediate the above-mentioned disadvantages, which is why "linkage drag" is also discussed herein. Also, QTLs and their associated effects are not uniformly described in the respective prior art, but mediate weak effects, so the use of these results in breeding of cercospora plants may be only of limited scope and largely uncertain. Now, by identifying the resistance genes described herein, it is possible to target breeding and control integration of the resistance genes into the sugar beet gene bank. This ensures the development and production of entirely new Cercospora resistant varieties that exhibit high resistance to pathogens without negatively impacting sugar yield.

The invention likewise relates to a method for identifying and possibly providing a plant of the sugar beet species that is resistant to the pathogen cercospora, characterized in that it comprises the step of detecting the presence and/or expression of a nucleic acid molecule according to the invention or a polypeptide according to the invention in the plant or a sample/part thereof. The presence and/or expression of a nucleic acid molecule according to the invention or a polypeptide according to the invention can be tested by standard methods known to the person skilled in the art, for example by PCR, RT-PCR, or Western blotting.

Further, the authentication method according to the present invention further comprises: the nucleic acid molecule according to the invention is detected by detecting at least one polymorphism between the resistant sequence and the sensitive sequence (i.e. between the sequence of the nucleic acid molecule according to the invention described above and the sequence of the allelic variant of the nucleic acid molecule according to the invention) using a molecular marker that detects one or more polymorphisms. As mentioned above, it is obvious to the person skilled in the art that there are many sensitive sequences, i.e.many sequences encoding allelic variants of the nucleic acid molecules according to the invention. One of which is presented by way of example in sequence alignment with the nucleotide sequence of the nucleic acid molecule according to the invention shown in FIG. 1. Thus, a preferred embodiment of the method according to the invention comprises the detection of at least one of the polymorphisms presented in figure 2 using molecular markers that detect polymorphisms, in particular diagnostic polymorphisms. The detection is preferably performed using at least one molecular marker per polymorphism, in particular per diagnostic polymorphism. The person skilled in the art knows which labelling techniques to apply for detecting the corresponding polymorphisms and how to construct molecular markers for this (see Advances in Seed Science and Technology, Vol.I, Vanangmadi et al, 2008). Furthermore, the present invention encompasses molecular markers describing or detecting the polymorphisms according to fig. 1, for example using molecular markers for detecting the polymorphisms according to fig. 1. Thus, markers which do not distinguish between the various polymorphisms may also be used, provided that they are capable of detecting such polymorphisms which occur in the nucleic acid molecule according to the invention but which do not occur in the sensitive allelic variant.

Alternatively or additionally, the identification method according to the invention comprises the step of detecting at least one marker locus in the nucleotide sequence of the nucleic acid molecule according to the invention or in a co-segregating region thereof. Preferably, the co-segregating region is a genomic region in sugar beet which is co-segregating for cercospora resistance conferred by a polypeptide according to the invention or a nucleic acid molecule according to the invention, more preferably, the co-segregating region comprises or is flanked by the markers sxh0678s01 and s4p0264s01, the markers s4p4301s01 and s4p2271s01, the markers s4p4301s01 and s4p4293s01, or the markers s4p4301s01 and s4p4295s 01. Thus, detection can be achieved by binding at least one label or at least one primer pair to a nucleic acid sequence according to SEQ ID NO: 74 or 75 (preferably at the locus according to SEQ ID NO: 76 or 77), and optionally a signal generated therefrom (e.g.a fluorescent signal or a sequence amplification). Thus, alternatively or additionally, the co-segregating region may comprise a nucleotide sequence according to SEQ ID NOs 74 and/or 75 or SEQ ID NOs: 76 and/or 77. Furthermore, the aforementioned identification method also means a method for selecting a plant showing cercospora resistance according to the present invention. The selection method comprises the final step of selecting resistant plants.

In this context, the invention also encompasses the development or generation of molecular markers suitable for detecting the above-mentioned polymorphisms between the nucleic acid molecules according to the invention (resistance alleles) and the sensitive allelic variants, wherein the markers are preferably suitable for detecting the polymorphisms presented in FIG. 1, or for constructing hybridization probes which specifically bind to the nucleotide sequences of the nucleic acid molecules according to the invention, or for generating a pair of nucleic acid molecules suitable for amplification in PCR (regions specific for the nucleic acid molecules according to the invention) and thus for detection in plants or plant cells.

The present invention preferably comprises a method for producing oligonucleotides of at least 15, 16, 17, 18, 19 or 20, preferably at least 21, 22, 23, 24 or 25, particularly preferably at least 30, 35, 40, 45 or 50, particularly preferably at least 100, 200, 300, 500 or 1000 nucleotides in length, which specifically hybridize to the nucleotide sequence of a nucleic acid molecule according to the invention or a nucleic acid molecule complementary thereto; or comprises a pair of nucleic acid molecules, preferably in the form of oligonucleotides, which are suitable as forward and reverse primers for attachment to regions specific for the nucleic acid molecules according to the invention and for amplification in the Polymerase Chain Reaction (PCR), or which are suitable as forward and reverse primers for hybridization into regions of the sugar beet genome which are coseparated with cercospora resistance conferred by the polypeptides according to the invention or with the nucleic acid agents according to the invention. SEQ ID NO 98 and SEQ ID NO 99 give examples of suitable primers for detecting resistance mediating nucleotide sequences according to the present invention. These two sequences constitute a primer pair that can be used for PCR.

The method for producing oligonucleotides initially comprises: aligning the nucleotide sequence of the nucleic acid molecule according to the invention with the nucleotide sequence of a corresponding nucleic acid molecule not conferring resistance or a sensitive allelic variant, which preferably has a nucleotide sequence according to SEQ ID NO 4 or 5; identifying sequence differences between the two nucleotide sequences; and generating nucleic acid molecules (referred to herein as oligonucleotides) that specifically bind to nucleic acid molecules according to the invention, but do not bind to nucleic acid molecules that do not mediate resistance.

Furthermore, the oligonucleotides according to the invention can be linked to a fluorescent dye in order to generate a fluorescent signal upon excitation, for example by light of the corresponding wavelength. The fluorescent dye may be a fluorescent dye. The oligonucleotides according to the invention can be coupled to other compounds suitable for generating a signal. Such oligonucleotides do not exist in nature and cannot be isolated from nature. The following operations were performed to produce such labeled oligonucleotides: the DNA may be bioorthogonally labeled. For this purpose, the DNA can be labeled in vivo or in vitro with nucleoside analogues, which can then be coupled to fluorophores, for example in each Staudinger reaction. In addition, DNA may also provide fluorophores by chemical means. Oligonucleotides can be labeled by phosphoramidite synthesis with fluorophores such as those used in QPCR, DNA sequencing and in situ hybridization. In addition, DNA can be generated enzymatically during the polymerase chain reaction with fluorescent nucleotides or labeled with a ligase or a terminal deoxynucleotidyl transferase. DNA can also be detected indirectly by biotinylation and fluorescent avidin. For coupling, fluorescein, fluorescent lanthanide, gold nanoparticles, carbon nanotubes or quantum dots, etc. are used as fluorophores. One of the most commonly used fluorescent substances is FAM (carboxyfluorescein). Thus, the invention includes oligonucleotides and in particular primers with FAM labels. FAM is preferably present in the form of 6-FAM, wherein other FAM variants, such as 5-FAM, may also be used, depending on the desired wavelength of emission and excitation. Examples of other fluorescent labels are AlexaFluor, ATTO, Dabcyl, HEX, Rox, TET, Texas Red and Yakima Yellow. Depending on the field of use, oligonucleotides modified with bases or sugar phosphate backbones can be provided. These include amino-dT, azido-dT, 2-aminopurine, 5-Br-dC, 2 '-deoxyinosine (INO), 3' -deoxy-A, C, G, 5-Met-dC, 5-OH-Met-dCN6-Met-dA and the like.

Furthermore, the invention relates to a labeling chip ("DNA chip" or microarray) comprising at least one oligonucleotide according to the invention which is suitable for detection. The marker chip is suitable for application in one or more detection methods according to the invention.

The invention likewise comprises a process for the production of the proteins according to the invention. The method comprises providing or culturing a nucleic acid comprising SEQ ID NO: 2, and subsequent expression of a polypeptide consisting of SEQ ID NO: 2, or a pharmaceutically acceptable salt thereof.

Furthermore, the invention relates to an anti-Cercospora plant or part thereof identified by the method as described above and, if applicable, selected. In particular, the present invention relates to a population of plants comprising plants which are obtainable according to one of the methods according to the invention as described previously and which are preferably resistant to cercospora leaf spot or cercospora infection and which are characterized by the presence of a nucleic acid molecule according to the invention. The population preferably has at least 10, preferably at least 50, more preferably at least 100, particularly preferably at least 500, and especially in agricultural farming, preferably at least 1,000 plants. The proportion of plants in the population which do not carry a nucleic acid molecule according to the invention and/or which are susceptible to cercospora leaf spot is preferably below 25% -preferably below 20%, more preferably below 15%, even more preferably 10%, and in particular preferably below 5%, if present.

By the above fine localization, the position of the gene conferring Cercospora resistance in the sea beet genome can be determined, and the sequence region of the gene itself and the surrounding can be identified. This in turn represents the basis for the development of DNA hybridization probes or genetic markers in the target region, by means of which genes mediating resistance in Cercospora can be detected or distinguished from genes which do not develop resistance.

DNA hybridization probes are available from the sequences of genes that confer Cercospora resistance, and can be used to screen genomic and/or cDNA libraries of desired organisms. The probe can be used for amplifying the identified homologous genes by the known Polymerase Chain Reaction (PCR) and for checking whether the gene conferring Cercospora resistance is endogenously present in the organism or has been heterologously introduced into the plant.

The skilled artisan can here resort to conventional hybridization, Cloning and sequencing methods, as listed, for example, in Sambrook et al, Molecular Cloning: a Laboratory Manual, third edition, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 2001. One skilled in the art can also synthesize and use oligonucleotide primers to amplify the sequence of genes that confer Cercospora resistance. To achieve specific hybridization, such probes should be specific and have a length of at least 15 nucleotides, preferably at least 20 nucleotides. Detailed guidelines for nucleic acid hybridization can be found in the following documents: tijssen, Laboratory technologies in Biochemistry and Molecular Biology-Hybridization with Nucleic Acid Probes, first part, second chapter, "Overview of principles of Hybridization and the protocol of Nucleic Acid probe assays," Elsevier, New York (1993); and Current Protocols in Molecular Biology, Chapter II, edited by Ausubel et al, Greene Publishing and Wiley lnterscience, New York (1995).

Thus, a nucleic acid molecule of at least 15, 16, 17, 18, 19 or 20, preferably at least 21, 22, 23, 24 or 25, particularly preferably at least 30, 35, 40, 45 or 50, particularly preferably at least 100, 200, 300, 500 or 1000 nucleotides in length is a subject of the present invention, wherein the nucleic acid molecule specifically hybridizes with the aforementioned nucleotide sequence according to the invention comprising a gene conferring cercospora resistance. This also explicitly includes the range of 15 to 35 nucleotides.

The invention therefore also relates to labels as oligonucleotides, in particular primer oligonucleotides. These labels comprise nucleic acid molecules of at least 15 nucleotides in length, which specifically hybridize to the aforementioned nucleotide sequences.

In particular, the invention comprises a pair of nucleic acid molecules-preferably in the form of oligonucleotides or a kit containing the pair of oligonucleotides-which are suitable as forward and reverse primers for hybridization into regions specific for the nucleic acid molecules according to the invention and for amplification in the Polymerase Chain Reaction (PCR) or which are suitable as forward and reverse primers for hybridization into regions of the sugar beet genome which are coseparated with the cercospora resistance conferred by the polypeptides according to the invention or with the nucleic acid molecules according to the invention.

The following advantages of breeding and breeding of new resistant plant lines of the genus beta are also achieved by the present invention. Sequence information and the identified polymorphisms that allow distinguishing between the resistant and susceptible alleles of the disclosed genes, i.e., between the allele that confers cercospora resistance and the allele that does not, make it possible to develop markers directly in the above genes and in regions located upstream and downstream, which represents an important advance for plant breeders-particularly for the development of optimized core lines without "linkage drag". Furthermore, knowledge about the sequence structure can be used to identify other resistance genes, e.g., homologous or orthologous, in particular anti-cercospora genes.

Thus, the invention also includes methods for identifying additional nucleic acid molecules encoding polypeptides or other proteins capable of conferring resistance to Cercospora in plants expressing the polypeptides. Thus, one skilled in the art can use databases, using appropriate search profiles and computer programs, to screen for homologous sequences or to perform sequence comparisons. Furthermore, other DNA sequences encoding Cercospora resistance proteins are available to the skilled person himself and are used within the scope of the present invention by means of conventional molecular biological techniques. For example, suitable hybridization probes may be derived from nucleic acid sequences according to the invention and may be used to screen genomic and/or cDNA libraries of a desired organism. The skilled artisan can here resort to conventional hybridization, Cloning and sequencing methods, as listed, for example, in Sambrook et al, Molecular Cloning: a Laboratory Manual, third edition, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 2001. Using known sequences, one skilled in the art can also synthesize and use oligonucleotide primers to amplify the sequence of a nucleic acid molecule that confers Cercospora resistance.

In one embodiment, the invention therefore also includes a method for identifying a nucleic acid molecule encoding a polypeptide capable of conferring resistance to cercospora in a plant of the sugar beet species in which it is expressed. Thus, the method comprises comparing the amino acid sequence of a polypeptide according to the invention, which confers cercospora resistance in the sugar beet subspecies, with amino acid sequences from sequence databases, or with the sequence of allelic variants of a polypeptide according to the invention, in the genotype of the sugar beet species. Furthermore, the method according to the invention comprises identifying an amino acid sequence or allelic variant which is at least 80% identical to the amino acid sequence of the polypeptide according to the invention, and introducing a nucleic acid molecule encoding the identified amino acid sequence or allelic variant in a plant of the sugar beet species; expressing a nucleic acid molecule in a plant; and optionally, subsequently verifying resistance to Cercospora.

As already mentioned, further proteins conferring resistance to Cercospora or the genes encoding them, i.e.homologues, analogues and orthologues which are at least 70% identical, preferably at least 80%, particularly preferably at least 90%, particularly preferably at least 95%, or even 98% identical, to the amino acid sequence of the polypeptide encoded by the nucleic acid molecule according to the invention, can be identified by classical bioinformatic methods (database search and computer programs for screening for homologous sequences).

Thus, the term homologue means that the relevant genes (from two different plant species) have essentially the same function and common ancestry and thus usually show significant identity in their nucleic acid or encoded amino acid sequences. However, there are also many genes that are homologous to each other, but do not produce significant pairwise aligned (paired alignment) protein sequences. In contrast, the term analog describes a gene or protein (likewise) having the same or similar function, but not being produced by the same structure, i.e.without a common ancestor. In this case, no significant identity can be established, usually in their nucleic acid or encoded amino acid sequence, or, in the best case, in a particular functional domain.

In the context of genomic sequencing, homologs are more finely classified for annotation. The term is introduced for this purpose: orthologs and paralogs. Orthologs are genes linked by speciation events. Paralogs are genes that trace back replication events.

In the sense of the present invention, a gene is essentially a homologue or an analogue or an orthologue if it is capable of conferring cercospora resistance in a plant. To verify this, the identified homologues or analogues or orthologues are amplified by PCR, cloned in an expression vector, introduced into the target plant or plant cell and then checked for resistance, using methods known to those skilled in the art which have been described previously.

As mentioned above, the use of alleles of resistance genes in cis or transgenic approaches disclosed herein opens up the possibility of new resistant species of the genus beta, which exhibit higher resistance with dose effects, or, by stacking the disclosed genes with other resistance genes, resistance fragmentation can be avoided and resistance development optimized. Genes can also be modified by tilling techniques or targeted engineering to optimize codon usage, which in turn increases expression or develops new or modified resistance alleles. According to a preferred embodiment, the codon optimized sequence or modified resistance allele is not naturally occurring but is artificially synthesized. SEQ ID NO: 94 provides an example of a modified genomic sequence in which codons at positions 16-18 are modified, but the encoded amino acid sequence is unchanged and corresponds to SEQ ID NO: 3. SEQ ID NO: 95 provides an example of a modified cDNA sequence in which the codons at positions 55-57 are modified, but the encoded amino acid sequence is unchanged and corresponds to SEQ ID NO: 3. according to SEQ ID NO: 96 gives an example of a modified resistance-conferring allele in which the amino acid valine has been replaced by the amino acid leucine at position 209. According to SEQ ID NO: 96 consists of the amino acid sequence according to SEQ ID NO: 97. These sequences do not occur naturally, but are artificially synthesized. When the substitution is for example according to SEQ ID NO: 3, it is recommended to exchange amino acids within the following group:

a) glycine, alanine, valine, leucine, isoleucine

b) Serine, cysteine, selenocysteine, threonine, methionine

c) Phenylalanine, tyrosine, tryptophan

d) Histidine, lysine, arginine

e) Aspartic acid, glutamic acid, asparagine, glutamine.

The invention also relates to the use of the identified Cercospora resistance-conferring alleles in plants in genetic or molecular stack with other genetic elements that may confer agronomically advantageous properties. Thus, the economic value of a cultivated plant may be significantly increased, since for example the yield performance is increased compared to a plant having the same genetic gene but not provided with a nucleic acid molecule according to the invention. In addition, biological factors such as strong pathogen stress may open up new crop areas of plants that could not have been previously cultivated. In particular, the invention relates to the use of alleles conferring cercospora resistance in a method of controlling the infestation of the pathogen cercospora betanae in agricultural or horticultural cultivation of beet plants, comprising identifying and selecting the beet plants by means of one of the aforementioned methods and/or cultivating the plants so selected or progeny thereof. The present invention therefore comprises a method for cultivating a plant of the sugar beet species, comprising in a first step providing a plant of the sugar beet species having a resistance to Cercospora according to the invention, or producing a plant of the sugar beet species by means of the production method according to the invention, or identifying and selecting a plant of the sugar beet species by means of the previously described identification method according to the invention; and comprising, in a second step, growing the plant from the first step, or deploying an elite of the plant from the first step, or breeding the plant from the first step. The cultivation method thus prevents Cercospora from infecting the cultivated plants. The cultivation process may be part of a process for producing sugar. The method for producing sugar comprises the steps of the cultivation method, and further comprises, as a penultimate step, harvesting the cultivated plants and, as a final step, extracting sugar from said plants.

The cultivation method may be part of the method of producing the stock. The method for producing the stock comprises the steps of the cultivation method, and further comprises, as a penultimate step, vernalization of the cultivated plant, and as a final step, extraction of seeds from the plant.

The extracted seeds may optionally be granulated to obtain a granulated stock of the sugar beet species. In this case, this is a method of producing a granulated stock.

Furthermore, the method for producing the stock can be designed as a method for producing a Cercospora resistant stock. The method for producing a Cercospora resistant stock comprises the steps of the above-described method for producing a stock, and furthermore comprises verifying a nucleic acid according to the invention as a final step in at least one of the extracted seeds, preferably in at least 0.1% or at least 1% of the extracted seeds, according to the method described herein. It is particularly preferred to perform the validation so that the seeds remain germinable. This means that extraction of DNA from the seed required for validation does not neutralize the germinability of the seed. In this case, the verification of the nucleic acids according to the invention can be carried out in a particularly large proportion in all the extracted seeds. For example, validation may be performed in at least 2%, preferably at least 3%, particularly preferably at least 4% of all extracted seeds.

The plants according to the invention, their cells or the seeds or stocks according to the invention may have further agronomically advantageous properties or provide these properties. An example is tolerance or resistance to herbicides such as glyphosate, glufosinate or ALS inhibitors. Tolerance to glyphosate or ALS inhibitor herbicides is preferred. Specific examples of glyphosate resistance are disclosed in US 7,335,816B 2. Such glyphosate resistance may be obtained, for example, from stocks stored in NCIMB, Aberdeen (scotland, uk) under accession number NCIMB 41158 or NCIMB 41159. Such seeds can be used to obtain glyphosate tolerant sugar beet plants. Glyphosate resistance can also be introduced into other species of the beta genus by hybridization.

Thus, the present invention also encompasses plants, cells or seeds or seed starting materials thereof, characterized in that they comprise a nucleic acid according to the invention and in that:

a) a DNA fragment of genomic DNA of a plant, part thereof or seed can be obtained by comparison with a DNA fragment having a sequence according to SEQ ID NO: 81 and a first primer having a nucleotide sequence according to SEQ ID NO: 82, wherein the DNA fragment is amplified by polymerase chain reaction with a second primer of the nucleotide sequence according to SEQ ID NO: 83 are at least 95% (preferably 100%) identical in nucleotide sequence, and/or

b) A DNA fragment of genomic DNA of a plant, part thereof or seed can be obtained by comparison with a DNA fragment having a sequence according to SEQ ID NO: 84 and a first primer having a nucleotide sequence according to SEQ ID NO: 85, wherein the DNA fragment is amplified by polymerase chain reaction with a second primer of the nucleotide sequence according to SEQ ID NO: 86 are at least 95% (preferably 100%) identical in nucleotide sequence, and/or

c) A DNA fragment of genomic DNA of a plant, part thereof or seed can be obtained by comparison with a DNA fragment having a sequence according to SEQ ID NO: 87 and a first primer having a nucleotide sequence according to SEQ ID NO: 88, wherein the DNA fragment is amplified by polymerase chain reaction with a second primer according to the nucleotide sequence of SEQ ID NO: 89 are at least 95% (preferably 100%) identical in nucleotide sequence.

Specific examples of ALS inhibitor herbicide resistance are disclosed in WO2012/049268a1 documents. For example, such ALS inhibitor herbicide resistance is available from the deposit of NCIMB, Aberdeen, uk under accession number NCIMB 41705. Furthermore, such ALS inhibitor resistance may be produced by tilling or site-directed mutagenesis (e.g., by gene editing, e.g., by using CRISPR/Cas, CRISPR/Cpf1, TALENS, or zinc finger nucleases. The invention therefore also encompasses plants, their cells or seeds or seed starting materials, which are characterized in that they comprise a nucleic acid according to the invention and in that they exhibit a mutation in an endogenous acetolactate synthase gene, wherein the acetolactate synthase gene codes for an acetolactate synthase protein (whose amino acid differs from tryptophan as a result of the mutation at position 569). As a result of the mutation, the amino acid at position 569 is preferably alanine, glycine, isoleucine, leucine, methionine, phenylalanine, proline, valine or arginine. Position 569 is preferably represented by SEQ ID NO: position 569 of 90. Furthermore, it is preferable to mutate the acetolactate synthase gene SEQ ID NO: 91. A mutated sequence of an acetolactate synthase gene, or a nucleotide sequence according to SEQ ID NO: 91, are not naturally occurring and cannot be isolated from nature. Furthermore, the mutation may be present in both heterozygous and homozygous form in the plant, its cells or seeds or seed material. We recommend that the mutation is present in homozygous form, as this may promote a more stable or more robust resistance phenotype.

Many other herbicides and their applicability are known to those skilled in the art from the prior art. He can resort to the prior art in order to understand which genetic elements are to be used in what way in order to achieve the corresponding tolerance in the plant.

Furthermore, herbicide tolerance has a synergistic effect, i.e. the occurrence of weeds can be reduced by the use of herbicides. This is advantageous against Cercospora species, since it is well known that conidia (asexual spores) or pseudo-substrates (mycelia) of Cercospora betanae can survive on plant material for up to 2 years.

Another example of an agronomically advantageous property is resistance to other pathogens, wherein the pathogen may be, for example, an insect, a virus, a nematode, a bacterium, or a fungus. For example, a wide range of pathogen defenses in plants can be achieved by different pathogen resistance/tolerance combinations, as genetic elements can exhibit additive effects with respect to each other. For example, the person skilled in the art knows many resistance genes for this as genetic elements. For example, US20160152999a1 discloses RZ resistance genes against beet clump root disease. The disease is caused by the virus of 'beet necrotic yellow vein'. Several disease resistances contained in one plant have a synergistic effect with each other. If a plant is infected with a pathogen for the first time, its immune system is usually weakened and the epidermis, which acts as an external barrier, is usually damaged, increasing the likelihood of further infection. Another example of an agronomically advantageous property is cold or freezing resistance. For example, plants exhibiting such characteristics may be sown early in the year, or may be grown in the field for longer periods of time, which may result in increased yield. The person skilled in the art can also resort here to the prior art for finding suitable genetic elements. Other examples of agronomically advantageous characteristics are water use efficiency, nitrogen use efficiency and yield. Genetic elements useful for conferring such properties can be found in the prior art.

In addition, many modifications of pathogen defense are known to those skilled in the art. In addition to the frequently described R gene families, the Avr/R method, Avr gene complementation (WO 2013/127379), R gene self-activation (WO 2006/128444) or HIGS (host-induced gene silencing) methods (e.g., WO2013/050024) can also be advantageously used. In particular, the self-activation of the R gene may be important for the present invention. To this end, a nucleic acid encoding a self-activating resistance gene that confers pathogen resistance to plants has been created. Then, the nucleic acid has only a limited portion of the NBS-LRR resistance gene (e.g., wb-R gene) extending downstream from the 5' end of the NBS-LRR resistance gene coding region to the start of the NBS domain coding for the NBS-LRR resistance gene.

In this context, a method is also included, which comprises the step of removing a region of a nucleic acid according to the invention, which nucleic acid encodes an N-terminal region and which starts from the p-loop in the NBS domain and extends to the end of the N-terminal region.

The resistance proteins encoded by such shortened nucleic acids are typically self-activating, as these resistance proteins trigger an immune response in the plant (even in the absence of the associated pathogen), thus increasing the basic immunity of the plant. Furthermore, such shortened nucleic acids according to the invention and polypeptides encoded thereby are also included.

Furthermore, the invention also comprises the use of alleles of genes conferring cercospora resistance identified by the above-described methods in combination with one of the aforementioned modifications or with the aforementioned genetic elements that can confer one or more agronomically advantageous properties to a plant.

In addition to the plants according to the invention, the invention also relates to seeds or progeny of plants, or organs or plant parts, tissues or cells thereof, in the production of products which are usually manufactured from sustainable raw materials, such as food and animal feed-preferably sugar or syrup (molasses), and in the production of materials or substances for the chemical industry, such as refining chemicals, pharmaceuticals or precursors thereof, diagnostics, cosmetics, bioethanol or biogas, or in the production of such materials or substances for the chemical industry, such as sugar or syrup (molasses), wherein molasses is also used in industrial applications, for example for alcohol production or as a growth substrate for the production of biotechnological products. An example of the use of sugar beets as biological raw material in biogas plants is described in application DE 102012022178 a 1; see, for example, paragraph 10.

The following examples illustrate the invention without limiting the subject matter of the invention. Standard molecular biology methods are used unless otherwise indicated. See, e.g., Sambrook et al, Molecular Cloning: a Laboratory Manual, third edition, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 2001; fritsch et al, Cold Spring Harbor Laboratory Press: 1989; mayer et al, biochemical Methods in Cell and Molecular Biology, eds., Academic Press, London, 1987; and Weir et al, Handbook of Experimental Immunology, Vol.I-IV, edited by Blackwel, 1986.

Some of the most important sequences according to the invention will be explained in detail below:

-SEQ ID NO: 1: genomic DNA sequence of a gene from sea beet conferring Cercospora resistance.

-SEQ ID NO: 2: a cDNA sequence of a non-naturally occurring gene conferring cercospora resistance.

-SEQ ID NO: 3: consisting of SEQ ID NO: 1 or SEQ ID NO: 2 encoding a protein conferring resistance to cercospora.

-SEQ ID NO: 4: genomic DNA sequence of a sensitive variant of a gene conferring Cercospora resistance.

-SEQ ID NO: 5: cDNA of a sensitive variant of a gene conferring resistance to Cercospora.

-SEQ ID NO: 6: amino acid sequence of a sensitive variant of a gene conferring Cercospora resistance.

-SEQ ID NO: 7: a native promoter of a gene from sea beet conferring cercospora resistance.

-SEQ ID NO: 8: a natural terminator from a gene of sea beet conferring cercospora resistance.

-SEQ ID NO: 53: from sea beet containing a polypeptide according to SEQ ID NO: 1 of the gene locus conferring cercospora resistance.

Examples

Example 1: introduction of resistance-conferring genes into sugar beet subspecies by CRISPR-mediated homologous recombination

Design and selection of crRNA:

suitable crRNAs for induction of Cpf 1-mediated double strand breaks were designed with the aid of the CRISPR RGEN tool (Park J., Bae S., and Kim J. -S.Cas-Designer: A web-based tool for choice of CRISPR-Cas9 target sites Bioinformatics 31, 4014-. For this purpose, suitable protospacer sequences were found within the genomic DNA sequence having a length of 500-1300bp flanking the 5 '-end and the 3' -end of the Cercospora resistance gene from sea beet. To ensure the functionality of endonuclease Cpf1 of Lachnospiraceae bacteria (Lachnospiraceae bacteria) ND2006(Lb), a 24nt long protospacer was chosen, the 5' -terminal genome-binding sequence of which is flanked by a basic protospacer-adjacent motif (PAM) with the sequence 5' -TTTV-3 ' (V ═ G or C or a). Appropriate protospacer sequences are selected according to predetermined quality criteria of the tool and matched to potential off-target sites of the reference genome of the beet subspecies. For the continuation of the test, only crRNA was selected, which has at most 15 identical bases to functional PAM, except for the actual target sequence. Since the first 18nt of the original spacer sequence is essential for detection and cleavage of the target sequence, unnecessary cleavage in other genomic sequences can be excluded in this way (Tang, X., L.G.Lowder, T.Zhang, A.A.Malzahn, X.ZHEN, D.F.Voytas, Z.ZHong, Y.Chen, Q.ren, Q.Li, E.R.Kirkland, Y.Zhang, and Y.Qi (2017), "A CRISPR-Cpf1 system for effective genome editing and translational expression in Plants" Nat Plants 3: 17018). In this way, four potential crrnas (5 'crRNA #1-4) can be identified in the 5' -flanking region of the resistance gene and three crrnas (3 'crRNA #1-3) can be identified in the 3' -flanking region of the resistance gene (see table a).

Table a: selected target sequences within the 5 '-and 3' -flanking DNA sequences of the resistance gene in sugar beet. PAM is underlined.

Cloning of the genetic elements: to clone the cpf1 expression cassette and the crRNA expression cassette, the test sequence of the BbsI restriction enzyme that prevented cloning was first removed from the target vector pzfnptii by introducing a point mutation (T to G). Mutagenesis was performed with the mutagenesis kit using two mutagenesis primers according to the manufacturer's instructions (see table B).

Table B: mutagenesis primers for introducing point mutations (T to G, underlined) to remove the BbsI detection sequence.

Name (R) Sequence 5'→ 3'
Mutagenesis primer 1 TCAGTGCAGCCGTCGTCTGAAAACGACA(SEQ ID NO:23)
Mutagenesis primer 2 TGTCGTTTTCAGACGACGGCTGCACTGA(SEQ ID NO:24)

For the expression of the Lbcpf1 gene in sugar beet, a codon-optimized DNA sequence for arabidopsis thaliana (a. thaliana) was synthesized with the 5 'flanking PcUbi promoter sequence (SEQ ID NO: 79) from parsley (Petroselinum crispum) and the 3' flanking 3A terminator sequence from Pea (Pea sp) as DNA fragments. Removal of the amino acid sequence of the coding sequence (CDS) in Lbcpf1 by introducing silent mutations (base exchange, without modifying the amino acid sequence) [ SEQ ID NO: 78] the relevant restriction medium (HindIII) was cloned to avoid accidental cleavage within the coding region. Codon optimization was performed with the aid of the GeneArt algorithm from Invitrogen/Thermoscientific. To enable Cpf1 to be transported within the nucleus, the coding sequence for the Nuclear Localization Signal (NLS) of SV40 was integrated into the Cpf1 CDS at the 5 'end and the NLS of the nucleoplasmin protein was integrated at the 3' end. For ligation in the binary target vector pZFNPTII (FIG. 2), the expression cassette was flanked by two HindIII restriction media and subsequently ligated to pZFNPTII _ LbCpf 1. Successful insertion of the PcUbi:: Cpf1:: TPea expression cassette was verified by sequencing, with the binding regions for the primers used for sequencing located within the flanking vector regions and expression cassettes (see Table C).

Table C: primers for sequencing of PcUbi:: Cpf1:: TPea expression cassette integrated into pZFNtII

Name (R) Sequence 5 '3'
pSeq_CRBM4_F1 SEQ ID NO:25
pSeq_CRBM4_R1 SEQ ID NO:26
pSeq_CRBM4_F2 SEQ ID NO:27
pSeq_CRBM4_R2 SEQ ID NO:28
pSeq_CRBM4_F3 SEQ ID NO:29
pSeq_CRBM4_R3 SEQ ID NO:30
pSeq_CRBM4_F4 SEQ ID NO:31
pSeq_CRBM4_R4 (SEQ ID NO:32)

After transcription into a plant cell, the crRNA should be cleaved off by two flanking ribozymes. To this end, the precursor crRNA is flanked by coding sequences for hammerhead ribozymes and HDV ribozymes (Tang, X., L.G.Lowder, T.Zhang, A.A. Malzahn, X.ZHeng, D.F.Voytas, Z.ZHong, Y.Chen, Q.ren, Q.Li, E.R.Kirkland, Y.ZHang, and Y.Qi (2017), "A CRISPR-Cpf1 system for effective gene editing and transcriptional expression in Plants" Nat Plants 3: 17018).

To achieve perfect ligation of the respective protospacer sequences at the coding sequence of the crRNA repeat, two BbsI detection sequences were integrated between the crRNA repeat and the HDV ribozyme, with the single-stranded overhangs (overhangis) used for cloning adjusted accordingly. To ensure the same expression strength of cpf1 and crRNA, the crRNA nuclease cassette was conjugated at the 5 'end with the PcUbi promoter sequence and at the 3' end with the 3A terminator sequence. For subsequent ligation in the target vector pZFNPTII _ Cpf1, the crRNA expression cassette was flanked by two PstI junctions and arranged as a synthetic DNA fragment. The original spacer sequence was synthesized as a complementary oligonucleotide and annealed according to standard protocols. The 24bp long DNA fragment generated in this way was flanked by ligation-related 4-nt single-stranded overhangs (see Table D).

Table D: sequences used to generate oligonucleotides that are short 24bp protospacer sequences. The 4-nt single stranded overhangs used for ligation were the first four nucleotides of each of the sequences listed below, respectively.

The efficiency of four crrnas was tested by agrobacterium-mediated gene transfer in sugar beet leaves. The pZFNPTII plasmid was co-transformed to check the transformation efficiency. Transformation of leaf explants was performed by vacuum infiltration according to standard protocols. Six days later, the fluorescence of tDT was examined by fluorescence microscopy and leaf explants with heterogeneous fluorescence were discarded. Ten days after the infiltration had occurred, leaf explants were flash frozen in liquid nitrogen, triturated, and genomic DNA was isolated by the CTAB method (Clarke, Joseph D., "Cetylmethylmethyl ammonium bromide (CTAB) DNA miniprep for plant DNA isolation" Cold Spring Harbor Protocols 2009.3 (2009): pdb-prot 5177). The efficiency of a single crRNA is determined by an external service provider by NGS using the frequency of inserted versions (e.g., insertions, deletions, or base exchanges) compared to the frequency of unedited sequences in genomic DNA.

As a synthetic DNA construct, the most efficient crRNAs (5 'crRNA #3 and 3' crRNA #1) were aligned as reverse expression cassettes along with the previously described ribozymes, promoter and terminator sequences. The entire DNA construct was flanked by two PstI restriction interfaces for cloning in the target vector pzfnptii _ LbCpf 1. After crRNA insertion has occurred, LbCpf1 and the crRNA expression cassette are ligated from the vector pzfnptii _ LbCpf1_ crRNA to the pUbitdtnptii vector by HindIII.

As a repair template to be integrated into the genome of sugar beet by homologous recombination, the resistance gene expression cassette is flanked at the 5 '-end by a 5' crRNA #3 binding sequence and at the 3 '-end by a 3' crRNA #1 binding sequence. This allows excision of the resistance gene expression cassette from the plasmid by Cpfl. The entire DNA template was synthesized as a synthetic DNA fragment 87326bp long (SEQ ID NO: 80) and used directly in the vector backbone for transformation. The resistance gene plasmid and pUbitDTnptII _ LbCpf1_ crRNA plasmid were introduced into the sugar beet callus cultures by means of gene cannons.

One day after transformation, transformation efficiency was determined by fluorescence microscopy using transient tDT fluorescence. Callus cultures were grown on shoot induction medium without selective pressure (without kanamycin) and subsequently the regenerated shoots were examined for site-directed integration of the resistance-conferring resistance gene cassette. For this, genomic DNA was isolated by CTAB. Using the peptide according to SEQ ID NO: 47, pCRBM4_ F1 and the nucleotide sequence according to SEQ ID NO: primer pCRBM4_ R1 (see Table E) at 48, integrated resistance conferring genes were amplified by PCR and the PCR products were subsequently sequenced with both primers. In the following analysis of the integration sites of the resistance genes, shoots were identified which could verify successful insertion of the expression cassette in this way. To verify the insertion of the desired target sequence in the genome, the flanking regions of the resistance gene expression cassette were amplified by PCR. Primer binding here occurs within the resistance gene DNA sequence; binding of the second primer occurs outside the 5 '-or 3' -flanking homology region of the inserted expression cassette (see table E). The amplified DNA sequence was sequenced using the same primers and in this way the integration of the desired position was confirmed. To exclude the primers pCRBM4_ F1(SEQ ID NO: 47), pCRBM4_ R1(SEQ ID NO: 48), pCRBM4_ R2(SEQ ID NO: 50) and pCRBM4_ F3(SEQ ID NO: 51) from binding to similar regions of the genome sequences, all primer sequences were previously compared to the sugar beet genome. For primer pCRBM4_ F3(SEQ ID NO: 51), it was not possible to select the nucleotide sequence to exclude binding to the wild type sequence. Thus, the 3' flanking region was amplified in all shoots that tested positive for the resistance gene and site-specific insertions were specifically verified by subsequent sequencing. The PCR product thus produced differed from the wild type sequence by 18 bp. To enable complete sequencing of the amplified sequence, the PCR product was additionally sequenced by a third primer (pCRBM 4-S2, pCRBM 4-S3; see Table E) with a binding site in the amplified sequence. To exclude non-specific binding of primers pCRBM4_ F1(SEQ ID NO: 47), pCRBM4_ R1(SEQ ID NO: 48) and pCRBM4_ R2(SEQ ID NO: 50) within the non-wild type genome, the nucleotide sequences were compared to the internal reference genome of sugar beet. The binding of the primers in the genomic sequence of sugar beet wild type plants was additionally tested by PCR.

To exclude integration of the resistance gene in other regions of the genome, targeted amplification of the target site is performed (targeted site amplification, TLA).

Table E: primers used to verify insertion of the resistance gene expression cassette into the desired integration site.

In addition to the validation of the resistance gene expression cassette and the successful insertion into the sugar beet genome, unnecessary integration of the plasmid DNA was also examined. For this, the genomic DNA (in which the successful insertion of the resistance gene into the desired target site was verified) was checked by PCR for the presence of plasmid DNA. Thus, the sequence regions within cpf1, the crRNA nuclease cassette and tDT were amplified using the primers listed in table F, followed by sequencing.

Table F: primers for verifying stably integrated plasmid-specific sequences in the genome of regenerated sugar beet sprouts

Example 2: introduction of resistance-conferring genes as transgenes into sugar beet subspecies by gene transformation

The transgenic approach to produce cercospora resistant plants is not only used for alternative verification of LRR genes as resistance conferring genes, but also as a means to generate transgenic resistance events that confer new cercospora resistance or enhance existing cercospora resistance.

The binary vector pZFN-nptII-LRR was generated by the following standard cloning procedure: within the T-DNA of this vector, the cDNA of the resistance gene according to SEQ ID NO 2 is cloned together with its native promoter sequence. The T-DNA also includes the neomycin phosphotransferase II (nptII) gene, which confers resistance to aminoglycoside antibiotics such as kanamycin or paromomycin. These antibiotic resistances are used to select transgenic plant cells and tissues. The NOS promoter and pAG7 terminator flank the nptII gene. The backbone of the binary vector also contains sources of colE1 and pVS1 for plasmid replication in E.coli or Agrobacterium tumefaciens. The aadA gene confers streptomycin/spectinomycin resistance for bacterial selection. The pZFN-nptII-LRR plasmid was transformed into Agrobacterium strain AGL-1 by standard procedures.

The Transformation of sugar beets is carried out according to Lindsey & Gallois (1990) ("Transformation of sugarbeet (Beta vulgaris) by Agrobacterium tumefaciens" Journal of experimental botanic 41.5, 529-. For this purpose, "micropropagated shoots" of genotype 04E05B1DH5 which do not carry a resistance gene according to the invention are used as starting material. The shoots were propagated in the corresponding medium according to Lindsey & Gallois (1990). To induce as many meristems as possible, "shoots" were transferred to different media (see Lindsey & Gallois (1990)) and incubated at about 30 ℃ in the dark for several weeks. Agrobacterium strain AGL-1 (FIG. 3) carrying the vector pZFN-nptII-LRR was cultured in another medium additionally provided with the corresponding antibiotic for selection (see Lindsey & Gallois (1990)). Sections based on meristematic tissue of the shoot to be treated were incubated for several hours in another medium with Agrobacterium (see Lindsey & Gallois (1990)). Plant explants and Agrobacterium were co-cultured in medium in the dark for at least 2 days (see Lindsey & Gallois (1990)), and inoculated explants were subsequently cultured in additional medium in the dark for about 2 weeks (see Lindsey & Gallois (1990)). Subsequently, the explants were further propagated in additional medium (see Lindsey & Gallois (1990)) and subcultured to enable selection of transgenic tissues. To end the selection phase and reduce the extent of chimera formation, green "shoots" were transferred to medium H and propagated for 2 weeks in total. Leaf material was then extracted from this green growing "shoot" and examined for the presence of the transgene by PCT. The appropriate "shoots" were rooted in medium I and then transferred to the greenhouse for the production of T1 seed feedstock. In addition, leaf material from these "shoots" was used to analyze the expression of the transformed resistance genes.

Analysis of expression levels

RNA was isolated from leaves of in vitro "shoots" and used for qRT-PCR. qRT-PCR was performed according to Weltmeier et al (2011) (see background). The measurements were normalized to the reference gene PLT3_075_ F09 (see Weltmeier et al, 2011). Expression was determined by using the following primer sequences:

sequence of Size [ No. nucleotide] Tm[C°] Size of amplification product [ No. nucleotide ]]
SEQ ID NO:92 21 59,8 170
SEQ ID NO:93 21 58,9 170

Resistance testing after sugar beet inoculation with cercospora farinosa under greenhouse conditions:

pure cercospora cultures of known high virulence were propagated on vegetable juice agar in petri dishes (9 cm diameter) under Near Ultraviolet (NUV) light at 20 ℃. After 14 days, the mould-growing agar surface was submerged in 10ml sterile water in each petri dish and conidia and hyphal debris were carefully scraped off with the aid of subject slides. Plants were inoculated with an inoculum density of 20000 conidia/mycelium fragments per ml plus 0.1% tween 20. At the time of inoculation, the plants have been cultured under greenhouse conditions for 8 to 9 weeks. The top and bottom of the leaves were treated with inoculum. These plants were then cultured at 25 ℃ for 5 to 7 days at 18 hours/6 hours light/dark and about 100% humidity. The first Cercospora symptom appeared on the sugar beet leaves after 12 to 14 hours. With the help of the rating score assessment shown in table 1A, the symptoms of the individual plants were assessed regularly. The results are shown below.

Table G: transgenic validation of the function of the resistance gene according to the invention in transformed plants;

LSD ═ minimal significant difference; dpi ═ days after infection

Results of transgene validation of the resistance gene according to the invention (see table G).

Test group 1 represents a negative control. The genotype was the same as test groups 2 to 11, but no transformation occurred. Thus, no expression was detected. Test group 4 was transformed, but no expression was detected. Test groups 2, 3 and 5 to 11 represent transformants carrying the resistance gene according to the invention only as a result of transformation. Test group 12 represents breeding lines comprising non-transgenic forms of the resistance genes according to the invention. The grade scores of all lines were determined after inoculation of the plant material with cercospora betanae described above. Test group 12 showed the highest resistance with the final value indicated 5, 19.

Transgenic lines showed a rating scale according to the following table:

table H: grade scoring of transgenic lines of table G

Table H shows only the grade scores of the transgenic check groups. The mean of all transgenic test groups (excluding group 4) is shown first. Only transgenic lines showing an expression level of at least 10 are given a grade score (groups 3, 8, 9, 10; see table G). The final rating here was 5, 91. This is significantly higher than the higher resistance of the group 1 negative control (which has only a rating score of 6, 46) (the least significant difference is 0, 4; see table G). The best transgenic test group (group 8) showed better resistance because the rating score was 5,48 (see table G).

It is worth mentioning that the expression level of the transgene insert may be affected by the integration locus. When the expression level is measured in vitro, the actual expression level under infectious conditions may be higher, especially if the resistance gene is under the control of a pathogen-inducible promoter.

And (5) carrying out statistical evaluation on a transgenic verification result.

Table I: statistical cluster analysis

Test group Clustering 8dpi Clustering of 11dpi Clustering of 13dpi Clustering of 15dpi
1 ab a a ab
2 e de bc cd
3 e ef c bcd
4 bc bcd bc bcd
5 cd abc a abc
6 a ab a ab
7 ab a a a
8 de ef c e
9 e de bc d
10 cd cd b d
11 ab a a a
12 de f d e

Table I shows the statistical evaluation of the rating scores contained in table G. Each letter symbolizes the assignment to a statistical group. For example, it is clear that after final evaluation (15dpi) test group 8 (transgene validation) was in the same cluster as test group 12 (resistance source) but in a different cluster than test group 1 (negative control). Accordingly, test group 8 was significantly different from test group 1, but not from test group 12.

In addition, boxplot analysis was also performed. An illustration of box plots can be obtained from fig. 4 to 7.

Sequence listing

<110> Kovosa seed European shares of two

<120> Gene for controlling plant disease

<130> KWS0270PCT

<150> EP18157246.2

<151> 2018-02-16

<150> US16/051,113

<151> 2018-07-31

<160> 99

<170> PatentIn version 3.5

<210> 1

<211> 3720

<212> DNA

<213> Beta vulgaris

<400> 1

atgaacatga aaatcctcct tttgtttgtc ttccttcatc acctccacta cttcatccat 60

ggcagaacac ttacagaacg ccaagcttta ctaagtatca aatctgccat tacttatgat 120

tattataact ctctctcctc atggaaaaac acaacacacc actgcagttg gccatacatc 180

acttgctcct cctcttcttc ttcttcttct gttatttctc tcaacttcac catgttattt 240

ctcgaaggaa ttctctcccc tgatataggc ttcctcacca acctgcaaaa cctctctatt 300

cgatctaacc ttttttctgg cccactcccc cattctctct ctctcctcac ccaactccgc 360

tatctcgacg tttcccaaaa cagtttcaca ggtccaatcc catcttctct ctctctcctc 420

acccaactcc gctatctcca cgtttccggc aacagtttca caggtccaat cccatctttt 480

ctctctctcc tcacccaact ccgctatctc gacgtttccg acaacagttt cacaggtcca 540

atcccatctt ctctctctct cctcacccaa ctccgctatc tcgacgtttc ctacaacaat 600

ctaaatggca ctcttccctt atcggtcgtt gagaagatgt cggagctcag ctaccttaac 660

cttaggtata actctttcta cggtgagatt ccaccggagt ttgggaaact taagaagctt 720

gaaacattga atcttggtaa caacactctt tctgggagtc ttccatctga gttgggttca 780

ttaaagagtt tgaaacatat ggacttttct agtaatatgc tatttggtga gatcccacaa 840

tcttattctc ttcttcgaaa cttaatcgat attgatctta atagaaacaa gttatatggg 900

agtatacctg attatattgg agattttccg gagttggaat cacttttatt agactcgaat 960

aacttcacag ggagtatccc acaaaagtta ggtacaaacg ggaagttgca atatctagat 1020

ataagtaaca acaattttag tggtagtttg ccactaagtc tttgcaaagg agacaaactc 1080

caagatctgg acgcatccta taatttgttg gttgggtcaa ttcctgagag tttgggaagt 1140

tgcaagtcac ttgaaggagt gtacatggga aataatttct taaacgggtc gattcctaag 1200

ggcttgtttg ggagtgatgt ttcacttaat gacaaacttc ttagtggagg tctcgatgag 1260

aaattcggtg attgcgttaa tcttcgggac attgatctct ctaataataa gctatcaggg 1320

aagttacctg cgaccatcgg aaactgtatt catcttcggt ccttgacgct ttataataac 1380

acctgtaccg gacgtatccc tcaagagatt agcaagtgta agcagctaca gaccctcgat 1440

ctcagccaaa atcagttctc tggtgtgata cccaatgata ttacaggtaa gaaagtatat 1500

taaacttgtt acttttgaaa atattcgctc tagtttttgt ttcagttggt ccattctcac 1560

tttgtattat tgaaatatat cccaaaaaag taaatataat tatataaaag aatcttgcta 1620

aaaataatat gaattatttt tgtatgtgca aaataatgta caaatctaac taatttgttg 1680

tggataataa tattaattgt gtgaaatagt aaatgtgtgg agatatataa ctttatttat 1740

catattcact caggttttta ggtatttatt atgagttttg cattggagat atccaacttg 1800

acaatagtat ttttgtaata taccaatata taaagattac tgtacataac caaaatgtat 1860

acttttctta tttttataaa cttatatatt cctcttcttt gtatttatca caacattttt 1920

tatacccttt tgcctcatat taatagcaac acttataatt tatttattta ctttttattt 1980

cttggtctat aacctcatct acccacatat gacacaccct ataaaggacc cacatgatta 2040

accaaaatat acaaatatct tcaatgaaat taactttaac actaatatga taaaaatcat 2100

gtcccgcttt ttatcctcta actaagactc tgcataaagg tatattgcaa ttaatatgag 2160

atggaagagg tataataatt atatgatcaa attcctggat tgaaaaataa atatgagatt 2220

aaaagtggta tgtttttggt taaaagaaac tatccataaa gtatgttttt ggttaaaaga 2280

aactatgcaa cataccaatc aaatgtttat acgcttacaa tttatgtacc acttttttgt 2340

cattgttttt ctattgtttg ccatacgtac gttactaaat catgttgtct tttcacattt 2400

taactaacaa taaattacta ttgatacacc aaaaaaatct atgagcattg gagtacgttg 2460

tttgatagaa gcttcgtgct attatttctt gtcaaagaat ttcatatctc aatatcttct 2520

aatttaacaa tctaacgaaa tttttttgac ccaggaaaca aatccatttg caatctggaa 2580

aagatacaaa cacttaaatt atcaaacaat gctttgactg gtgaaatccc tcattgtgtt 2640

ggaaatatcg agctcatagc attatttctc caatcaaaca aactgaacgg taccataccc 2700

gcaaacttct caaagttatg tgattcattg atatatctag atcttagtga caatcaactc 2760

gaaggagttc tacctaagtc cttgtccaaa tgtcaaagtc tagaactcct aaatgtcggg 2820

aacaataggc taagagataa atttccttca tggttagaca acctcccacg tctccaagtt 2880

ttcagtgtgc gttttaacgc cttctacggt cctataacta gctcaccaaa agttagtcac 2940

ccatttccta tgctacaaat tatcgaccta tctaacaata agttttgtgg caagttgcca 3000

agaagatata tcaaaaactt tgcaaccatg cgcaatatga atgagtctgg tgttgggaat 3060

ccacagtacc tgggggactc atcaatatat agtattacgt actctatggt attgacattc 3120

aatgggttac aacaaaaata tgaaaagctt attgtgacga tgtcgacctt tgatatatcc 3180

agcaacaact ttactggaca gattccatat gttatagggg gattacgctc acttcgtaac 3240

cttaatctct ctcataatgt cttaaccggg aacattcctc catcaattgc aaaattgtct 3300

ttgcttcaag atttggacct ttcatcaaac agacttactg gtcgtatccc tcaagaatta 3360

gttagtttaa catttcttgg gagtttcaat gtttcgaaca atctattgga ggggtctata 3420

cctcatggtt tcaacttcga cacgtacaca gctaattcat accaggggaa tctcgaatta 3480

tgtggaaaac cattacctga gtgtggagaa agaagggcaa aaggcaccac taataatcaa 3540

gatgatccta aaaatgataa tgaacgaatg ttgtcgatgt ccgaaatcgt agttatgggg 3600

tttggcagtg gtgtactagt tgggttggct tggggatact atatgttttc agtgggaaag 3660

cccttttggt ttatcaagat ggctagcaaa atggaatcaa tattgattgg ttttttctga 3720

<210> 2

<211> 2652

<212> DNA

<213> Artificial Sequence

<220>

<223> cDNA sequence of the Cercospora resistance-conferring gene

<400> 2

atgaacatga aaatcctcct tttgtttgtc ttccttcatc acctccacta cttcatccat 60

ggcagaacac ttacagaacg ccaagcttta ctaagtatca aatctgccat tacttatgat 120

tattataact ctctctcctc atggaaaaac acaacacacc actgcagttg gccatacatc 180

acttgctcct cctcttcttc ttcttcttct gttatttctc tcaacttcac catgttattt 240

ctcgaaggaa ttctctcccc tgatataggc ttcctcacca acctgcaaaa cctctctatt 300

cgatctaacc ttttttctgg cccactcccc cattctctct ctctcctcac ccaactccgc 360

tatctcgacg tttcccaaaa cagtttcaca ggtccaatcc catcttctct ctctctcctc 420

acccaactcc gctatctcca cgtttccggc aacagtttca caggtccaat cccatctttt 480

ctctctctcc tcacccaact ccgctatctc gacgtttccg acaacagttt cacaggtcca 540

atcccatctt ctctctctct cctcacccaa ctccgctatc tcgacgtttc ctacaacaat 600

ctaaatggca ctcttccctt atcggtcgtt gagaagatgt cggagctcag ctaccttaac 660

cttaggtata actctttcta cggtgagatt ccaccggagt ttgggaaact taagaagctt 720

gaaacattga atcttggtaa caacactctt tctgggagtc ttccatctga gttgggttca 780

ttaaagagtt tgaaacatat ggacttttct agtaatatgc tatttggtga gatcccacaa 840

tcttattctc ttcttcgaaa cttaatcgat attgatctta atagaaacaa gttatatggg 900

agtatacctg attatattgg agattttccg gagttggaat cacttttatt agactcgaat 960

aacttcacag ggagtatccc acaaaagtta ggtacaaacg ggaagttgca atatctagat 1020

ataagtaaca acaattttag tggtagtttg ccactaagtc tttgcaaagg agacaaactc 1080

caagatctgg acgcatccta taatttgttg gttgggtcaa ttcctgagag tttgggaagt 1140

tgcaagtcac ttgaaggagt gtacatggga aataatttct taaacgggtc gattcctaag 1200

ggcttgtttg ggagtgatgt ttcacttaat gacaaacttc ttagtggagg tctcgatgag 1260

aaattcggtg attgcgttaa tcttcgggac attgatctct ctaataataa gctatcaggg 1320

aagttacctg cgaccatcgg aaactgtatt catcttcggt ccttgacgct ttataataac 1380

acctgtaccg gacgtatccc tcaagagatt agcaagtgta agcagctaca gaccctcgat 1440

ctcagccaaa atcagttctc tggtgtgata cccaatgata ttacaggaaa caaatccatt 1500

tgcaatctgg aaaagataca aacacttaaa ttatcaaaca atgctttgac tggtgaaatc 1560

cctcattgtg ttggaaatat cgagctcata gcattatttc tccaatcaaa caaactgaac 1620

ggtaccatac ccgcaaactt ctcaaagtta tgtgattcat tgatatatct agatcttagt 1680

gacaatcaac tcgaaggagt tctacctaag tccttgtcca aatgtcaaag tctagaactc 1740

ctaaatgtcg ggaacaatag gctaagagat aaatttcctt catggttaga caacctccca 1800

cgtctccaag ttttcagtgt gcgttttaac gccttctacg gtcctataac tagctcacca 1860

aaagttagtc acccatttcc tatgctacaa attatcgacc tatctaacaa taagttttgt 1920

ggcaagttgc caagaagata tatcaaaaac tttgcaacca tgcgcaatat gaatgagtct 1980

ggtgttggga atccacagta cctgggggac tcatcaatat atagtattac gtactctatg 2040

gtattgacat tcaatgggtt acaacaaaaa tatgaaaagc ttattgtgac gatgtcgacc 2100

tttgatatat ccagcaacaa ctttactgga cagattccat atgttatagg gggattacgc 2160

tcacttcgta accttaatct ctctcataat gtcttaaccg ggaacattcc tccatcaatt 2220

gcaaaattgt ctttgcttca agatttggac ctttcatcaa acagacttac tggtcgtatc 2280

cctcaagaat tagttagttt aacatttctt gggagtttca atgtttcgaa caatctattg 2340

gaggggtcta tacctcatgg tttcaacttc gacacgtaca cagctaattc ataccagggg 2400

aatctcgaat tatgtggaaa accattacct gagtgtggag aaagaagggc aaaaggcacc 2460

actaataatc aagatgatcc taaaaatgat aatgaacgaa tgttgtcgat gtccgaaatc 2520

gtagttatgg ggtttggcag tggtgtacta gttgggttgg cttggggata ctatatgttt 2580

tcagtgggaa agcccttttg gtttatcaag atggctagca aaatggaatc aatattgatt 2640

ggttttttct ga 2652

<210> 3

<211> 883

<212> PRT

<213> Beta vulgaris

<400> 3

Met Asn Met Lys Ile Leu Leu Leu Phe Val Phe Leu His His Leu His

1 5 10 15

Tyr Phe Ile His Gly Arg Thr Leu Thr Glu Arg Gln Ala Leu Leu Ser

20 25 30

Ile Lys Ser Ala Ile Thr Tyr Asp Tyr Tyr Asn Ser Leu Ser Ser Trp

35 40 45

Lys Asn Thr Thr His His Cys Ser Trp Pro Tyr Ile Thr Cys Ser Ser

50 55 60

Ser Ser Ser Ser Ser Ser Val Ile Ser Leu Asn Phe Thr Met Leu Phe

65 70 75 80

Leu Glu Gly Ile Leu Ser Pro Asp Ile Gly Phe Leu Thr Asn Leu Gln

85 90 95

Asn Leu Ser Ile Arg Ser Asn Leu Phe Ser Gly Pro Leu Pro His Ser

100 105 110

Leu Ser Leu Leu Thr Gln Leu Arg Tyr Leu Asp Val Ser Gln Asn Ser

115 120 125

Phe Thr Gly Pro Ile Pro Ser Ser Leu Ser Leu Leu Thr Gln Leu Arg

130 135 140

Tyr Leu His Val Ser Gly Asn Ser Phe Thr Gly Pro Ile Pro Ser Phe

145 150 155 160

Leu Ser Leu Leu Thr Gln Leu Arg Tyr Leu Asp Val Ser Asp Asn Ser

165 170 175

Phe Thr Gly Pro Ile Pro Ser Ser Leu Ser Leu Leu Thr Gln Leu Arg

180 185 190

Tyr Leu Asp Val Ser Tyr Asn Asn Leu Asn Gly Thr Leu Pro Leu Ser

195 200 205

Val Val Glu Lys Met Ser Glu Leu Ser Tyr Leu Asn Leu Arg Tyr Asn

210 215 220

Ser Phe Tyr Gly Glu Ile Pro Pro Glu Phe Gly Lys Leu Lys Lys Leu

225 230 235 240

Glu Thr Leu Asn Leu Gly Asn Asn Thr Leu Ser Gly Ser Leu Pro Ser

245 250 255

Glu Leu Gly Ser Leu Lys Ser Leu Lys His Met Asp Phe Ser Ser Asn

260 265 270

Met Leu Phe Gly Glu Ile Pro Gln Ser Tyr Ser Leu Leu Arg Asn Leu

275 280 285

Ile Asp Ile Asp Leu Asn Arg Asn Lys Leu Tyr Gly Ser Ile Pro Asp

290 295 300

Tyr Ile Gly Asp Phe Pro Glu Leu Glu Ser Leu Leu Leu Asp Ser Asn

305 310 315 320

Asn Phe Thr Gly Ser Ile Pro Gln Lys Leu Gly Thr Asn Gly Lys Leu

325 330 335

Gln Tyr Leu Asp Ile Ser Asn Asn Asn Phe Ser Gly Ser Leu Pro Leu

340 345 350

Ser Leu Cys Lys Gly Asp Lys Leu Gln Asp Leu Asp Ala Ser Tyr Asn

355 360 365

Leu Leu Val Gly Ser Ile Pro Glu Ser Leu Gly Ser Cys Lys Ser Leu

370 375 380

Glu Gly Val Tyr Met Gly Asn Asn Phe Leu Asn Gly Ser Ile Pro Lys

385 390 395 400

Gly Leu Phe Gly Ser Asp Val Ser Leu Asn Asp Lys Leu Leu Ser Gly

405 410 415

Gly Leu Asp Glu Lys Phe Gly Asp Cys Val Asn Leu Arg Asp Ile Asp

420 425 430

Leu Ser Asn Asn Lys Leu Ser Gly Lys Leu Pro Ala Thr Ile Gly Asn

435 440 445

Cys Ile His Leu Arg Ser Leu Thr Leu Tyr Asn Asn Thr Cys Thr Gly

450 455 460

Arg Ile Pro Gln Glu Ile Ser Lys Cys Lys Gln Leu Gln Thr Leu Asp

465 470 475 480

Leu Ser Gln Asn Gln Phe Ser Gly Val Ile Pro Asn Asp Ile Thr Gly

485 490 495

Asn Lys Ser Ile Cys Asn Leu Glu Lys Ile Gln Thr Leu Lys Leu Ser

500 505 510

Asn Asn Ala Leu Thr Gly Glu Ile Pro His Cys Val Gly Asn Ile Glu

515 520 525

Leu Ile Ala Leu Phe Leu Gln Ser Asn Lys Leu Asn Gly Thr Ile Pro

530 535 540

Ala Asn Phe Ser Lys Leu Cys Asp Ser Leu Ile Tyr Leu Asp Leu Ser

545 550 555 560

Asp Asn Gln Leu Glu Gly Val Leu Pro Lys Ser Leu Ser Lys Cys Gln

565 570 575

Ser Leu Glu Leu Leu Asn Val Gly Asn Asn Arg Leu Arg Asp Lys Phe

580 585 590

Pro Ser Trp Leu Asp Asn Leu Pro Arg Leu Gln Val Phe Ser Val Arg

595 600 605

Phe Asn Ala Phe Tyr Gly Pro Ile Thr Ser Ser Pro Lys Val Ser His

610 615 620

Pro Phe Pro Met Leu Gln Ile Ile Asp Leu Ser Asn Asn Lys Phe Cys

625 630 635 640

Gly Lys Leu Pro Arg Arg Tyr Ile Lys Asn Phe Ala Thr Met Arg Asn

645 650 655

Met Asn Glu Ser Gly Val Gly Asn Pro Gln Tyr Leu Gly Asp Ser Ser

660 665 670

Ile Tyr Ser Ile Thr Tyr Ser Met Val Leu Thr Phe Asn Gly Leu Gln

675 680 685

Gln Lys Tyr Glu Lys Leu Ile Val Thr Met Ser Thr Phe Asp Ile Ser

690 695 700

Ser Asn Asn Phe Thr Gly Gln Ile Pro Tyr Val Ile Gly Gly Leu Arg

705 710 715 720

Ser Leu Arg Asn Leu Asn Leu Ser His Asn Val Leu Thr Gly Asn Ile

725 730 735

Pro Pro Ser Ile Ala Lys Leu Ser Leu Leu Gln Asp Leu Asp Leu Ser

740 745 750

Ser Asn Arg Leu Thr Gly Arg Ile Pro Gln Glu Leu Val Ser Leu Thr

755 760 765

Phe Leu Gly Ser Phe Asn Val Ser Asn Asn Leu Leu Glu Gly Ser Ile

770 775 780

Pro His Gly Phe Asn Phe Asp Thr Tyr Thr Ala Asn Ser Tyr Gln Gly

785 790 795 800

Asn Leu Glu Leu Cys Gly Lys Pro Leu Pro Glu Cys Gly Glu Arg Arg

805 810 815

Ala Lys Gly Thr Thr Asn Asn Gln Asp Asp Pro Lys Asn Asp Asn Glu

820 825 830

Arg Met Leu Ser Met Ser Glu Ile Val Val Met Gly Phe Gly Ser Gly

835 840 845

Val Leu Val Gly Leu Ala Trp Gly Tyr Tyr Met Phe Ser Val Gly Lys

850 855 860

Pro Phe Trp Phe Ile Lys Met Ala Ser Lys Met Glu Ser Ile Leu Ile

865 870 875 880

Gly Phe Phe

<210> 4

<211> 4748

<212> DNA

<213> Beta vulgaris

<400> 4

ttactatgaa caatacccta atatcattag gttttcccct tctctctcct aagtgccaaa 60

ctgccaaccc cctcccatct ttatttcaat aagagcacca ttaaattatt gtgtaacaaa 120

gaccattatt ttaagatcac taataaggtt gctctaatta ttcctagaat tctagtgaaa 180

aaagaaagat aaaagatgaa catggggtga tgactgatga ctgagagaca acagacaaca 240

cttggttgag ttgatatttg acgcaaagac ttggcgtgtt ggaaggttca ttacacattt 300

tatccaagtc aactttgaag tcttcttagc tagagactaa tagagtgaac gtgttggaag 360

gttcatgttc atgacattat aaaagtaata atagtgaaat ttcacaaagt atttataaac 420

ccaggacaga ctcaagagct ctacttatta tattagtgaa aaacaaacat acacacgaca 480

ataacacaac ataaacaata atgaacatga aaatcctcct tttgtttgtc ttccttcatc 540

acctccacta cttcatcaat ggcagaacac taacagaaca tcaagcttta ctaagtatca 600

aatctgccat tactaatgat acgaatagct atctctcctt atggaaaaac acaacacacc 660

actgcagttg gccatacatc acttgctcct cctcttcttc ttctgtcatt tctctcgata 720

tctcctactt agagctcacc ggaattctct cccctgatat aggcttcctc accaacctcc 780

aaaacctcac tattcaatgg aacgattttt ctggccccct ccccacttct ctctctctcc 840

tcacccaact ccgccatctc gacgtttcct acaacaattt cacaggtcca atcccatctt 900

ctctctctct cctcacccaa ctccgccatc tcgacgtttc cttcaacagt ttcacaggtc 960

caatcccatc ttctctctct ctcctcaccc aactccgcta tctcgacgtt tcccaaaaca 1020

gtttcacagg tccaatccca tcttctctct ctctcctcac ccaactccgc tatctcgacg 1080

tttccgacaa cagtttcaca ggtccaatcc catcttttct ctctctcctc acccaactcc 1140

gctatctaga cgtttcctac aacaatctaa atggcactct tcccttatcg gtcgttgaga 1200

tgtcggaact caggtacctt aaccttaagt ataactcttt ctacggtgag attccaccgg 1260

agtttgggaa acttaagaag cttcaaacat tggatcttgg taacaactat ctttctgggg 1320

gtcttccatt tgagttgggt tcattaaaga gtttgaaata tattgatctt agtataaaca 1380

atttatatgg gagtatacct gattatattg gagattttcc ggagttggaa tcacttttat 1440

tagactcgaa taacttcaca gggagtatcc cacaaaagtt aggtacaaac gggaagttgc 1500

aatatctaga tataagtaac aacaatttta gtgggagttt gccagcaagt ctttgcaaag 1560

gagacaaact ccaacatttg ggagtatccg ataatttgtt ggttgggcca attcctgaga 1620

gtttgggaag ttgcaagtca cttgaagaag tgaacatggg aaataatttc tttaacgggt 1680

cgattcctaa gggcttgttt ggcctcccaa acattattga tgtttcactc aatgacaatc 1740

ttcttagcgg aggtctcgat gagaaatttg gtgattgtgt taatcttttc aacattgatc 1800

tctctaataa taagctatca gggaagttac ctgcgactat tggaaactgt tctaatcttc 1860

agttgttgat gcttaatcag aataacttca ccggaagtat ccctcaagag attagcaagt 1920

gtaagcagct acgggccctc gatctcagcc aaaatcagtt ctctggtgtg atacccaatg 1980

atattacagg taagaaagta tattaaactt gttacttttg aaaatattcg ctctagtttt 2040

ctttcagttg gtccattctc acttttgcat tattgaaata tatccctaaa aaagtaaatg 2100

taattatata aaagaatctt gctcaaaata atatgaatta tttttgtatg tgcaaaataa 2160

tgtacaatct aactaatttg ttgtgaaaaa taatataatt gtgtgaaata gtaaatgtgt 2220

ggagatatat aactttattt atcatattca ctaagggttt taggtatttt actatgactt 2280

ttgcattatg gagatatcca acttgacaat agtatttttg taatatactt cctccgtttc 2340

taaataagtg caacatttac atagtgttta ctattcacag tttaaacttt aattagcttt 2400

ggtgatttac attttaggaa aaacatagtc atgtgggatc ttattagatt cgtctgaatg 2460

tgaatttttt taatatcaac tttttataat ttttacttat tgacaattga agatattaat 2520

ggttaaaata atgcattggc aaacgtgcaa acaagaaatg ttgcacttat ttagaaacgg 2580

aggaagtatc atatatgaag attattgtac ataacacttt tcttattttt ataaactata 2640

tattcttctt ctttgtattt atcacaacac tttttatatc tttgcctcat attaatggca 2700

acacttttaa tttatctatt tactttttat ttcttggtct atagcccatt tacatactta 2760

tgacacacct cataaaggac ccacacgatt aaccaaaata tacaaatatc ttcaatgaaa 2820

ttaacttcaa tactaatatg ataaaaatca tgccccgctg tttatcctca tcctaagact 2880

ctgcataaaa ttattatttc ttgtccatac ttaatcatgt tgtgttttca cattttaact 2940

aataataaat tacaattgat acaccaaaaa actctatgag cattgggtat gttgtttgat 3000

agaagcttca tgctattatt tcttgtcaaa gaatttcata tctcgatatc ttctatacca 3060

tctaacgaac aattattttc tgcaggaaac aaaaccattt gcaattttga agaaattaaa 3120

ttacttgatt tatcaaacaa tattttgacc ggtgaaatcc ctcgttgtct tggaaatact 3180

agtactcaac tcgaaacatt atttcttcaa tcaaacaaac tgaacggtac catacccgca 3240

aacttctcaa agttatgtga ttcattgatg tatctagatc ttagtgacaa tcaactcgaa 3300

ggagttctac ctaagtcatt gtccaaatgt caaaatttga aactcctaaa tgtcgggaac 3360

aacaggctaa gagataaatt tccctcatgg ctagacaacc tcccacatct ccaagttttc 3420

agtgtgcgtt tcaatgcctt ctacggtcct ataactagct catcaaaggt taatcaccca 3480

tttcctatgc tacaaattat cgacctatct aacaatgagt tttgtggcaa gttgccaaga 3540

agatatatca aaaattttgc aaccatgcgc aatatgaatg agtctggtgt tggggatcca 3600

cagtacctgg aggactcata tagtccgtac tctatggtat tgacattcaa tgggttacaa 3660

caaaaatatg aaaagcttat tgtgacgatg tcgacctttg atatatccaa caacaacttt 3720

actggacaga ttccatatgt tataggggga ttacactcac ttcgtaacct taatctctcg 3780

cataatgtct taaccgggaa cattcctcca tcaattgcaa aattgtcttt gcttcaggat 3840

ttggaccttt catcaaacag acttattggt cgtatccctc aagaattagt tagtttaaca 3900

tttcttggga gcttcaatgt ttcgaacaat ctattggagg ggcctatacc tattggtaac 3960

aacttcaata cattctcgaa taattcatac caggggaatg tcggattgtg tggaaaacca 4020

ttacctgagt gtggagaaag aagggcaaaa agcaccacta ataatcaaga tgttcctaaa 4080

aatgataatg aacgaatgtt gtcgatgtcc gaaatcgtag ttatggggtt tggcagtggt 4140

gtactagttg ggttggcttg gggatactat atgttttcag tgggaaagcc cttttggttt 4200

atcaagatgg ctagcaaaat ggaatcaata ttgattggtt ttttctgacc aacaatttgt 4260

tagccgatga agagcatcaa aaccaaaaaa acaaaaaaat tgagtaatat gcatgagtgt 4320

gaccttgttt tccaaagttt agcattacta ttagtgtctc aattcataat aataaaaaaa 4380

ttagcttgtt caagatttgt attttattca aagatttttt atgtctcttg tgcttctttt 4440

atcttatata tattttttgt atggtttgtt tttgtttaat attagtccct ccgctcaaaa 4500

tgatctttca cgcttgagat tggcattaag gtcaagagat gttgctaagc tttagaataa 4560

aaaaattcca aatgcataga gggaaagaaa gcgagacaaa atgttggaga aggcagagta 4620

aatgatgtga tggaggataa atagtagaag tgtgataccg aaagtttgaa aataataagg 4680

aattttattt cttgctggca cttcgttcta gtacaggttt ttggcccttc aaaatgctta 4740

taatgtag 4748

<210> 5

<211> 2460

<212> DNA

<213> Artificial Sequence

<220>

<223> cDNA sequence of the sensitive variant of the Cercospora

resistance-mediating gene

<400> 5

atgaacatga aaatcctcct tttgtttgtc ttccttcatc acctccacta cttcatcaat 60

ggcagaacac taacagaaca tcaagcttta ctaagtatca aatctgccat tactaatgat 120

acgaatagct atctctcctt atggaaaaac acaacacacc actgcagttg gccatacatc 180

acttgctcct cctcttcttc ttctgtcatt tctctcgata tctcctactt agagctcacc 240

ggaattctct cccctgatat aggcttcctc accaacctcc aaaacctcac tattcaatgg 300

aacgattttt ctggccccct ccccacttct ctctctctcc tcacccaact ccgccatctc 360

gacgtttcct acaacaattt cacaggtcca atcccatctt ctctctctct cctcacccaa 420

ctccgccatc tcgacgtttc cttcaacagt ttcacaggtc caatcccatc ttctctctct 480

ctcctcaccc aactccgcta tctcgacgtt tcccaaaaca gtttcacagg tccaatccca 540

tcttctctct ctctcctcac ccaactccgc tatctcgacg tttccgacaa cagtttcaca 600

ggtccaatcc catcttttct ctctctcctc acccaactcc gctatctaga cgtttcctac 660

aacaatctaa atggcactct tcccttatcg gtcgttgaga tgtcggaact caggtacctt 720

aaccttaagt ataactcttt ctacggtgag attccaccgg agtttgggaa acttaagaag 780

cttcaaacat tggatcttgg taacaactat ctttctgggg gtcttccatt tgagttgggt 840

tcattaaaga gtttgaaata tattgatctt agtataaaca atttatatgg gagtatacct 900

gattatattg gagattttcc ggagttggaa tcacttttat tagactcgaa taacttcaca 960

gggagtatcc cacaaaagtt aggtacaaac gggaagttgc aatatctaga tataagtaac 1020

aacaatttta gtgggagttt gccagcaagt ctttgcaaag gagacaaact ccaacatttg 1080

ggagtatccg ataatttgtt ggttgggcca attcctgaga gtttgggaag ttgcaagtca 1140

cttgaagaag tgaacatggg aaataatttc tttaacgggt cgattcctaa gggcttgttt 1200

ggcctcccaa acattattga tgtttcactc aatgacaatc ttcttagcgg aggtctcgat 1260

gagaaatttg gtgattgtgt taatcttttc aacattgatc tctctaataa taagctatca 1320

gggaagttac ctgcgactat tggaaactgt tctaatcttc agttgttgat gcttaatcag 1380

aataacttca ccggaagtat ccctcaagag attagcaagt gtaagcagct acgggccctc 1440

gatctcagcc aaaatcagtt ctctggtgtg atacccaatg atattacaga tcttagtgac 1500

aatcaactcg aaggagttct acctaagtca ttgtccaaat gtcaaaattt gaaactccta 1560

aatgtcggga acaacaggct aagagataaa tttccctcat ggctagacaa cctcccacat 1620

ctccaagttt tcagtgtgcg tttcaatgcc ttctacggtc ctataactag ctcatcaaag 1680

gttaatcacc catttcctat gctacaaatt atcgacctat ctaacaatga gttttgtggc 1740

aagttgccaa gaagatatat caaaaatttt gcaaccatgc gcaatatgaa tgagtctggt 1800

gttggggatc cacagtacct ggaggactca tatagtccgt actctatggt attgacattc 1860

aatgggttac aacaaaaata tgaaaagctt attgtgacga tgtcgacctt tgatatatcc 1920

aacaacaact ttactggaca gattccatat gttatagggg gattacactc acttcgtaac 1980

cttaatctct cgcataatgt cttaaccggg aacattcctc catcaattgc aaaattgtct 2040

ttgcttcagg atttggacct ttcatcaaac agacttattg gtcgtatccc tcaagaatta 2100

gttagtttaa catttcttgg gagcttcaat gtttcgaaca atctattgga ggggcctata 2160

cctattggta acaacttcaa tacattctcg aataattcat accaggggaa tgtcggattg 2220

tgtggaaaac cattacctga gtgtggagaa agaagggcaa aaagcaccac taataatcaa 2280

gatgttccta aaaatgataa tgaacgaatg ttgtcgatgt ccgaaatcgt agttatgggg 2340

tttggcagtg gtgtactagt tgggttggct tggggatact atatgttttc agtgggaaag 2400

cccttttggt ttatcaagat ggctagcaaa atggaatcaa tattgattgg ttttttctga 2460

<210> 6

<211> 819

<212> PRT

<213> Beta vulgaris

<400> 6

Met Asn Met Lys Ile Leu Leu Leu Phe Val Phe Leu His His Leu His

1 5 10 15

Tyr Phe Ile Asn Gly Arg Thr Leu Thr Glu His Gln Ala Leu Leu Ser

20 25 30

Ile Lys Ser Ala Ile Thr Asn Asp Thr Asn Ser Tyr Leu Ser Leu Trp

35 40 45

Lys Asn Thr Thr His His Cys Ser Trp Pro Tyr Ile Thr Cys Ser Ser

50 55 60

Ser Ser Ser Ser Val Ile Ser Leu Asp Ile Ser Tyr Leu Glu Leu Thr

65 70 75 80

Gly Ile Leu Ser Pro Asp Ile Gly Phe Leu Thr Asn Leu Gln Asn Leu

85 90 95

Thr Ile Gln Trp Asn Asp Phe Ser Gly Pro Leu Pro Thr Ser Leu Ser

100 105 110

Leu Leu Thr Gln Leu Arg His Leu Asp Val Ser Tyr Asn Asn Phe Thr

115 120 125

Gly Pro Ile Pro Ser Ser Leu Ser Leu Leu Thr Gln Leu Arg His Leu

130 135 140

Asp Val Ser Phe Asn Ser Phe Thr Gly Pro Ile Pro Ser Ser Leu Ser

145 150 155 160

Leu Leu Thr Gln Leu Arg Tyr Leu Asp Val Ser Gln Asn Ser Phe Thr

165 170 175

Gly Pro Ile Pro Ser Ser Leu Ser Leu Leu Thr Gln Leu Arg Tyr Leu

180 185 190

Asp Val Ser Asp Asn Ser Phe Thr Gly Pro Ile Pro Ser Phe Leu Ser

195 200 205

Leu Leu Thr Gln Leu Arg Tyr Leu Asp Val Ser Tyr Asn Asn Leu Asn

210 215 220

Gly Thr Leu Pro Leu Ser Val Val Glu Met Ser Glu Leu Arg Tyr Leu

225 230 235 240

Asn Leu Lys Tyr Asn Ser Phe Tyr Gly Glu Ile Pro Pro Glu Phe Gly

245 250 255

Lys Leu Lys Lys Leu Gln Thr Leu Asp Leu Gly Asn Asn Tyr Leu Ser

260 265 270

Gly Gly Leu Pro Phe Glu Leu Gly Ser Leu Lys Ser Leu Lys Tyr Ile

275 280 285

Asp Leu Ser Ile Asn Asn Leu Tyr Gly Ser Ile Pro Asp Tyr Ile Gly

290 295 300

Asp Phe Pro Glu Leu Glu Ser Leu Leu Leu Asp Ser Asn Asn Phe Thr

305 310 315 320

Gly Ser Ile Pro Gln Lys Leu Gly Thr Asn Gly Lys Leu Gln Tyr Leu

325 330 335

Asp Ile Ser Asn Asn Asn Phe Ser Gly Ser Leu Pro Ala Ser Leu Cys

340 345 350

Lys Gly Asp Lys Leu Gln His Leu Gly Val Ser Asp Asn Leu Leu Val

355 360 365

Gly Pro Ile Pro Glu Ser Leu Gly Ser Cys Lys Ser Leu Glu Glu Val

370 375 380

Asn Met Gly Asn Asn Phe Phe Asn Gly Ser Ile Pro Lys Gly Leu Phe

385 390 395 400

Gly Leu Pro Asn Ile Ile Asp Val Ser Leu Asn Asp Asn Leu Leu Ser

405 410 415

Gly Gly Leu Asp Glu Lys Phe Gly Asp Cys Val Asn Leu Phe Asn Ile

420 425 430

Asp Leu Ser Asn Asn Lys Leu Ser Gly Lys Leu Pro Ala Thr Ile Gly

435 440 445

Asn Cys Ser Asn Leu Gln Leu Leu Met Leu Asn Gln Asn Asn Phe Thr

450 455 460

Gly Ser Ile Pro Gln Glu Ile Ser Lys Cys Lys Gln Leu Arg Ala Leu

465 470 475 480

Asp Leu Ser Gln Asn Gln Phe Ser Gly Val Ile Pro Asn Asp Ile Thr

485 490 495

Asp Leu Ser Asp Asn Gln Leu Glu Gly Val Leu Pro Lys Ser Leu Ser

500 505 510

Lys Cys Gln Asn Leu Lys Leu Leu Asn Val Gly Asn Asn Arg Leu Arg

515 520 525

Asp Lys Phe Pro Ser Trp Leu Asp Asn Leu Pro His Leu Gln Val Phe

530 535 540

Ser Val Arg Phe Asn Ala Phe Tyr Gly Pro Ile Thr Ser Ser Ser Lys

545 550 555 560

Val Asn His Pro Phe Pro Met Leu Gln Ile Ile Asp Leu Ser Asn Asn

565 570 575

Glu Phe Cys Gly Lys Leu Pro Arg Arg Tyr Ile Lys Asn Phe Ala Thr

580 585 590

Met Arg Asn Met Asn Glu Ser Gly Val Gly Asp Pro Gln Tyr Leu Glu

595 600 605

Asp Ser Tyr Ser Pro Tyr Ser Met Val Leu Thr Phe Asn Gly Leu Gln

610 615 620

Gln Lys Tyr Glu Lys Leu Ile Val Thr Met Ser Thr Phe Asp Ile Ser

625 630 635 640

Asn Asn Asn Phe Thr Gly Gln Ile Pro Tyr Val Ile Gly Gly Leu His

645 650 655

Ser Leu Arg Asn Leu Asn Leu Ser His Asn Val Leu Thr Gly Asn Ile

660 665 670

Pro Pro Ser Ile Ala Lys Leu Ser Leu Leu Gln Asp Leu Asp Leu Ser

675 680 685

Ser Asn Arg Leu Ile Gly Arg Ile Pro Gln Glu Leu Val Ser Leu Thr

690 695 700

Phe Leu Gly Ser Phe Asn Val Ser Asn Asn Leu Leu Glu Gly Pro Ile

705 710 715 720

Pro Ile Gly Asn Asn Phe Asn Thr Phe Ser Asn Asn Ser Tyr Gln Gly

725 730 735

Asn Val Gly Leu Cys Gly Lys Pro Leu Pro Glu Cys Gly Glu Arg Arg

740 745 750

Ala Lys Ser Thr Thr Asn Asn Gln Asp Val Pro Lys Asn Asp Asn Glu

755 760 765

Arg Met Leu Ser Met Ser Glu Ile Val Val Met Gly Phe Gly Ser Gly

770 775 780

Val Leu Val Gly Leu Ala Trp Gly Tyr Tyr Met Phe Ser Val Gly Lys

785 790 795 800

Pro Phe Trp Phe Ile Lys Met Ala Ser Lys Met Glu Ser Ile Leu Ile

805 810 815

Gly Phe Phe

<210> 7

<211> 1998

<212> DNA

<213> Beta vulgaris

<220>

<221> promoter

<222> (1)..(1998)

<223> native promoter of the Cercospora resistance-conferring gene Beta

vulgaris subsp. maritima

<400> 7

gagcatagtg agtgcaaaag ccatggaagc tagattaaaa aggccatcat tctaagttag 60

acaattggaa acaacatcga gatacacgta cacataaggg ctgctcttct ctattactcc 120

ctctgttcct aatcatttgc ttttttagcg ggttccaaag gcctatgttt gaccactaat 180

atatttaaat taaaactggt gatatatatt aaaagaaaat tatgatgaat ttaacaaaaa 240

ccatatatgt tatgtccttt tttttcctat attaatgaat ttttacagtc aaagttggtg 300

aactttgacc caaaaaaaga aatggagcaa aaaaaaaaaa aaaaaaaaaa aactagggac 360

aatgagtaac atttttatct atgtcttttt aatatgaata tacgtaacaa attctgcaaa 420

aatagagata gcaactaata acacgcatga aaatgacaag ttatattata cctttttttc 480

tcaatatatg aatatacgta acaaattaac tccagtagtt tttagtaaaa ctattagatt 540

attgtgtaac atatactctg gaaatagtac taagatccat tacaatcttt attgagaaat 600

ttcctcatgt accccctgag gtttggcgta atttccaaat acccctcata tttgaggaat 660

ttctcaaata ccctgatgtt tttgtttaga ctcaaaatac ctttactatg gacagtaccc 720

taatgtcatt aagttttccc cttctctctc cccaattttc tctctcctcc cattccccca 780

cccactaccc actgcccact gccaagtagg ggtgtaagtg gattggactg gattggactt 840

tgccaaattc aaatccagtc caaagttttt tggactcgag aaattgagtc caagtccgat 900

ccaaatattt tttgagtcca gtccaatcta gtccgataat tttttcttga gtccgaatcc 960

agtccagtcc agtccgatta ttatatcttt tttcccgatt taggttcaat gattcacaac 1020

attttttgag atgcttgagc atttgacatc tgattcaatt atcaatatcc acaaataaga 1080

ttgaaagctt aaattaaagt aaaatactat gaataaaaag ttgaattaga tgcttacctt 1140

gatctaagtt gagaggaagc atagagactg agaattaatc tgagggacaa atagagaatg 1200

cgagagtcga gacagtgagg tagaaagaaa atgaagagta agaggaagtg agtattaagg 1260

actgaggagt aaagtaagat agaattagtt ggctactagc ctactaatgc agtattgcta 1320

gtataattta cttatttaac aaatggagct aagtgcaata gtttagcgcc aattgacata 1380

tttagagaga gaaggctgaa aaatccaata tttttaaaat agtatcatta tttttaatat 1440

atacattata tataaaaata tttttggact ggactggaca tattggactc caaagggatg 1500

agtccaaatc cagacaaaaa atatttggac ttgaaaattt aagtccgagt ccagtccgaa 1560

aaattttcag tccaatccag tccgacaaat ttggactgga ctggattgga ctctgaactt 1620

ttcgtagtcc gcttacaccc ctactgccaa gtgccaaact gccaaccccc ttttggttga 1680

gttgatattt gacgcaaaga cttggcgtgt tggaaggttc attacacatt ttatccaagt 1740

caactttgaa gtcttcttag ctagagacta gagtgaacgt gttggaaggt tcattacaca 1800

ttttatccaa tcaaactttg aagtcttctt agctagagac tagagtgaac gtgttggaag 1860

gttcatgttc atgacattat aaaagtaata atagtgaaat ttcacaaagt atttataaac 1920

ccaggacaga ctcaagagct ctacttatta ttagtgaaaa acaaacatac acacgacaat 1980

aacacaacat aaacaata 1998

<210> 8

<211> 2000

<212> DNA

<213> Beta vulgaris

<220>

<221> terminator

<222> (1)..(2000)

<223> native terminator of the Cercospora resistance-conferring gene

from Beta vulgaris subsp. maritima

<400> 8

ccaacaattt gttagccgat gaagagcatc aaaaccaaaa aaaacaaaaa aaattgatta 60

atatgcatga gtgtgacctt gttttccaaa gtttagcatt actattagtg tctcaattca 120

taataataaa aaaattagct tgttcaagat ttgtattttt attcaaagat tttttttgtc 180

tcttgtgctt cttttatctt atatatattt tttgtatggt ttgtttttgt ttaatattag 240

tccctccgct caaaatgatc tttcacgctt gagattggca ttaaggtcaa gagatgttgc 300

taagctttag aataaaaaaa ttccaaatgc atagagggaa agaaagcgag acaaaatgtt 360

ggagaaggca gagtaaatga tgtgatggag gataaatagt agaagtgtga taccgaaagt 420

ttgaaaataa taaggaattt tatttcttgc tggcactttg ttctagtaca ggtttttagc 480

ccttcaaaat gtttataatg tagagtcaaa attaatatcc ttaactagtt tttaagtccg 540

ggttatatcc tagatattaa taatattcat ttattagtaa cattttattt tataaatata 600

atactaagca ttatttggtt tgctggttaa gactttagtg tatatctatt tctttttttt 660

tttattgtat gcgtgtttac ataaactaaa gactataagg gatagtacca cgtggcgcag 720

ttccttgctt aggaacgtct tttaatatat taactagtat ttgggcccgg gcgttgctcc 780

gggttggtat tgtgtttccg aacatgatgt gcagtttttc ccattcccac taaaatatat 840

aaaggaaaac tcaacattta aaagatacaa atataataat atggacactt aaaacatgat 900

taaaagttga ttgagatggt aattgtgtca tgttataata gtaagaggtt gcctaattga 960

ggttgaggtg gtggagtagt ggtatcgctt cccatctgtt atccctgagg tataaggatc 1020

aaacctcata ggactcattt gagtaatttc ccatatcctc ctctcaaatg agtccttttc 1080

atctgacaaa aaaaaagagt ctaattttaa attaaaatta gacgatcttt tataaaatcg 1140

gcactttctg cacataggtc acaatttttt tgtttctatc tctctgcttt ctttaatttc 1200

acagtctcca actctccatc aacatcttac ttattttaga atagatgatg tatggtagta 1260

ttaaatggta aagtactaaa gctcctataa tacacagaag cttacatagt atagattcgt 1320

acatgagaca aggttacaat atactttctc cgttcttttt atattacaat aattactatt 1380

ttaagtagtt tcacatctat tgtaacaatt ccaattttgt tatagaaagc aactttaata 1440

attgacaata ttgcccttac tttatcttat taaaaccatc attaattact cactttctct 1500

tataaaattg cttttatttt ctaaggatga tttctctcct attctagtta attaaagagt 1560

tacttttgtg ctaaactgct catttattcc aaatccttaa aaattgtgtc caaacgtatt 1620

gttgtaatat aaaaagaaca gaggtactat tagtttgaat aaattttgat cagattaggt 1680

cacctttagg gggcgtttgg ttaggggtat tctggaaagg gtaagggaat caacttactt 1740

aattccctta cttgttgttt gtttgctcaa tttaatgatt ccctttaccc accccttact 1800

cccaaagtcc tttactctca ttctccccac cccccaaggt ttcacttacc ctttcttgat 1860

tcatcattga ccatatcttt gaccacccaa ctaccaccac cacttgacca cctaatcacc 1920

taaccaccta attacccaac cactattacc acccaacccc tccacctgcc caccaatcgg 1980

caccataact gcccaaccgt 2000

<210> 9

<211> 911

<212> PRT

<213> Beta vulgaris

<220>

<221> PEPTIDE

<222> (1)..(911)

<223> Konsensus Sequenz aus Abbildung 1

<220>

<221> VARIANT

<222> (20)..(20)

<223> N or H

<220>

<221> VARIANT

<222> (27)..(27)

<223> H or R

<220>

<221> VARIANT

<222> (39)..(39)

<223> N or Y

<220>

<221> VARIANT

<222> (41)..(41)

<223> T or Y

<220>

<221> VARIANT

<222> (42)..(42)

<223> N or Y

<220>

<221> VARIANT

<222> (42)..(42)

<223> S or N

<220>

<221> VARIANT

<222> (43)..(43)

<223> Y or S

<220>

<221> VARIANT

<222> (47)..(47)

<223> L or S

<220>

<221> VARIANT

<222> (75)..(75)

<223> D or N

<220>

<221> VARIANT

<222> (76)..(76)

<223> I or F

<220>

<221> VARIANT

<222> (77)..(77)

<223> S or T

<220>

<221> VARIANT

<222> (78)..(78)

<223> Y or M

<220>

<221> VARIANT

<222> (80)..(80)

<223> E or F

<220>

<221> VARIANT

<222> (82)..(82)

<223> T or E

<220>

<221> VARIANT

<222> (99)..(99)

<223> T or S

<220>

<221> VARIANT

<222> (101)..(101)

<223> Q or R

<220>

<221> VARIANT

<222> (102)..(102)

<223> W or S

<220>

<221> VARIANT

<222> (104)..(104)

<223> D or L

<220>

<221> VARIANT

<222> (111)..(111)

<223> T or H

<220>

<221> VARIANT

<222> (121)..(121)

<223> H or Y

<220>

<221> VARIANT

<222> (126)..(126)

<223> Y or Q

<220>

<221> VARIANT

<222> (171)..(171)

<223> D or H

<220>

<221> VARIANT

<222> (174)..(174)

<223> Q or G

<220>

<221> VARIANT

<222> (184)..(184)

<223> S or F

<220>

<221> VARIANT

<222> (208)..(208)

<223> F or S

<220>

<221> VARIANT

<222> (246)..(246)

<223> K or R

<220>

<221> VARIANT

<222> (265)..(265)

<223> Q or E

<220>

<221> VARIANT

<222> (268)..(268)

<223> D or N

<220>

<221> VARIANT

<222> (277)..(277)

<223> G or S

<220>

<221> VARIANT

<222> (280)..(280)

<223> F or S

<220>

<221> VARIANT

<222> (290)..(290)

<223> Y or H

<220>

<221> VARIANT

<222> (318)..(318)

<223> S or N

<220>

<221> VARIANT

<222> (319)..(319)

<223> I or R

<220>

<221> VARIANT

<222> (321)..(321)

<223> N or K

<220>

<221> VARIANT

<222> (376)..(376)

<223> A or L

<220>

<221> VARIANT

<222> (386)..(386)

<223> H or D

<220>

<221> VARIANT

<222> (388)..(388)

<223> G or D

<220>

<221> VARIANT

<222> (389)..(389)

<223> V or A

<220>

<221> VARIANT

<222> (391)..(391)

<223> D or Y

<220>

<221> VARIANT

<222> (397)..(397)

<223> P or S

<220>

<221> VARIANT

<222> (410)..(410)

<223> E or G

<220>

<221> VARIANT

<222> (412)..(412)

<223> N or Y

<220>

<221> VARIANT

<222> (418)..(418)

<223> F or L

<220>

<221> VARIANT

<222> (429)..(429)

<223> L or S

<220>

<221> VARIANT

<222> (440)..(440)

<223> N or K

<220>

<221> VARIANT

<222> (457)..(457)

<223> F or R

<220>

<221> VARIANT

<222> (458)..(458)

<223> N or D

<220>

<221> VARIANT

<222> (478)..(478)

<223> S or I

<220>

<221> VARIANT

<222> (479)..(479)

<223> N or H

<220>

<221> VARIANT

<222> (481)..(481)

<223> Q or R

<220>

<221> VARIANT

<222> (482)..(482)

<223> L or S

<220>

<221> VARIANT

<222> (484)..(484)

<223> M or T

<220>

<221> VARIANT

<222> (486)..(486)

<223> N or Y

<220>

<221> VARIANT

<222> (487)..(487)

<223> Q or N

<220>

<221> VARIANT

<222> (489)..(489)

<223> N or T

<220>

<221> VARIANT

<222> (490)..(490)

<223> F or C

<220>

<221> VARIANT

<222> (493)..(493)

<223> S or R

<220>

<221> VARIANT

<222> (505)..(505)

<223> R or Q

<220>

<221> VARIANT

<222> (506)..(506)

<223> A or T

<220>

<221> VARIANT

<222> (605)..(605)

<223> R or Q

<220>

<221> VARIANT

<222> (607)..(607)

<223> K or E

<220>

<221> VARIANT

<222> (629)..(629)

<223> H or R

<220>

<221> VARIANT

<222> (648)..(648)

<223> S or P

<220>

<221> VARIANT

<222> (651)..(651)

<223> N or S

<220>

<221> VARIANT

<222> (666)..(666)

<223> E or K

<220>

<221> VARIANT

<222> (692)..(692)

<223> D or N

<220>

<221> VARIANT

<222> (697)..(697)

<223> E or G

<220>

<221> VARIANT

<222> (705)..(705)

<223> P or T

<220>

<221> VARIANT

<222> (733)..(733)

<223> H or R

<220>

<221> VARIANT

<222> (733)..(733)

<223> N or S

<220>

<221> VARIANT

<222> (748)..(748)

<223> H or R

<220>

<221> VARIANT

<222> (785)..(785)

<223> I or T

<220>

<221> VARIANT

<222> (811)..(811)

<223> P or S

<220>

<221> VARIANT

<222> (814)..(814)

<223> I or H

<220>

<221> VARIANT

<222> (816)..(816)

<223> N or F

<220>

<221> VARIANT

<222> (819)..(819)

<223> N or D

<220>

<221> VARIANT

<222> (821)..(821)

<223> F or Y

<220>

<221> VARIANT

<222> (822)..(822)

<223> S or T

<220>

<221> VARIANT

<222> (823)..(823)

<223> N or A

<220>

<221> VARIANT

<222> (823)..(823)

<223> N or A

<220>

<221> VARIANT

<222> (830)..(830)

<223> V or L

<220>

<221> VARIANT

<222> (831)..(831)

<223> G or E

<220>

<221> VARIANT

<222> (847)..(847)

<223> S or G

<220>

<221> VARIANT

<222> (854)..(854)

<223> V or D

<400> 9

Met Asn Met Lys Ile Leu Leu Leu Phe Val Phe Leu His His Leu His

1 5 10 15

Tyr Phe Ile Xaa Gly Arg Thr Leu Thr Glu Xaa Gln Ala Leu Leu Ser

20 25 30

Ile Lys Ser Ala Ile Thr Xaa Asp Xaa Xaa Xaa Xaa Leu Ser Xaa Trp

35 40 45

Lys Asn Thr Thr His His Cys Ser Trp Pro Tyr Ile Thr Cys Ser Ser

50 55 60

Ser Ser Ser Ser Ser Ser Val Ile Ser Leu Xaa Xaa Xaa Xaa Leu Xaa

65 70 75 80

Leu Xaa Gly Ile Leu Ser Pro Asp Ile Gly Phe Leu Thr Asn Leu Gln

85 90 95

Asn Leu Xaa Ile Xaa Xaa Asn Xaa Phe Ser Gly Pro Leu Pro Xaa Ser

100 105 110

Leu Ser Leu Leu Thr Gln Leu Arg Xaa Leu Asp Val Ser Xaa Asn Asn

115 120 125

Phe Thr Gly Pro Ile Pro Ser Ser Leu Ser Leu Leu Thr Gln Leu Arg

130 135 140

His Leu Asp Val Ser Phe Asn Ser Phe Thr Gly Pro Ile Pro Ser Ser

145 150 155 160

Leu Ser Leu Leu Thr Gln Leu Arg Tyr Leu Xaa Val Ser Xaa Asn Ser

165 170 175

Phe Thr Gly Pro Ile Pro Ser Xaa Leu Ser Leu Leu Thr Gln Leu Arg

180 185 190

Tyr Leu Asp Val Ser Asp Asn Ser Phe Thr Gly Pro Ile Pro Ser Xaa

195 200 205

Leu Ser Leu Leu Thr Gln Leu Arg Tyr Leu Asp Val Ser Tyr Asn Asn

210 215 220

Leu Asn Gly Thr Leu Pro Leu Ser Val Val Glu Lys Met Ser Glu Leu

225 230 235 240

Xaa Tyr Leu Asn Leu Xaa Tyr Asn Ser Phe Tyr Gly Glu Ile Pro Pro

245 250 255

Glu Phe Gly Lys Leu Lys Lys Leu Xaa Thr Leu Xaa Leu Gly Asn Asn

260 265 270

Xaa Leu Ser Gly Xaa Leu Pro Xaa Glu Leu Gly Ser Leu Lys Ser Leu

275 280 285

Lys Xaa Met Asp Phe Ser Ser Asn Met Leu Phe Gly Glu Ile Pro Gln

290 295 300

Ser Tyr Ser Leu Leu Arg Asn Leu Ile Asp Ile Asp Leu Xaa Xaa Asn

305 310 315 320

Xaa Leu Tyr Gly Ser Ile Pro Asp Tyr Ile Gly Asp Phe Pro Glu Leu

325 330 335

Glu Ser Leu Leu Leu Asp Ser Asn Asn Phe Thr Gly Ser Ile Pro Gln

340 345 350

Lys Leu Gly Thr Asn Gly Lys Leu Gln Tyr Leu Asp Ile Ser Asn Asn

355 360 365

Asn Phe Ser Gly Ser Leu Pro Xaa Ser Leu Cys Lys Gly Asp Lys Leu

370 375 380

Gln Xaa Leu Xaa Xaa Ser Xaa Asn Leu Leu Val Gly Xaa Ile Pro Glu

385 390 395 400

Ser Leu Gly Ser Cys Lys Ser Leu Glu Xaa Val Xaa Met Gly Asn Asn

405 410 415

Phe Xaa Asn Gly Ser Ile Pro Lys Gly Leu Phe Gly Xaa Pro Asn Ile

420 425 430

Ile Asp Val Ser Leu Asn Asp Xaa Leu Leu Ser Gly Gly Leu Asp Glu

435 440 445

Lys Phe Gly Asp Cys Val Asn Leu Xaa Xaa Ile Asp Leu Ser Asn Asn

450 455 460

Lys Leu Ser Gly Lys Leu Pro Ala Thr Ile Gly Asn Cys Xaa Xaa Leu

465 470 475 480

Xaa Xaa Leu Xaa Leu Xaa Xaa Asn Xaa Xaa Thr Gly Xaa Ile Pro Gln

485 490 495

Glu Ile Ser Lys Cys Lys Gln Leu Xaa Xaa Leu Asp Leu Ser Gln Asn

500 505 510

Gln Phe Ser Gly Val Ile Pro Asn Asp Ile Thr Gly Asn Lys Ser Ile

515 520 525

Cys Asn Leu Glu Lys Ile Gln Thr Leu Lys Leu Ser Asn Asn Ala Leu

530 535 540

Thr Gly Glu Ile Pro His Cys Val Gly Asn Ile Glu Leu Ile Ala Leu

545 550 555 560

Phe Leu Gln Ser Asn Lys Leu Asn Gly Thr Ile Pro Ala Asn Phe Ser

565 570 575

Lys Leu Cys Asp Ser Leu Ile Tyr Leu Asp Leu Ser Asp Asn Gln Leu

580 585 590

Glu Gly Val Leu Pro Lys Ser Leu Ser Lys Cys Gln Xaa Leu Xaa Leu

595 600 605

Leu Asn Val Gly Asn Asn Arg Leu Arg Asp Lys Phe Pro Ser Trp Leu

610 615 620

Asp Asn Leu Pro Xaa Leu Gln Val Phe Ser Val Arg Phe Asn Ala Phe

625 630 635 640

Tyr Gly Pro Ile Thr Ser Ser Xaa Lys Val Xaa His Pro Phe Pro Met

645 650 655

Leu Gln Ile Ile Asp Leu Ser Asn Asn Xaa Phe Cys Gly Lys Leu Pro

660 665 670

Arg Arg Tyr Ile Lys Asn Phe Ala Thr Met Arg Asn Met Asn Glu Ser

675 680 685

Gly Val Gly Xaa Pro Gln Tyr Leu Xaa Asp Ser Ser Ile Tyr Ser Ile

690 695 700

Xaa Tyr Ser Met Val Leu Thr Phe Asn Gly Leu Gln Gln Lys Tyr Glu

705 710 715 720

Lys Leu Ile Val Thr Met Ser Thr Phe Asp Ile Ser Xaa Asn Asn Phe

725 730 735

Thr Gly Gln Ile Pro Tyr Val Ile Gly Gly Leu Xaa Ser Leu Arg Asn

740 745 750

Leu Asn Leu Ser His Asn Val Leu Thr Gly Asn Ile Pro Pro Ser Ile

755 760 765

Ala Lys Leu Ser Leu Leu Gln Asp Leu Asp Leu Ser Ser Asn Arg Leu

770 775 780

Xaa Gly Arg Ile Pro Gln Glu Leu Val Ser Leu Thr Phe Leu Gly Ser

785 790 795 800

Phe Asn Val Ser Asn Asn Leu Leu Glu Gly Xaa Ile Pro Xaa Gly Xaa

805 810 815

Asn Phe Xaa Thr Xaa Xaa Xaa Asn Ser Tyr Gln Gly Asn Xaa Xaa Leu

820 825 830

Cys Gly Lys Pro Leu Pro Glu Cys Gly Glu Arg Arg Ala Lys Xaa Thr

835 840 845

Thr Asn Asn Gln Asp Xaa Pro Lys Asn Asp Asn Glu Arg Met Leu Ser

850 855 860

Met Ser Glu Ile Val Val Met Gly Phe Gly Ser Gly Val Leu Val Gly

865 870 875 880

Leu Ala Trp Gly Tyr Tyr Met Phe Ser Val Gly Lys Pro Phe Trp Phe

885 890 895

Ile Lys Met Ala Ser Lys Met Glu Ser Ile Leu Ile Gly Phe Phe

900 905 910

<210> 10

<211> 201

<212> DNA

<213> Beta vulgaris

<400> 10

agagcagatt ggcatacttr tgaatattct cactggctat taaattctca gaagaaaaat 60

caacaccaag attatgacat gcttgtgcaa agacacaccc rgtcatgaat gcatcatagc 120

cagcttcatg cttagcccca gagttccaat ttgaggayct gcaagaaaac atgggagtaa 180

gatggtttca cataaaacat g 201

<210> 11

<211> 201

<212> DNA

<213> Beta vulgaris

<400> 11

gggtttcttc gaagtttgat tttgttacat ttttcaaaga gaaattagtt gttgatgttg 60

aataatgatg ataagtagtt agggttcgta gtaaggtgga sgaragagaa aatggcgtca 120

ctctgayrag cttcttcatt ttgttcttct tccttagctc tgttttcagt cactgcgcca 180

tttttttttt aaaaggaaga t 201

<210> 12

<211> 134

<212> DNA

<213> Beta vulgaris

<400> 12

caagcacaaa atcaaataat gagaatcaca ctatccaaag aaaatttcca tccacattta 60

tccaacacar ttatctctct tttacaccca aattatgtca accaaaaaca staaaacaag 120

tgagtgcagt agct 134

<210> 13

<211> 134

<212> DNA

<213> Beta vulgaris

<400> 13

taagtaaaaa gtggtaaaag aattaccaaa arcgcacara ataaattaat tagytggatw 60

taactawtta acctattcct tttttctgtc gctataacta cttttgctta acttattgat 120

ggtttgatcg ttga 134

<210> 14

<211> 150

<212> DNA

<213> Beta vulgaris

<400> 14

ttataatgta gagtcaaaat taatatcctt aactagtttt taagtccggg ttatatccta 60

gatattwata atattcattt attagtaaca ttttatttta taaatataat actaagcatt 120

atttggtttg ctggttaaga ctttagtgta 150

<210> 15

<211> 201

<212> DNA

<213> Beta vulgaris

<400> 15

acatctacac tgggagactg ataaggacgt ttgcagatgt caagtatggg aatcatcatc 60

taacatgggt ggagattgtg tacaatgtta tttcattcat mgtggcaata attaccattg 120

ttgcgtttac tgtatatgcc aagagagcct tcgaagaact taagagggca gaagctaagg 180

aggatcgaga agaagaaacc t 201

<210> 16

<211> 28

<212> DNA

<213> Artificial Sequence

<220>

<223> genomic target sequence with 5'-flanking PAM (4 bp) 5'crRNA # 1

<400> 16

tttatttcga tttcgattct tggattat 28

<210> 17

<211> 28

<212> DNA

<213> Artificial Sequence

<220>

<223> genomic target sequence with 5'-flanking PAM (4 bp) 5'crRNA # 2

<400> 17

tttcaaccca gtatccttat ccgtcact 28

<210> 18

<211> 28

<212> DNA

<213> Artificial Sequence

<220>

<223> genomic target sequence with 5'-flanking PAM (4 bp) 5'crRNA # 3

<400> 18

tttatttaaa catgatacgt atcatatt 28

<210> 19

<211> 28

<212> DNA

<213> Artificial Sequence

<220>

<223> genomic target sequence with 5'-flanking PAM (4 bp) 5'crRNA # 4

<400> 19

tttaaacatg atacgtatca tattgagt 28

<210> 20

<211> 28

<212> DNA

<213> Artificial Sequence

<220>

<223> genomic target sequence with 5'-flanking PAM (4 bp) 3'crRNA # 1

<400> 20

tttgtgggtg ggtggttttc acgtgtgt 28

<210> 21

<211> 28

<212> DNA

<213> Artificial Sequence

<220>

<223> genomic target sequence with 5'-flanking PAM (4 bp) 3'crRNA # 2

<400> 21

tttcccctcc ctttgccgct gcgaagtt 28

<210> 22

<211> 28

<212> DNA

<213> Artificial Sequence

<220>

<223> genomic target sequence with 5'-flanking PAM (4 bp) 3'crRNA # 3

<400> 22

tttcttcttc ttgcttccac cataacac 28

<210> 23

<211> 28

<212> DNA

<213> Artificial Sequence

<220>

<223> Mutagenesis primer 1

<400> 23

tcagtgcagc cgtcgtctga aaacgaca 28

<210> 24

<211> 28

<212> DNA

<213> Artificial Sequence

<220>

<223> Mutagenesis primer 2

<400> 24

tgtcgttttc agacgacggc tgcactga 28

<210> 25

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> pSeq_CRBM4_F1

<400> 25

agcgcaacgc aattaatgtg 20

<210> 26

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> pSeq_CRBM4_R1

<400> 26

gatgaagctg aggtagtacc 20

<210> 27

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

<223> pSeq_CRBM4_F2

<400> 27

aggaaggtta gcaagctcga g 21

<210> 28

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> pSeq_CRBM4_R2

<400> 28

tctcgtcgac cttctggatg 20

<210> 29

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

<223> pSeq_CRBM4_F3

<400> 29

atgctgagta cgatgacatc c 21

<210> 30

<211> 22

<212> DNA

<213> Artificial Sequence

<220>

<223> pSeq_CRBM4_R3

<400> 30

tagacctgct tctcaacctt ca 22

<210> 31

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> pSeq_CRBM4_F4

<400> 31

accactcact cctcgataag 20

<210> 32

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

<223> pSeq_CRBM4_R4

<400> 32

aacgacaatc tgatcgggta c 21

<210> 33

<211> 28

<212> DNA

<213> Artificial Sequence

<220>

<223> Oligonucleotide fw for the generation of short 24-bp protospacers

(5'crRNA # 1)

<400> 33

agattttcga tttcgattct tggattat 28

<210> 34

<211> 28

<212> DNA

<213> Artificial Sequence

<220>

<223> Oligonucleotide rev for the generation of short 24-bp

protospacers (5'crRNA # 1)

<400> 34

ggccataatc caagaatcga aatcgaaa 28

<210> 35

<211> 28

<212> DNA

<213> Artificial Sequence

<220>

<223> Oligonucleotide fw for the generation of short 24-bp protospacers

(5'crRNA # 2)

<400> 35

agataaccca gtatccttat ccgtcact 28

<210> 36

<211> 28

<212> DNA

<213> Artificial Sequence

<220>

<223> Oligonucleotide rev for the generation of short 24-bp

protospacers (5'crRNA # 2)

<400> 36

ggccagtgac ggataaggat actgggtt 28

<210> 37

<211> 28

<212> DNA

<213> Artificial Sequence

<220>

<223> Oligonucleotide fw for the generation of short 24-bp protospacers

(5'crRNA # 3)

<400> 37

agattttaaa catgatacgt atcatatt 28

<210> 38

<211> 28

<212> DNA

<213> Artificial Sequence

<220>

<223> Oligonucleotide rev for the generation of short 24-bp

protospacers (5'crRNA # 3)

<400> 38

ggccaatatg atacgtatca tgtttaaa 28

<210> 39

<211> 28

<212> DNA

<213> Artificial Sequence

<220>

<223> Oligonucleotide fw for the generation of short 24-bp protospacers

(5'crRNA # 4)

<400> 39

agataacatg atacgtatca tattgagt 28

<210> 40

<211> 28

<212> DNA

<213> Artificial Sequence

<220>

<223> Oligonucleotide rev for the generation of short 24-bp

protospacers (5'crRNA # 4)

<400> 40

ggccactcaa tatgatacgt atcatgtt 28

<210> 41

<211> 28

<212> DNA

<213> Artificial Sequence

<220>

<223> Oligonucleotide fw for the generation of short 24-bp protospacers

(3'crRNA # 1)

<400> 41

agattgggtg ggtggttttc acgtgtgt 28

<210> 42

<211> 28

<212> DNA

<213> Artificial Sequence

<220>

<223> Oligonucleotide rev for the generation of short 24-bp

protospacers (3'crRNA # 1)

<400> 42

ggccacacac gtgaaaacca cccaccca 28

<210> 43

<211> 28

<212> DNA

<213> Artificial Sequence

<220>

<223> Oligonucleotide fw for the generation of short 24-bp protospacers

(3'crRNA # 2)

<400> 43

agatccctcc ctttgccgct gcgaagtt 28

<210> 44

<211> 28

<212> DNA

<213> Artificial Sequence

<220>

<223> Oligonukleotid rev fuer die Generierung kurzer 24-bp Protospacer

(3'crRNA#2)

<400> 44

ggccaacttc gcagcggcaa agggaggg 28

<210> 45

<211> 28

<212> DNA

<213> Artificial Sequence

<220>

<223> Oligonucleotide fw for the generation of short 24-bp protospacers

(3'crRNA # 3)

<400> 45

agatttcttc ttgcttccac cataacac 28

<210> 46

<211> 28

<212> DNA

<213> Artificial Sequence

<220>

<223> Oligonucleotide rev for the generation of short 24-bp

protospacers (3'crRNA # 3)

<400> 46

ggccgtgtta tggtggaagc aagaagaa 28

<210> 47

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer pCRBM4_F1

<400> 47

cacattttat ccaatcaaac tttg 24

<210> 48

<211> 23

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer pCRBM4_R1

<400> 48

ccttcgagaa ataacatggt gaa 23

<210> 49

<211> 25

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer pCRBM4_F2

<400> 49

gtacagtgac ggataaggat actgg 25

<210> 50

<211> 25

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer pCRBM4_R2

<400> 50

ttagtggtca aacataggcc tttgg 25

<210> 51

<211> 23

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer pCRBM4_F3

<400> 51

agtaagaggt tgcctaattg agg 23

<210> 52

<211> 23

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer pCRBM4_R3

<400> 52

ttgccgctgc gaagttccct ctc 23

<210> 53

<211> 42480

<212> DNA

<213> Beta vulgaris

<400> 53

aaatgataca ggggtatatt tgactctatg aatttcagaa atctaatcaa atttgctaag 60

cttccaatga ttctactaag ccctacaaat tacaagaatt agttactttc atctctctgt 120

cggcttcaga accagaagtg tacaatatct tgtcaaacaa actctgctta gaggagctct 180

ttcgatcatc ttttttcgat ttggaagttc ccggtgatag gattgacatt gctgttttct 240

cggtcaattc ttctggatct tggttctgtc catctatctc tggctccatt aatctggtct 300

tccaattaat tccgatagcc tcagcttgct ctgcaaacaa gacctttgag atcggggagc 360

tgcagatatc cttataaact tcataaccag cagcacaggt tttcccacct tccaacaact 420

ttgataaagg atgtaggaga gagatagaat catcactcgt ttctaaccta tccttcaagg 480

caaggaagtt aacagccaag tctgccttac taaactgaac aaatactgca gtttcatcca 540

agttatagat gcaagcaact gagtatatac caaacacttt acagatgcat tgttttatgt 600

cacttgcctt gagttttggg gagaatcccc aaatcaaaac tatgttagga tgcaaaatgt 660

taagaaacct ccttttagct gaactgataa cgggaatttc attcatatca ccagtgctta 720

gattgatcac atctccactg ttccaactaa gatagagcag attggcatac ttgtgaatat 780

tctcactggc tattaaattc tcagaagaaa aatcaacacc aagattatga catgcttgtg 840

caaagacaca cccggtcatg aatgcatcat agccagcttc atgcttagcc ccagagttcc 900

aatttgagga cctgcaagaa aacatgggag taagatggtt tcacataaaa catgtgtaga 960

agtgcagtga acactggcga aaacaatcta attttacgaa ttcattcact cactcagctt 1020

caaattaagt ttccccttta tttagggtgc cccaaaaaga tacactcttc tgtttacctt 1080

ctctctccaa gcgaccaatc ttttctctct tctccaacat cgttttcttt ttctctctct 1140

acccactatc cattttgtcc tcctacattt gataactatt cttaatctcc aagaaaatcc 1200

aatgtgtgaa ataattacgg gacagggagt atacagaagc agcccccttg ccaatatagt 1260

ttacaaatta ccctcagaat taggcttacc tttcccaaag gagcaataaa ttcaaacaaa 1320

tctaaaaggt acaaggcatt aagtgccgaa cctcatgtca tcaacctgga cctccacctt 1380

cacacatgga tgtacaccac cattagagga ttgtccagag gctatctcag ggcacaacag 1440

agaaaatgct gaggccaatg acgtgctggc tttattcaag aatttttgaa ggctcgtgtc 1500

tgcattcaaa agtattttcg tgtcgacaac atgaggaaaa tacttgtgga tctcgagaac 1560

aaactcttca acagttgatg gaagaggacc aaagaattta tggtaaatat gtgccatatc 1620

tgcaaaaaat tataatggat aagatgacaa gaaaagatac taggaaggcc ttcaagtaca 1680

aatattatat catgatgctg gacgaccgat gctcccacaa ttatgtttgt taccaaatgc 1740

ttcgaaggat aattactaaa ttatgtgaat ggtggttacc aagtgtcccg gaccatgcaa 1800

taacttctcc tttcagtgac caacaagaag aagacgtacc taaaaagcaa ttgtgaccta 1860

caattagctt cttttcagca gcgagaaggt caaggacatg ccggaaacct gcagctgctt 1920

ttattttgcg agttgcttgc tggtgagacc catacttcac ctcctcctac aagaacaaac 1980

agaacaatca cacatgcaga aagttcccca cataccaagt tgctgtctgc taaacactga 2040

aactaactta tctctacaaa caatgaagga agttcctcac cagaaggttg atcttatcat 2100

tgtcagattc tacaaaaaca ataagcttct gcaagatggc actgccgtca tgagcacaca 2160

caaaaacaag atccttgaag tgcttccttg taacctgtaa ttgcagatca ttagtatata 2220

ttcaagatgt tataaattta ttgaaaagca gcgtctaaaa caataaaagt catgcttaag 2280

gcatagagcg atagagcata gacacttcag agtttaataa gagcaaatac tccaggagaa 2340

cataaatata tttcatatca caaatcctag taccaactgg caacggctaa ctgccaattt 2400

atgtactgct caaaaaggcc aagcatctaa aagatggctt aaaagtcgga ttttataaga 2460

aagtcgtcac atgattgcta ttacattgac atatcaaagg tcaaatgctg aaatttggtt 2520

cagcttgata tatattaagc atacaaacga tacgttgaca agaaagccta acaagacatg 2580

aagcatcagg cacataacat tcaaaagatt accaattcaa tcaacttcag ctgatgagaa 2640

gtaaatccat tcaatcgaag agcaggacgc atactaaaaa atatggtttc aaattgttgt 2700

ttagattcaa cagcacttgg aagctcggca tttctgttct gtagcaacat atcatgccaa 2760

tcactgagcc gaattttcat ccgttcggag aataaaatat cagctacatt gcccaaaggt 2820

aaatctctaa cttcattaga atatgcccat ttcccgttat atactgaatt caagcgactc 2880

aaagcctcgt cttcctgtcg tctagataaa taagacacgc ctgagattat acaatgtgta 2940

aatttaccac aataatgaca tcatactgac aaaatctcaa acaaatagtt ctaataaagt 3000

catgttatct gaaatttcta tgaataggaa attgaacaaa accttcatgc ttttttccaa 3060

ctaaaattga catcttctac attaccttca tgtatgcatg cattgaagtc aaactggtat 3120

tttgccaaga agtcaatcga agttgtttgg cacaggaatt catatgatgg gccatcagtg 3180

ggaagctctt gacgtggaaa tatataaaaa ttatgcctga caatgaacca ttgtaaaatt 3240

attagatgga gtatctctat ttattgttta cagccaattg agcttttaac aattactata 3300

ggtagtgttt ggaaacttgt atttcatttc aaataatgga attgaaatct ggaatttaaa 3360

gtttgtattt caattcctaa tcactgtttt gtaaaggggg tttgatagaa gagagagaaa 3420

tagaggttta atggaggaga gagaaaaagt gtgggtttac taaaaaaaag agaaataaat 3480

attagaaagt gtgggtttac tcatagagtt gggatatgta tgaggagaga attttcaaat 3540

gccaaggtaa tagcttgaat gacaaattta ataatttcaa attccatgtc atccaaacaa 3600

tagatttcat ccaaatccaa gatttgaaat gaaatcttgc tatccaaaca tatcataaat 3660

taattagtaa tttagacttg ctttctgctg cacttactta tggaaataat tttacttcag 3720

tccttaaata acccgcaatt tacatcaaag gcactaatat aaacacctag ttacgaaatg 3780

gaaatatcag atatacctgt aaaagtaaag aaacaaaaat acaaccctga gcatgaaggt 3840

atccttcaaa agtgcaatat ctgcatactt agaaccggaa ttagaagtgc gaatgcagac 3900

aataaccatc ccaggatcag aaacgtccaa gaaagttgag attcatcatc cattctcttt 3960

agcaaattta tgaactctaa tatataaatc ataccccccc ccccatccaa aagcaattgt 4020

caagctgcct gaacccctca taatttagga tacaacaaag taatcctaaa agacccttta 4080

caatactagt actcgggtat ttccacaatc ttctcatcat tgaatccaaa gcattgcatt 4140

tgaagaaatc aaatcataat ccattactat attagagcaa aatctatgtc attatagtat 4200

tggagagcaa gtatgactat taccccttta cactaggcaa aacacattgt cacaatgcta 4260

acttagtcat taaccaatat caatatggga ctgtggatat tcataaaatc gaagtttttc 4320

gcttgctcat aaactatctt tcattccagc acagtacaag agagaaaaga cagcattttc 4380

atacacttct ttctttagtt caaattcaca cagcagcaaa aaattcactt cttcatagct 4440

ttagctcagc aaacaaagca caaagcatgc aattactctc acacatagca caccaaaaaa 4500

acaaaaacca ctaaaaattc acacaaaaaa aaccaacaaa aattccatcg caatttcaac 4560

aatcaaaaca atcttctaag ttaaaaagag agataaagat gagaagaaaa actaacggat 4620

gagcaacgaa ggaattcttc gaagaatccc atcgaaatgg acaaacacca aattgaacaa 4680

cggcgaattt ctcagcagaa tctttcattt taaggtatcg aacatcgtgc cgatcaaact 4740

cgaacgattc gcgccaaggt gagcttgtaa ttccagtcat ttcgagatca atggcgacaa 4800

aatcggcaga ttttacatgc gtagtgaggt caattagggt ttcttcgaag tttgattttg 4860

ttacattttt caaagagaaa ttagttgttg atgttgaata atgatgataa gtagttaggg 4920

ttcgtagtaa ggtggaggaa agagaaaatg gcgtcactct gacaagcttc ttcattttgt 4980

tcttcttcct tagctctgtt ttcagtcact gcgccatttt tttaaaaaaa aggaagatga 5040

acaaagcaaa tattgaaccc aaattttgta attttggccc actttatatg tacccctccg 5100

tttcaaaata tggagcacgc cgcacacacg acatttaggg tcgaattttg aacattcttc 5160

aagatgatct aatggtataa tctctataat ttatatgtgg catattataa taagagtttt 5220

atgaagtcaa aaagtggatg tcatatattt aatgcatggt aagtttttcc taaatctgta 5280

tactagggta acatacatat gttgacttga agtatatata attcttgtag tataaatatg 5340

gctttggcca taagtagtaa tacacaacaa ctagaaaaat tgaaatcagt ccactgttat 5400

cttgtactct ataattttct gtttcctttt gtttcgcaac aaagacatat ttgtggtgaa 5460

agataatttt cgtaaattga atgacttata ttttgaaata aagagagtat taggtaaggt 5520

tacgtgcttt tcgcttgaat ttgttagacc tcaaatgtat atgtgattag aacggattgg 5580

ctctagtttt tattttatag aagtatatat gcatttttct tagagcacac tcgaaattac 5640

tttcggatag atatattcgg gaaaaaaaga ggttgaaggg aagttcatca ataattatgg 5700

taaaggaaaa aggacatcgt tacaattcta aattctagat aggatgtgat gataatccaa 5760

aagtcatctg aaaaactaaa caagtccaag atgctaatga ttcgagtaga gattgaatga 5820

gtgaccctaa ggattgtcaa ccctcttatt ctaacgtgtg taaaagaatt gacaactcta 5880

agagttactc aaacattttt cgattcgagt ggttaatata ccaatttgaa actattgaca 5940

ggagttattt taatgagtat aatggtcaat ggagcactga attccatctc acatagtcac 6000

atatttcatc tcaagttctg atgatttcaa acattgaaaa aagatgatac aagcaattaa 6060

ttcctaggga aacatattgt ggttttcatg gatacaagag tgagaataaa tcaaaactta 6120

ggctctaaca tttcttttct ctactagtaa ttgctaatta tatcaattca attgtcagtg 6180

taatcagtta atcaccaaat ctcttgtata gtcagtaaac tatacactgt ttagtcctct 6240

ggattttgcc cggtcgaatt atgcagcata accaaacttt gaagtttagt acttcctttg 6300

cacccaagtt agcttcacgg cccctgcctt ctggtggatg gtcaccctat gctttgagca 6360

ttctctgcaa tgcgcacgat attcaatgag aacgtcgcct tgaaaatcta aattgcaact 6420

aaaaattaga ttgaaatgaa acccacaaga gttgtttttc tgagtagttg gtgtagaatt 6480

cacaagtctt gctccattgt ttgaagatat gaagacaata atgtgctatg taaagtgcag 6540

ccgctagcta acagtggaag tggaaacttg atcattttac actcgcacaa gcgaaagctc 6600

ggctgacgtt gcaaactgaa gaaaaacctc tcaaaccaat tcgacttttg ctcaaagttg 6660

caaactaaag aaaaaggctg aatgcaaagc aagttcacca atgaacaata gatcggtgtt 6720

ggcctgaggc cacatcaagt gaagttgcct aattgcggcc ctctcatctg ttcacaggaa 6780

tcattttcca tatagaatca ctccaaaata aaagagcaaa gctgcaccag atgcagaagc 6840

ataactttca agacaactga tgacagataa atagcaaaag aatgcttaag aaatgatcaa 6900

aattgaatgg ctctggaatt acctcatcag ctgattttcc tttctctcta tctctctatc 6960

tctttactcg tctatggagc taccacatca catggcgttt catatgcttt ctgccgtcga 7020

actagacgtg cagcaaaagc tccatccatt gaatgcttca ctgggcatga gcgataaaac 7080

ccatcttcag ttaaaaagtc agatggaaca tatctgctta cagaatctct ttggaagtcc 7140

tatcacccaa caaagaatat attaaaatag agaaggagaa aagaacgtat ctatctgtca 7200

gcatccatat gaggtggaaa ctaggagtac tatataaagc cagtgcagta gctcctaccg 7260

gatgtctaag aaggaaggca gaaaccctat cttcgttttc ttcaagatca atggagcagg 7320

tactgtacac aagcacgcca tctggtttga ccagcctgta gatgttaaac aatcccacag 7380

acaaaaggga ataatatgag tgaaacaagt caacaggggg aaataaccaa taattctagg 7440

actgtcaaac tcaagctctt caaaaacaaa gatagctctt aatctcactt gcaagcagca 7500

tcgaacagct cgtcctgcaa cttctttagc tcttccatat cctctgactt tctattccaa 7560

cgcaaatccg gcctcttcag caaaaatata aagttggaac aaggctctta gatacaagaa 7620

ctgaaaaacc ttcgacatat aatggactct atcaagggca caatgacaaa ttctaaacat 7680

gagcatgtat atcaataaaa tactaagaac cctttcaatg gtactgctag aaggtttatt 7740

gctacacttt ttagtacacc atctataggt tttatagtac catcaaaatg gttcatggtg 7800

ccataagaaa attttatgta tttatggtac tatctaccat atctaatttt ctctgtaaaa 7860

atgtatttgt agatagagac cacgagttcc tcttttagat actgactttt ttttttctac 7920

atgatggcca acagacttct caaacaaaaa gaaaaagaaa atatttagat aatatgagca 7980

acaaaatagc aaccacctac ttttgatagt acacccaggc ccgaacaagg aacatctaaa 8040

agaactttat caaacttcga agtgttgctg tcctgaaaag aatagaaagt aactgcttca 8100

acaaagaaga agaggcagaa agcaaagcta gtacgcattt tgcaatgact tactgaaaag 8160

gagcgaagat cagcatggat gcaagtgatc acattatcaa cacgctgcag cttggctgtt 8220

tcttcaagta tccgtaaccg acctttattt atgtccattg ctgatatcat acctgaaaag 8280

ctacacattt agaatgcaga accagcatca ttggtagtta agttatcact ataccttggc 8340

cattcaagcg agatgccatg aagagtgtct tccctccagg agcagcacag caatcaatga 8400

tgtgatcacc aggctgtgga tccagaacag aaacagctag acctgcagcg aagtatagat 8460

gtaaacttgg gttgggctgt cacatttttt cacatcttat cttcctttct attctttcaa 8520

aactgaggag aaatggttgg gatttctata aacgtgagaa aaatggcatc agattagatg 8580

gttttactgc atgaaaaaaa ttgaatgtgt ttcggcatca cattactaca aggtcaaaag 8640

cactatcttt gaaaatgtag gacataatgg gacagagatg tgctgacctg cactctcatc 8700

ctggactgag cataaacctt cttttagaag tccagtttgt atcacaatct aggatatgag 8760

aaaacaactc aagatgtaat tgctcctaag atatcaatca tttcataata aacataaaag 8820

ttattattac aagacagcac ctgcatccca cttctgatgc agacaaagtc atccaaatgc 8880

aaggaaggct catgcgggac ctgcggacaa agtgttgtga tgcgcataga tatcgaaaga 8940

aggccctgta tagcactaat gagataagat tcagtaacct tcagcatgtt gagcttcaca 9000

acaaggtcat ctcgagttaa tccttttgca atattggccc tagtaccaag aaaaccatat 9060

gtattaacaa gagaaaagtg gcatagggat ctttatgact taggtaagca gttggcaatt 9120

agagagaata aaacccccaa acctcaagct gaaactcgga acactattgt tccacatcat 9180

caatttgata gctccttctt gcccaagata cttggtccac cgtcttacca tccactgaaa 9240

ggaaggtatt aaaagggaga aaagactcgt cagcatagaa aattgtacat cttaaatttt 9300

agaagtatag caccatcttc aggcatcagt caacgtaaat aaataccaca tctacaaata 9360

gaaccatact ttctggacag tcgggatcat gagcacagac aatactgcat gattattgcc 9420

tcgtattctc atgtatacaa gtatatgtaa cattaaatag cagtatttct tgagaaactc 9480

accacgggat gggaataagt tgtagcaagg gcacgtgctt gtgaacgatc atcaccctcc 9540

aatttgggta caggaaggga gtcattatcc tataaagaga aacagctttt gttttcaacc 9600

atatcaagac aaacagttta ttaaactata aacaacaaca atacacatgc acacacctac 9660

tgggaacaag atatatacta ctgataagta ttttctgatt gaagaaaaaa aatctcattt 9720

atttgcaaat atagatttaa tgacaagaaa gctttgaacc ttaaggaaaa ctagctttcg 9780

gaggatccca ttcaccatgt ttcctgcgcc tggtctaaga gcatacttgg caagattcac 9840

attctgcaat ataatccaac agtaagaaca cgacatggat ttagactcaa gtctctgaac 9900

ctatagaaca agtaaaatta gatcttatct catttgacaa tttaaaatta gatagtgcaa 9960

tattctgcag ttataagact tcatgtgtgc atactgcaca agtcatctta aaggtgttat 10020

taaagcttta attgccattt gacatcccct tgctcaactt tagcatgttt ttaggctaca 10080

acaatacgca ctgtctacat ggacatacaa attacaagcg tatggaaaag caataagcgc 10140

aaggaagtct tcagccagaa actctctatg agtccaacaa tatgcaacta aatatccaag 10200

taccgtgaat gagtaagaac taacctcgtc aacaacagca tatggtggca tttccagttt 10260

cacaatctca tagcatccaa tcctgaggat ctaaaattaa agataaatca atacacaaca 10320

tatgatatgg gtcggagcgt atataacaag tatagcaact acatttgaac agataacagc 10380

ctttgagaca ataaggaact ccgacattcc agtatatgcc agatttcata tctttagctc 10440

taaattgcca cgcaaaatgt tattgggcaa tatacctgta gcaggagagg ttccatgttc 10500

ctaaaggagc tttcatcatg gcatgaagaa acaataagat aatccagata ttttctccaa 10560

cgaattgaac caccaacaat gtcagtgacc tacaaagaca agttgtcaac ttaaaacttt 10620

tgaagcgtca tttcacttct gtagaccaat acaaaagcta ctactgcttt acatcataaa 10680

acctttagtc cttaggttca tctgattggc aaaaaaggtc cagatgcaag aaaagcaagt 10740

agctgtaatg ctgtattata tcagcattat tcagaacaga ataataaata tctacagatt 10800

ttgggtggaa gcttgatgat agagtatctc cacaaagaga actcgcttga gtcccaactc 10860

ccaaatctac ttttttggag tcacattatc agtcattttt tctggactct tataggaata 10920

gtgtgctatg taatgattta tggagcaggg gcatttcatg aatagcttta taagttagta 10980

tgggtgtctt ggggaataag ttaaagggtt agttagaggg aagaagtaca acatatatat 11040

agagcttttg taagaagggt ggttatgttg aaaatagatg agaaattggg tgagctcata 11100

gtagttcaat ttggactttg ggagagaatt aagcctcttg aaagcttgaa tatcatttac 11160

atttgttgtt tttactctta ttaatcaacc aaagttcatt ttcttccttt aatttctcca 11220

ttttagcact atgatttgtc caagctaagt gatttcttag catagtgcac agtgtagtat 11280

atcggagaac tcatttgagt cctgaaaggt cccacaagtt acatttttcc tactactact 11340

tgcaccaaaa caataagcat cattaagaca ttgtcactgg tccttcttag gttcttttgg 11400

aggggattcc tcagatgggg gaggcaccca tgaaggaaca tgttaccaag caatgggaca 11460

atgcaaaatg caccaataca gtagcttcac ttcattgatt gcatctatgt cacggaaaac 11520

tgaagaaaga agcaacacct caactttatc caggacagat atccactaac ctaggatgca 11580

agcttgagac tatttagcaa ttgcctctgg gatattaaat cagattacga ctatatttct 11640

acagttattg cttaagaaaa aggtacgatt tgaagcttgg gaagaaagag aacaagagta 11700

aaagaccaat ctgagatctc tttcatccag gtctctggtg cgaaatccaa gagtcctctc 11760

aacatattcc atctcattgt tccctgaacc ctttcctctc tcatttagaa gatcagcgaa 11820

ggcaccacca aactctatcc gcatcaatct cacagcagcc actggattta cacatgaaag 11880

caaaccagga gaaccataaa aatcacaaca aacttcctga tagcctactc actagcatca 11940

accattgtgt tcagcctaaa atgagcggct gttttcaatt gaacagcaac ttacatggac 12000

cactgcataa aagtgatttc ttaatccaga caaacaaaaa tgtttacttc aaccaactga 12060

atttgcatca gctcattagt gatttgacaa gttctaattt atgtatcaac aaacaagacc 12120

atatagctag gaaacaagag gcttaggcta agcttaatgc gtgaacaatg ttagatttca 12180

acctatcagc actgtggata actgcaaact gcgacttaaa taaggaagat aaaggaactg 12240

aatatgcaat ttcaaggtgc tcagcatttg aatcaacagt tacttcagat aattcagaac 12300

ataaaagatt tgaacattct aaggctacct catgattgca agcaatgtta cctgattcgc 12360

taaccctcac aagccacaag ccaaagaagc aatttggtaa atggttcatg gtacaactgt 12420

tcgcttttgg actaatctaa caatactagg tggtaaatta tgttcccata tctattacca 12480

taatgtacag caaattaggc agcactaatt ccaaatgacc caacaaaaaa agaggaagaa 12540

aatccaaaaa ttcaagccaa catatgcact aaaattacaa gcacaaaatc aaataatgag 12600

aatcacacta tccaaagaaa atttccatcc acatttatcc aacacaatta tctctctttt 12660

acacccaaat tatgtcaacc aaaaacacta aaacaagtga gtgcagtagc ttcacatcaa 12720

agaatatcaa tcacaaacac cacataataa aatttcaact cctgcccaaa caaaaaaaat 12780

ataaagaaaa aaaaacagca aaatttcaaa gataaaatag aaaaaaaaaa atcaaaatac 12840

agggggaaaa aaagtaaatt taccagctct atgaggcgaa acctgcaaat tcagcttctg 12900

ggttttctct gaaatatcaa gcacaataac cagcaattaa aaaaaattat aaataaaatt 12960

aaaaagaaaa gattgataat taaaatcaaa agagagcaat ttaaagcaca atcctttttt 13020

taccattttt tctgggagga agagcatcct tcgttttggg tttagacgaa aaaaatgaga 13080

gttgttgtat ttgtgcgcat gagtgatcat tgctggaaat gaaagtggga aagtggtaaa 13140

tgagtgcttt gtgaaattgg gttttgagga aaagtagaaa gaagaagaag ggtcgatgtc 13200

agagaagaga gagagtggat ggaaagtagt gatgattgcc tccattgttg ccggtgaagt 13260

gagctttctg caaatatttc actggactag ttttttttag cagataacgc taaaacagag 13320

aaagatgttc ggttaatttt aatttttgga catttaaatg actattcaat atgtttcaac 13380

cttttttttt taaaacaaag gaacaatact agtattagat tacgttaatg tttagtacat 13440

ccaatactta tgtgtgtttg acctaactta aaatcgtaag ttgtttaaaa tgtcggtgtc 13500

ttgtttttaa gagatatcat acttactatc tttggttttt actcttccat tgttaacaga 13560

aactgtattt atttgggtaa ggggtttgag tgaattcctg taagtatgag aaagttttga 13620

gtgaagcaag agaaagagag aagaaaggaa cttcgagtga agattgagag aaacaacagt 13680

tagtgggaac tgttgttggg aacttgagtt taggagctca ggttgtaccc cgagagaatt 13740

aataggtttg taacagagtc ggtggcctat tatagtggaa agtttgagtc aaaatccatt 13800

gtggccgatg tcgtttcttc ttattgggcc taggaagttt ttcctcgcta aaatttcctg 13860

tgttcccatt gtgtgttcct tagctagctt tcaattccgc aaaaagttac gtttattctc 13920

tcactataat tcacccccct cttatagtgc tcatattata caacaattga tatcaaagca 13980

ggaactctaa aaatacagaa atcatgttga gttcaagatc ttggaaaata tgaatactac 14040

agaaaaactg gaagaaaggt actctactca gagaccaccg atgttcaatg gcaaattcta 14100

cacaaactgg aagaactgaa tgaagatctt catcaaagcc gacaaatatc aggtttgtag 14160

aatcatagag gcaggcgatt ttgaagtcac taccactaat gacacatatg aggtaattcc 14220

taaattcata actcatttcg ataaagtata tttcgaaaag ttggaaatta acgttcttgc 14280

tattaaactg cttcattgtg gtcttagacc tcatgaacac aatcatgtca tgggatgcaa 14340

aatcgcaaaa caaatttggg atcttcttga agtcactcat gaaggtacgg gtaaagttaa 14400

gagatcaaaa atcgatcttt taatgaatca atatgaactt tttcaaatga aatataagga 14460

gtccactcaa gagatgttta cacgctttac taatactatt aatgagctaa cctctcttgg 14520

aaaagaaatt acatatgatg aacaggtaag aaaggtccca aggatcgttg gatggctaag 14580

gttacgcctt acaaaaaact aaggacttta cgaagttcaa tccggaacaa cttactggct 14640

cccttatgac tcacgagcta cacttggaca ctgagaatgg tgacttgtcc aaacagaagt 14700

cgattgcctt gaaagccatt tttgtcatac cgtcaattaa ttaagtaaaa agtggtaaaa 14760

gaattaccaa aaacgcacaa aataaattaa ttagttggat ataactaatt aacctattcc 14820

ttttttctgt cgctataact acttttgctt aacttattga tggtttgatc gttgaatcca 14880

agttttctcc acccacaaag atattataga ctttacttta aaaggtacga taaataatgt 14940

ttaatcaggt atgcatcaac cttgaaatta ttaatttatt aagatcaaat tatgcatatt 15000

tatattaaac gtacaggact tgtgcacaat ccatggatga tattgtagat tttgttgtaa 15060

aggagttagg gacaaatgat gttgaattaa gaatgatgag gaacaacatt gaggtaccta 15120

atggcataca agattatgtg gtaacaaagg tgaagaagtt ggttgtacca ggcaatacag 15180

cagcggcaag ccatatatag gatgagctac cataccctta tgttgtgaac tattgtcacc 15240

accaacaaga cattggtcat tacgacatca ctttagttga ggaatgataa acctcttttt 15300

gctagatatt tgcaaacatc tagcagataa agaggaataa aacactattt atatttcatg 15360

aacactattt gttagttgca tgaacactat ttttagttac acgaacacta gttttagtag 15420

catcatgaac actatttttt agcatcggaa ttttcacgac tactttttgg tttgactgac 15480

actctgcaat tttcgagata actttttggt gatatgggtc ccatgaaata gaagatttat 15540

atttcatgaa cactatttgt tagttgcatg aacaatattt ttagttacac gaacactagt 15600

tttagtagca tgaacactat tttttagcat cggaatcttt gcgactactt tttggtttga 15660

ctgacacttt gcaattttcg agataacttt tttgtttgac tgacaactat ttcctatata 15720

tattgacagt tttacccctg ttagatgttt gcaaacatct agcaaaaaga ggtttatcat 15780

tcctccactt tagttagccc aacctccagt aacgccatcc agaccactgt cgtttgtcac 15840

tacgacactt acgcttggca accctatgtc ctagcccttc gatacctcga tatccgtccg 15900

ggcaatgtcc ccagtttgtc acttctctgc cattaatgac atattttgga gtatcaaacc 15960

caactccaag tatatatcgc aacatggctc agtaaagaga gtcatataat catgacgtag 16020

tttctatatg ccatcctacg tagtatcttg taacatgaat aacagcctgg tttgcaggtt 16080

gatggtacat ggtataaatt ggtattactc cctccggtct ttattagttt aatcctttct 16140

tttgtacaga gttataggag aaataatatt gtgggtcata gaaggaaaga gaaattatta 16200

ttttatgtta aagttgaatg tatgtgtgat gaaaagttag tagtcccatt tcaaaataga 16260

aaaaaaaaag gtaaactaat aagggacatc ccaaaaagga atacgggtaa actaataaat 16320

atccatgcag gttgttggta catggtacat gaagccgtcc aaaaccttca aaagcagtaa 16380

gtcctgctgc tatgccatat tcaaatattc aactccaaaa aaaaaaaaaa aaaaaatcaa 16440

aaatccgctt ttcagcgaaa atataggaaa taatccaaga atcgaaatcg aaataaagtc 16500

atgatgcaag tttggagagc tgaagttaca ctatatcgga gtacttactc aaatgttgat 16560

tagtactccg tgcgtttgaa gtaaagtcac atatggagta gttccaagct aggttgtaca 16620

gtgacggata aggatactgg gttgaaaagg tgaacgtcga gatttatacg tgtatttatt 16680

taaacaggat acgtatcata ttgggttctc atacgcgtac cagctgtgac ttagaaaaat 16740

taaccacgct atataggttc caagccctca tgattacctt ttcatagtgt aaatttcatg 16800

tagttgaatg gtgggaatcc aatcacaaaa acactgcagg taatggaaat gttccaactt 16860

tttccaagca ttttaaaata agacatgtga ttactaatta gggcgtgttc ggcaacagta 16920

attgtggtga tagtttttag ctgtgagagt agttgttagc tgtgctatta gcttttagtg 16980

gttggtgtgt agctgttagc tgttagatgt ccaagtagcg gtgtaaaata ttgatgttcg 17040

gtaaaagaag ctgtcaaagt agctgtctaa gaataactag ttaaaaattc aaataaaact 17100

ttaacatata atttatacac cactaaaagc tacccaaaag ctacaaattg tagcttttga 17160

caaacactac taaaacacta cttgtaccac taaaagctac ttacaccact atcttgccaa 17220

acactcttat tttttctaat tagtgttttg acctagtcaa gacactaaaa gctacttaaa 17280

aagcttgtgc cgaacatgcc aattctgaac caaggaacaa actataacaa aaaagtgcta 17340

tgtgaaactt ttgtaggcaa cagaagtaag gcatttttgg aatgtactaa caaatccgta 17400

ttaagacttg tacatgaaaa ttaccgtggt aacatttacc cacacttcct cattcacgta 17460

ctccgattca ttcttataag ggcataaccg cataaggcac atcaagatcc atgtatctaa 17520

tagtttaatt tgcctctgtg tttctgtatt aacaatgagc atagtgagtg caaaagccat 17580

ggaagctaga ttaaaaaggc catcattcta agttagacaa ttggaaacaa catcgagata 17640

cacgtacaca taagggctgc tcttctctat tactccctct gttcctaatc atttgctttt 17700

ttagcgggtt ccaaaggcct atgtttgacc actaatatat ttaaattaaa actggtgata 17760

tatattaaaa gaaaattatg atgaatttaa caaaaaccat atatgttatg tccttttttt 17820

tcctatatta atgaattttt acagtcaaag ttggtgaact ttgacccaaa aaaagaaatg 17880

gagcaaaaaa aaaaaaaaaa aaaaaaaact agggacaatg agtaacattt ttatctatgt 17940

ctttttaata tgaatatacg taacaaattc tgcaaaaata gagatagcaa ctaataacac 18000

gcatgaaaat gacaagttat attatacctt tttttctcaa tatatgaata tacgtaacaa 18060

attaactcca gtagttttta gtaaaactat tagattattg tgtaacatat actctggaaa 18120

tagtactaag atccattaca atctttattg agaaatttcc tcatgtaccc cctgaggttt 18180

ggcgtaattt ccaaataccc ctcatatttg aggaatttct caaataccct gatgtttttg 18240

tttagactca aaataccttt actatggaca gtaccctaat gtcattaagt tttccccttc 18300

tctctcccca attttctctc tcctcccatt cccccaccca ctacccactg cccactgcca 18360

agtaggggtg taagtggatt ggactggatt ggactttgcc aaattcaaat ccagtccaaa 18420

gttttttgga ctcgagaaat tgagtccaag tccgatccaa atattttttg agtccagtcc 18480

aatctagtcc gataattttt tcttgagtcc gaatccagtc cagtccagtc cgattattat 18540

atcttttttc ccgatttagg ttcaatgatt cacaacattt tttgagatgc ttgagcattt 18600

gacatctgat tcaattatca atatccacaa ataagattga aagcttaaat taaagtaaaa 18660

tactatgaat aaaaagttga attagatgct taccttgatc taagttgaga ggaagcatag 18720

agactgagaa ttaatctgag ggacaaatag agaatgcgag agtcgagaca gtgaggtaga 18780

aagaaaatga agagtaagag gaagtgagta ttaaggactg aggagtaaag taagatagaa 18840

ttagttggct actagcctac taatgcagta ttgctagtat aatttactta tttaacaaat 18900

ggagctaagt gcaatagttt agcgccaatt gacatattta gagagagaag gctgaaaaat 18960

ccaatatttt taaaatagta tcattatttt taatatatac attatatata aaaatatttt 19020

tggactggac tggacatatt ggactccaaa gggatgagtc caaatccaga caaaaaatat 19080

ttggacttga aaatttaagt ccgagtccag tccgaaaaat tttcagtcca atccagtccg 19140

acaaatttgg actggactgg attggactct gaacttttcg tagtccgctt acacccctac 19200

tgccaagtgc caaactgcca accccctttt ggttgagttg atatttgacg caaagacttg 19260

gcgtgttgga aggttcatta cacattttat ccaagtcaac tttgaagtct tcttagctag 19320

agactagagt gaacgtgttg gaaggttcat tacacatttt atccaatcaa actttgaagt 19380

cttcttagct agagactaga gtgaacgtgt tggaaggttc atgttcatga cattataaaa 19440

gtaataatag tgaaatttca caaagtattt ataaacccag gacagactca agagctctac 19500

ttattattag tgaaaaacaa acatacacac gacaataaca caacataaac aataatgaac 19560

atgaaaatcc tccttttgtt tgtcttcctt catcacctcc actacttcat ccatggcaga 19620

acacttacag aacgccaagc tttactaagt atcaaatctg ccattactta tgattattat 19680

aactctctct cctcatggaa aaacacaaca caccactgca gttggccata catcacttgc 19740

tcctcctctt cttcttcttc ttctgttatt tctctcaact tcaccatgtt atttctcgaa 19800

ggaattctct cccctgatat aggcttcctc accaacctgc aaaacctctc tattcgatct 19860

aacctttttt ctggcccact cccccattct ctctctctcc tcacccaact ccgctatctc 19920

gacgtttccc aaaacagttt cacaggtcca atcccatctt ctctctctct cctcacccaa 19980

ctccgctatc tccacgtttc cggcaacagt ttcacaggtc caatcccatc ttttctctct 20040

ctcctcaccc aactccgcta tctcgacgtt tccgacaaca gtttcacagg tccaatccca 20100

tcttctctct ctctcctcac ccaactccgc tatctcgacg tttcctacaa caatctaaat 20160

ggcactcttc ccttatcggt cgttgagaag atgtcggagc tcagctacct taaccttagg 20220

tataactctt tctacggtga gattccaccg gagtttggga aacttaagaa gcttgaaaca 20280

ttgaatcttg gtaacaacac tctttctggg agtcttccat ctgagttggg ttcattaaag 20340

agtttgaaac atatggactt ttctagtaat atgctatttg gtgagatccc acaatcttat 20400

tctcttcttc gaaacttaat cgatattgat cttaatagaa acaagttata tgggagtata 20460

cctgattata ttggagattt tccggagttg gaatcacttt tattagactc gaataacttc 20520

acagggagta tcccacaaaa gttaggtaca aacgggaagt tgcaatatct agatataagt 20580

aacaacaatt ttagtggtag tttgccacta agtctttgca aaggagacaa actccaagat 20640

ctggacgcat cctataattt gttggttggg tcaattcctg agagtttggg aagttgcaag 20700

tcacttgaag gagtgtacat gggaaataat ttcttaaacg ggtcgattcc taagggcttg 20760

tttgggagtg atgtttcact taatgacaaa cttcttagtg gaggtctcga tgagaaattc 20820

ggtgattgcg ttaatcttcg ggacattgat ctctctaata ataagctatc agggaagtta 20880

cctgcgacca tcggaaactg tattcatctt cggtccttga cgctttataa taacacctgt 20940

accggacgta tccctcaaga gattagcaag tgtaagcagc tacagaccct cgatctcagc 21000

caaaatcagt tctctggtgt gatacccaat gatattacag gtaagaaagt atattaaact 21060

tgttactttt gaaaatattc gctctagttt ttgtttcagt tggtccattc tcactttgta 21120

ttattgaaat atatcccaaa aaagtaaata taattatata aaagaatctt gctaaaaata 21180

atatgaatta tttttgtatg tgcaaaataa tgtacaaatc taactaattt gttgtggata 21240

ataatattaa ttgtgtgaaa tagtaaatgt gtggagatat ataactttat ttatcatatt 21300

cactcaggtt tttaggtatt tattatgagt tttgcattgg agatatccaa cttgacaata 21360

gtatttttgt aatataccaa tatataaaga ttactgtaca taaccaaaat gtatactttt 21420

cttattttta taaacttata tattcctctt ctttgtattt atcacaacat tttttatacc 21480

cttttgcctc atattaatag caacacttat aatttattta tttacttttt atttcttggt 21540

ctataacctc atctacccac atatgacaca ccctataaag gacccacatg attaaccaaa 21600

atatacaaat atcttcaatg aaattaactt taacactaat atgataaaaa tcatgtcccg 21660

ctttttatcc tctaactaag actctgcata aaggtatatt gcaattaata tgagatggaa 21720

gaggtataat aattatatga tcaaattcct ggattgaaaa ataaatatga gattaaaagt 21780

ggtatgtttt tggttaaaag aaactatcca taaagtatgt ttttggttaa aagaaactat 21840

gcaacatacc aatcaaatgt ttatacgctt acaatttatg taccactttt ttgtcattgt 21900

ttttctattg tttgccatac gtacgttact aaatcatgtt gtcttttcac attttaacta 21960

acaataaatt actattgata caccaaaaaa atctatgagc attggagtac gttgtttgat 22020

agaagcttcg tgctattatt tcttgtcaaa gaatttcata tctcaatatc ttctaattta 22080

acaatctaac gaaatttttt tgacccagga aacaaatcca tttgcaatct ggaaaagata 22140

caaacactta aattatcaaa caatgctttg actggtgaaa tccctcattg tgttggaaat 22200

atcgagctca tagcattatt tctccaatca aacaaactga acggtaccat acccgcaaac 22260

ttctcaaagt tatgtgattc attgatatat ctagatctta gtgacaatca actcgaagga 22320

gttctaccta agtccttgtc caaatgtcaa agtctagaac tcctaaatgt cgggaacaat 22380

aggctaagag ataaatttcc ttcatggtta gacaacctcc cacgtctcca agttttcagt 22440

gtgcgtttta acgccttcta cggtcctata actagctcac caaaagttag tcacccattt 22500

cctatgctac aaattatcga cctatctaac aataagtttt gtggcaagtt gccaagaaga 22560

tatatcaaaa actttgcaac catgcgcaat atgaatgagt ctggtgttgg gaatccacag 22620

tacctggggg actcatcaat atatagtatt acgtactcta tggtattgac attcaatggg 22680

ttacaacaaa aatatgaaaa gcttattgtg acgatgtcga cctttgatat atccagcaac 22740

aactttactg gacagattcc atatgttata gggggattac gctcacttcg taaccttaat 22800

ctctctcata atgtcttaac cgggaacatt cctccatcaa ttgcaaaatt gtctttgctt 22860

caagatttgg acctttcatc aaacagactt actggtcgta tccctcaaga attagttagt 22920

ttaacatttc ttgggagttt caatgtttcg aacaatctat tggaggggtc tatacctcat 22980

ggtttcaact tcgacacgta cacagctaat tcataccagg ggaatctcga attatgtgga 23040

aaaccattac ctgagtgtgg agaaagaagg gcaaaaggca ccactaataa tcaagatgat 23100

cctaaaaatg ataatgaacg aatgttgtcg atgtccgaaa tcgtagttat ggggtttggc 23160

agtggtgtac tagttgggtt ggcttgggga tactatatgt tttcagtggg aaagcccttt 23220

tggtttatca agatggctag caaaatggaa tcaatattga ttggtttttt ctgaccaaca 23280

atttgttagc cgatgaagag catcaaaacc aaaaaaaaca aaaaaaattg attaatatgc 23340

atgagtgtga ccttgttttc caaagtttag cattactatt agtgtctcaa ttcataataa 23400

taaaaaaatt agcttgttca agatttgtat ttttattcaa agattttttt tgtctcttgt 23460

gcttctttta tcttatatat attttttgta tggtttgttt ttgtttaata ttagtccctc 23520

cgctcaaaat gatctttcac gcttgagatt ggcattaagg tcaagagatg ttgctaagct 23580

ttagaataaa aaaattccaa atgcatagag ggaaagaaag cgagacaaaa tgttggagaa 23640

ggcagagtaa atgatgtgat ggaggataaa tagtagaagt gtgataccga aagtttgaaa 23700

ataataagga attttatttc ttgctggcac tttgttctag tacaggtttt tagcccttca 23760

aaatgtttat aatgtagagt caaaattaat atccttaact agtttttaag tccgggttat 23820

atcctagata ttaataatat tcatttatta gtaacatttt attttataaa tataatacta 23880

agcattattt ggtttgctgg ttaagacttt agtgtatatc tatttctttt tttttttatt 23940

gtatgcgtgt ttacataaac taaagactat aagggatagt accacgtggc gcagttcctt 24000

gcttaggaac gtcttttaat atattaacta gtatttgggc ccgggcgttg ctccgggttg 24060

gtattgtgtt tccgaacatg atgtgcagtt tttcccattc ccactaaaat atataaagga 24120

aaactcaaca tttaaaagat acaaatataa taatatggac acttaaaaca tgattaaaag 24180

ttgattgaga tggtaattgt gtcatgttat aatagtaaga ggttgcctaa ttgaggttga 24240

ggtggtggag tagtggtatc gcttcccatc tgttatccct gaggtataag gatcaaacct 24300

cataggactc atttgagtaa tttcccatat cctcctctca aatgagtcct tttcatctga 24360

caaaaaaaaa gagtctaatt ttaaattaaa attagacgat cttttataaa atcggcactt 24420

tctgcacata ggtcacaatt tttttgtttc tatctctctg ctttctttaa tttcacagtc 24480

tccaactctc catcaacatc ttacttattt tagaatagat gatgtatggt agtattaaat 24540

ggtaaagtac taaagctcct ataatacaca gaagcttaca tagtatagat tcgtacatga 24600

gacaaggtta caatatactt tctccgttct ttttatatta caataattac tattttaagt 24660

agtttcacat ctattgtaac aattccaatt ttgttataga aagcaacttt aataattgac 24720

aatattgccc ttactttatc ttattaaaac catcattaat tactcacttt ctcttataaa 24780

attgctttta ttttctaagg atgatttctc tcctattcta gttaattaaa gagttacttt 24840

tgtgctaaac tgctcattta ttccaaatcc ttaaaaattg tgtccaaacg tattgttgta 24900

atataaaaag aacagaggta ctattagttt gaataaattt tgatcagatt aggtcacctt 24960

tagggggcgt ttggttaggg gtattctgga aagggtaagg gaatcaactt acttaattcc 25020

cttacttgtt gtttgtttgc tcaatttaat gattcccttt acccacccct tactcccaaa 25080

gtcctttact ctcattctcc ccacccccca aggtttcact taccctttct tgattcatca 25140

ttgaccatat ctttgaccac ccaactacca ccaccacttg accacctaat cacctaacca 25200

cctaattacc caaccactat taccacccaa cccctccacc tgcccaccaa tcggcaccat 25260

aactgcccaa ccgtcgccca atcaagccac ccaaccggca ccataaccgc ccaaccaagc 25320

cacccaaccg gcaccagaaa ttgtaccaag ctacccacac acgtgaaaac cacccaccca 25380

caagccctag aaaaaatgga agaatcgaga gaaagggagg ggagagaaaa gatgcagcga 25440

ctagaagggg agggggagga tgtgacggca aggggagagg gaacttcgca gcggcaaagg 25500

gaggggaaac gtcgcgtcgg caaagggcta aggtggaatt gacggggttg cagcaacaag 25560

gggagggcat ggagacgtcg taaccgcaag gggaggggca gcggcagtgg aactggggtg 25620

gagaggggta gtggcggcac tagggtgtgg gagaggtggc gggggatatc aagagagggg 25680

ggatatggtg gtgttatggt ggaagcaaga agaagaaaga ggaaagacaa tgtactaacc 25740

aaacaacaca ttaaatctaa gggttttggt ttcctttccc catctacccc tttcttgatt 25800

ccattccctt taccccttta caaccaaact cccccttagt ttttactact tataaccttc 25860

aattttggct gttttttgtg acatttttta cttctccgag cctggtcata ttttctcccg 25920

aaacatttcg aggaaagtcg aagtgacttg tgaagttgtg cgggtgcttg gcaccatttg 25980

tgttgcctcg aaaagcatct gaatacccca tttattcctt tctcctgaaa cccaaaatta 26040

cctcgcaata aacgaaaaga tatccatata tttgttccaa gccacatgac tcctttccaa 26100

cgacctccca tgtgaccatg tccttagaag gcatcccgtg gcgttcgaag ctcggacccc 26160

cggaaagtcc gaaagtgtgt attataactt tcaattttgg ctgtttttgg gatatttttt 26220

acttcttcgg gccttgtcat attttctctc gaaacattca taggattgtc aatgtgactt 26280

gtaagttgta acgttgcacg ggtgcttggc acaatttgca ttgcctcgaa aagcctctga 26340

acaccccatt tgttcatttc tcgtgaaatc caaaattgcc tcgaaaaaaa cgtaaaggca 26400

tccacatatt cgttccaagc cacataactc atttccaatg acctcccata gagtccgtag 26460

ctcggacccc aggaaagtcc aaaaacgtgt actataacct tcaattttgg ctgtttttgg 26520

gacatgtttg gacttcaccg gcctggtcat attatcttcc gaagcattcc tacaaaatcc 26580

gacgagacta gtaacgttgt tacgcgggtg cttgacacca tatgtgttgc cttagaaagc 26640

ctttaaacac cccatttgtt catttttcgt gaaacccaaa attgtcccga aatgaacata 26700

aatgcatcca tgtattcgtt gcaagccaca tgatttcttt ccaatgacct cccatatcct 26760

taggaggcat gcatcatgtg gcgttcggcg agcgggtctc gggaaagtcc gaaagcctgt 26820

gttataacct tcaattttgg ctatttttgg gacatttttg gcctttttca agcgtgttca 26880

tattttctcc cgaagcattc ctaggttagg cgatgtgact tgtaaagcgt gggtacttgg 26940

caccattttc tttgcctcga aaagtctttg agcaccacat ttgttcattt ctcgtgaaat 27000

tcaaaattgc ctcgaaatga acgtaaagac attcacatat tcattccaag ccacacatga 27060

ctcctttcca atgacctccc aagcccctag gagtcgtccc gtggcgttcg gatccggagc 27120

tcgggccccc gagaatgtcc gaaaccgtgt attatgacct tcaatttttg ctgtttttgg 27180

aacatttttt gacttctctg ggctggtcat attttctccc gaaacatttg taggactacc 27240

gacgtgactt gtaatgttgc gtgggtgctt ggcacaattt gcattgcctc gaaaaacctt 27300

taaacaccgc atttgttcat ttctcgtgac acccaaaact gcctcgaaat gaacgtaaag 27360

gcatccatat attcgtttca tgccacatga ctcctttcca ctgacctccc atgtccctag 27420

aaagcacccc atatccgaaa gcttgtatta taaccttcaa ttttggctgt ttttgggaca 27480

cttggacttt ttcggttcgt tcatattttc tctcgaaatg ttcctagaaa aggtgacgtg 27540

agttgtaacg ttgcgcgggt acatggaacc atttgccttg cctcgaaaaa cctctgaaca 27600

ccgcatttgt tcatttctcg tgaaactcat aattacctca aaatgaacgt aaatgcatcc 27660

atatattttt tccaagccac ttgactctta tccaatgaca ttctatgtcc ttagaaggca 27720

ctgcttgtcg tccataattc gggccaggga aatgtatgaa agtgtgtatt ataaccttca 27780

attttggctg tttttgagac aattttttac ttctccggga ctggtcatat tttctcccga 27840

aaaaatactt cgagtgccga cgtgacttgt aacgtcgcgc ggatgcttga caccatttgt 27900

gttacctcga aaagcctttg aacaccacat ttgttcattt ctcgtgaaac ccaaaattgc 27960

ctcgaaatga acgtaaaggc atccacatat ttgttccaag ccacatgact catttccaat 28020

tctctcccat gtccctagga ggcatcccgt ggcgttcgga gctcggaccc tgggaaagtc 28080

cgaaagcgtg tattataacc ttcaattttg gctgtttttg ggtcattttt tgacgtctct 28140

tggcttggtc atattttgtg ccgaaacatt cccaggattg ccgacttgac ttgtaacatt 28200

gctcgagtgc ttggcacaat ttgcattgcc tcaaaaagac tctaaacacc ccatttgttc 28260

atttctcggg aaacccaaaa ttacctcgaa atgaacgtaa aggcatccac atattcgttc 28320

catgccacat gactcttttc caatgacctc ccatgtccct aggaggcatc ccatggcatt 28380

cggagctcga acactgggaa agtccgaaag cgtgtattgt aaccttcaat tttggttgtt 28440

tgtgggacat ttttgggctt ctccgggcct ggccatattt tctcccgaaa cgttccttgg 28500

aaagccgaag tgagttgtaa cattgcacgg gtgtttggca ccattagtgt tgcctcgaaa 28560

agcctttaac caacccattt gttcatttct cgtgaaacct aaaactgcct cgaaatgaac 28620

gtaaatgcat ccacatattc gttccaagcc acatgactcc tttccaatga ccttccaggc 28680

ccctaggagt catcttgtgg cgtttggagc tcagtccccg gtaaagtctg aaagcgtgta 28740

ttataacctt caattttggt tgtttttaag acattatttg acttctccgg gactgggcat 28800

attatctccc gaaacattac taggagtgcc gacgtgactt gtaacgccgc gtgggtgctt 28860

ggcgcaattg tgttgcctcg aaaagccatt gaacaccccc atttgttcat ttctcgagaa 28920

acccaaaatt gcctcgaaat gaatgtaaag gcatcgacat attcattcca agccacatgg 28980

ctcatttcca atgacctccc atatccctag gtgtacaccc catttgtctg atgttataat 29040

agcaagaggt cacgggttca aatcttgtta caagctaatt ttacttttgt taattgacat 29100

gacttatgta cacattggac aattatagtg gagtaacaaa ggtgacatgt gacgcgtata 29160

cattatcaca cacgtctttt aatatatttg tatagatcta gatttaagag taattttttt 29220

aatgcgcaat acttggccaa tttcttctgt atcaaatcat aggtctttgg ttggttcata 29280

agagtaaaga ccaaaataat aatctgaact gcaaaaattt tctccaagag ttaaaagttt 29340

gtataagtta gattaaaaaa attaatgaca tatgatgtag ttggacatta aatatgtaag 29400

tttagaagta attgtgttaa cataaaaaaa gattcgatta taacataaaa actaaagaaa 29460

cacaaaggcg ccgtacaaca atcaatatta cccaagtccc ctcattaata ttaagggatg 29520

acctagctcg tacatattta attatctttg aaaattcgtt gttcagactt gctagttgct 29580

attctatatt tgtatattca ttaatcaatt tttcaatatg tgagcattta cattttaaac 29640

tagagcaaat attgtctctt ttactatttt gttgttgtca aattttcaaa aataaattgc 29700

tcaaatactt ttcctagtga cataaaaaat agagcaaata atcaaacagt agcagaccca 29760

ggaactttta cataatgtag acggcataat gtgttaattt ttgcttcttt tttctaatat 29820

catccaataa cacaattctg cttctattag tttgtagttt cagatgatga tacccaaaca 29880

ataagaccaa gcaacaaatt gataagattt tgcttctctt tcttccactt ggtgtaactg 29940

taacagcttt gaagtttaac ttcagtaatc agttgcatat ttggcatatg atcaaaacaa 30000

tcaaattatt atgtatggaa aagcaaaaaa cttccaggtt tccatctgaa caaggaggcc 30060

aagagggtgg aagcaagcaa ggatatatga tcataaaatc ctatgaatat gatgtacaaa 30120

ccttttctac tgcaattagg taacctaaat gataccacct aggaacagca acaacttatt 30180

tacagcacta aacctaaatc aggttaaagt taatcagacc accatgtatc tgggtggtct 30240

ctcgagggaa agcgtctcca tctgtatccg ggtaacagag gtttcttctt ctcgatcctc 30300

cttggcttct gccctcttaa gttcttcgaa ggctctcttg gcatatacag taaacgcaac 30360

aatggtaatt attgccacta tgaatgaaat aacattgtac acaatctcca cccatgttag 30420

atgatgattc ccatacttga catctgcgaa cgtccttatc agtctcccac tgcaaatgaa 30480

tgctatcagc gtcaatattc gagataccaa ctcatttaac tattgaattg ccaaaaacag 30540

atatctttga ccatatattt gttactaaaa ataacgattg ataatgtgaa actatcactg 30600

atagatttaa aagaactttt ataaaagtat agtttctcta atgtataact gcagaaaata 30660

gaatggggta gacaaatgaa gtaattgttt tgaagaatgc aaaaggtcaa ttcagtaata 30720

cttttatacg tgattggggg aagcattaaa aatcccttct aagataaaga tgacctcatt 30780

ggcaatggaa tcgacatcca cagacccttg cattagaaca gagtggaagt ttctgtgaac 30840

ttacgtgtag atgtaaagaa aagcttctgg caccatccct gcaattgatc cccatagata 30900

aggccaaaac gtcatacttg tcaccacaac tgcgtagttg aagatagtat agggaaatgg 30960

tgaaacccta aagagtgcca ccacgcggaa ctgatgaaac cagctacctt cggcagcaag 31020

cctaagcata gcagccttat ccggccatct ttgcaaccat tgctaacaag gtacaaaaac 31080

ataaacattg tggacttaat tagacaagaa agttaaatta aaatcaacat tagataatca 31140

ataaatcaaa tgtaagcagg gaacatattt cttacatgga ttctatcccg gaagagcaat 31200

ccaagtaaat agggaagaat cattccaata gtagttccaa ccatgattat cacaaaacca 31260

agaccataac caaagatcat gcctgcaagc cacatggatg ggccagaagg aatcagaaat 31320

acagggaaga ttgctaggga agtaacaagg accacagcaa gaaccggacg gccaaaggca 31380

gtggcttccc attgcatcat tggaacaaga acctgcagag aaagtaccaa aaactttgag 31440

gcaaaaattt cctgcttgta tattgcaaaa agtagtacag cgaaggcatt ccgtgcagaa 31500

tggcttatag attggaaata cggagaacaa tgcaactata agcacaggcc catctcttga 31560

cttttgggac aataacatgg acccccagat tgatttataa gttctcacac catagctaga 31620

ttttgttgga actttcataa atcatagtga cataagtata gcataatatt catgccttcg 31680

acagaagttt tcgcatatgg taaggctact attgaaaaaa ttcccttgtg tttgaagtac 31740

gcataaaaat atctagtggc agtcaaccaa ataaaacatt ctaggagtcc ctcaaaaaat 31800

taaagagtca tcagttcaga agactttaat atcaatactt tctattatcc gggtttggca 31860

tgcagtaaat ttcatgagaa aaggaaaaat cagctatttg attatataag gaactaattc 31920

ggatgtatca ctaagctttc catcgactgg aacatcggga gctagtctcc aatactcgtc 31980

aaggatctaa cataaacatc ttctccgcaa tcaaaaagcc aaggtcacat acatctaggc 32040

ctctgtctca ttctgatggc atggtatgat gcaagttaga caacactatt atttggcaga 32100

tgacacttag gggtctaata tttaagctca ttcaagataa tcaagtaatc aagttcaatc 32160

tcaaggtttc agttgcgcta aaaaatgtaa tacttggctc attcagaatt agtttgttga 32220

agctggttgg tatttgcttc atttgttaat ggaaccaggc tcataaacaa gctttcatta 32280

ggctaaactt atttaacaaa atcaaaagct taatactata atttttgata ggatttcttt 32340

tgggcagtta tacatgagta atgaacaagc tctacacaat cttttttaat gaacaagctt 32400

taatcgagct agggtacgtt ctattcaact tattggacct gaacttattg gaacttatct 32460

gaactgaact tattgaacct gaactgaact tattggaact tattaaacct gattggacct 32520

gattcaactt attggacctg attgaacctg attggaactt attggacctg attgaacctg 32580

attgacctta ttggacctta ttggaactta ttgaccctga ttgaaactta ttagacctta 32640

ttggacctga ttgaaactta ttagacctta ttgaacctga ttgaaactta tttgacctta 32700

ttagacaaaa acattattat tattattgtt attattatta ttattattat tattattatt 32760

attattatta ttattattat tattattatt gttaacctga ttgataacat ttatatcttt 32820

catagttatt agtaacgaaa acatgttatc tctagttatt caaagacgaa ttgcaaaata 32880

ttgtaataat aataataata atatattatt attattatta ttgttaacct taattatttg 32940

accatgatta taatattatt caatagcaat atgaataatc aaataataga caataataca 33000

agtataatac tatacattgt ggtactttaa taaaaaaatt ctaataataa cataatcagc 33060

taatagtaat atgaataata aaataataga cataatacaa ataaataata aaataataga 33120

cataatacag ataaataata aaataattta cactaataca agtataatac tatataatca 33180

ttgtggtact ttaattaaaa ttctaataat aacataatcc gctaatagtg atatgaaatt 33240

atgaataaca aaatagtgga caataataca aatgtttatt aaacattgac tatttggacc 33300

ttattggacc ttattagacc tgattggaac ttattggacc ttattagacc tgattggaac 33360

ttattgcacc tgattggaac ttattacacc tgattggaac ttattgcacc tgattggaac 33420

ttattgcacc tgattggaac ttattgcact tattagacct tattgcaact tatctgaact 33480

tatctgaact tattggacct gaaacttaat tttttaagtt gaacagaacg cacccctagt 33540

atccacgaac atagttagtt gttcatcgac aagggtgtta attccttgac tataaaaaaa 33600

atatctgcta atatgtcctc cataccatgt cttgatctga ttcccaaaat cacgtgtttt 33660

cgtgtctggt gaccacgttg ctagacatgg aagacaggtc taattgttca gtttcaagtc 33720

aggttgatta aacatatgtt agcaatatac aatcattatt agtcaaacta attcaactcg 33780

ggtttggttt gattcaggtt atgtcgagga tcaggtccaa atcgggttaa tccttccagg 33840

tcaaatatat ctaagtctgt tttgccaaag tctacttttt gtatccgtgt ccatgctaaa 33900

tgacaaacaa aaagcagctt ttaccaagct cgaatcagat ttgttcgctt aaagagtcac 33960

ttcgctcatt tacagcaaca attaaaggac aaaacattgt ccattcaact acttacggat 34020

attaacttat tggcaactgc tagcgtaata aggcaatcaa cagcactcgg cctcaataat 34080

gaacctacaa ggagtccaat gaccaataca aattatcact ggcatcatct agcacgacaa 34140

tctcttaact ctaagagtct aagtgccttg acatacaaaa gtattccttt taaaagtacc 34200

cccgtgtgga tattctgcca agcaaatgca atcgatacac ccaattaggg cttttccatt 34260

atgagtcctc agagcctcag attgtaaaac aggtcagtaa aagaggaaaa tagtatttga 34320

ttcttttgct aaacccttgg atataagaat ggtgacttgt attgtcacgc caagcttctt 34380

tcataaaagc tgatcatatt attatatgag agttctgagt ttcaaggtcc gcattcgatc 34440

taactagaca tcacttccaa ttaaagttga gaaacgaaac taggtgtcct ctttgtttcc 34500

caaaggtgaa ctttagatac ttattataag catattttgt tatgaatcgg gctaaggaga 34560

gggctactct tggtattgca taattagtta attacttagt agtagcttga ggaataagga 34620

agcaagtaag ttagaggaaa gagtatgaaa atctgctata aagtgaggag aggagggata 34680

gaaggataat cacaaaatta ttgagttaac tttggtttta gttgcttagg ttgggagtgt 34740

ccagccactc gaatgtcttg ggactgtaaa caccattgtt catgatctaa ttgcatcaat 34800

attacaatta actcatttct cttcttatcc atattcatct tcttacaatc acaactattt 34860

ccagatcatc catccaaatc ttcatccact tgccttagtt tctactccag atttcagtct 34920

attacaaatt gatttctaca atatgtcaat tcatcacaaa ttatcatgtt ttctgaacaa 34980

aagttcactg tttcaggaca aatacagaaa gaactacttt gatgcttaga acagatatat 35040

tgtaaaattg tattcggaat ttgggataca actggagaag atatgaataa ataggcattc 35100

agggagctca gaaaaacaga ccgtgccata tggtgctctg ctgcataaca ggaaataatg 35160

gataaagtat gaataacgtt ataacttctt aaaaacctag atgacaagta ttttggttgc 35220

tttttattat tggtaggcaa ggagaatact caacaacagt ttagccttaa actgcttctt 35280

atttctcctc ttcccctttt tcctgatgat ttggggttgt cactcagttc ttttacctct 35340

catttccagg tactttagag ttatattaca caaaggattg caagagaaga acaggtcgcc 35400

ctggcatgca ctcagaaagt atacgaccct tcacaggaaa tgtggtgctc caagacttat 35460

atctcaggct ctcatgagtc atgtcaagga ccatctttaa tcatttgtat tctaggtttc 35520

tcaggcgatg cggtgtgctg gtgtgtctct ccctcccact tgagtgtgtg tattgtttgt 35580

gcccctaagt ttttatctta acaatcacta ctagtcaatt agtcattacc aaccctaccc 35640

acctctcttg ttactgttgt tcttggagat atttcatata tgtcagctta gaacttatat 35700

tacgtttctt attacatatt ctcttaagct cgcgcacata ctctgtgatc gaagggatcc 35760

atattagtta tcttttagtg gagttgttgt gaaaaaagac tgcatagaaa aattaagata 35820

gctcatagtt gtaaatgtaa ttgaactttt agattgatag ccttgaggct gcttgcattg 35880

aaccaaccaa attcagccag gctagtctat gcctctttgg tgtcacctgg taggttgaat 35940

ttgtgtagct gtagttctac aagagactga tttaaaaatg ttttcgcact gaaacagctt 36000

aaaccacaaa acaggaaagt gcagaacaaa ctccagaaaa tggtgcagaa cataccttct 36060

caaaaaggaa aggaactccc cattttaaca gtacgaggac aactgctaca gcactaatgg 36120

aggagatcaa gattttgatc caccagatga aggattctga tcttgtttca gcctgagaat 36180

gtaaggttga agcttcaggc ctctttgtaa tagcagatgt caccagacta acaaattcac 36240

tgtcgtcttg catagcaggc ccaacatcta tgtcatgctt agttagctcc attgaatttg 36300

gcatctccaa gagatctcaa gagctgccca aaaagacggt acaatattat gagcatacat 36360

gacatgatga caacccataa agaatatcat aacctgtcac attttttatt caaagttcaa 36420

cagccctctt acaacatgat tgagaatgga ggggaagaga gagagagttg gtctcagaca 36480

ttgatcacat aatcatttca attagtttta aaggtgctca tgaaatagaa ctagtgtctt 36540

aagctggaga cttctgtatt tttcatggtt ttagattatc aatcatattc ttagaatctt 36600

tgatctctag aactctttcc tttcctccca atattttttc cactttgtct tttgttaatt 36660

acggcttcgc tgcaggcctg caataaatct tttaaatttt tacagatact atgtagagtt 36720

gtatacataa gctctaatct gaagacgatt ggtttcgatg ctagttaata caaataaata 36780

tattatggat ataatatgca gtaaattggg ccatgggcac cagggacaac ttagacaagt 36840

atagtgcaac taccaggaaa tttaagctgg gtacctctga ttcatcatgc tggttgataa 36900

tattattgct tccacaagtg ttcgctacgg ctcaaccaaa ctaagtcaca actcacaagc 36960

tgcacaaccc aactgacaat tatcgcctat tgtctaagct atacattaca ttaccccaat 37020

gccacaacgt ggctcacgcc taggcatggt aaggaagttc agatgtacgc agccttaccc 37080

ttttaataac aaagaggctg tttccaggtg acccttaaat cttaattgca aacaccatct 37140

gctgcttcac ataaataagc gacttcaaaa ttgtaaatta aagaatttga atgcaaattg 37200

tgtgaaaaac aactccatca agaatccatt aagcacgctt tactattagt atcaataata 37260

ggaaaccctt atatcccttt tgacgaaggc acacatgcaa cactaatgtg tccttataaa 37320

cttcatgaaa gtatatctct acgaaaccct tttagtctta tgtgattctt taagtgtcca 37380

actgatgatt ggttacaagg tatttagccc aaagtagcat ttcagagaga tggtgtagaa 37440

tgagtagctt ataaaccgag gttgaggtgt aatcctaata aattaggaac taataccaca 37500

agagagatgg acatgtagag atacaatata gtacagaata agattatttg aaatcttttt 37560

accagggaaa ctccagaggt gttccataaa acacaatacc atataactgg gagatcaata 37620

ttttagatta aaaaatataa aaatctattt gggttgagta tatagttggt tagtccaata 37680

atatataaat ttataaggtg gaggtcttcg gtatatgaca ttccaaattt gagtatcaaa 37740

tgatatatat ggttttccat acttgaatcc cttttcatgt actacctctg tttcaaatta 37800

atagttacac ttacactttt cacgcatgcc aatgcagaac tttgaggaca tatatcttta 37860

gttttgtatt tgtaaaaatt ataaaaagta catattaata aaatacatat taatacgaat 37920

ctaacaagat cccacatgac tatgatttta ttcacgtata aatcacaaac gagggtcaaa 37980

atgcaattgt gaatagtgta aaatgtcaaa gtgtaactat taatttgaaa cggaggtagt 38040

atgtgtttat gcaacacttt tcctttttcc ctttttgcta tttagtaatt tatgtaaaat 38100

acttccattg acccaaaagt tgggtgatta tagtttacat ctatcattat tatttatcat 38160

tactatagat tattcaccat tgtaatcaac tttataaaag tatacacagg taactcagga 38220

gtcaggggtg ctgggccaaa cacttttata gtttaaggtg aaaaatctcg agaatcttct 38280

cctgccacgc aaaatgagtg ttcttccact ttaaagatgt tataacactt atcttaacct 38340

actattcgta aataacactt atcttaacct actattcgtc aagacatact tgcttcatct 38400

cactaagaac gtcttagttt tcatttgaaa ttcgtaccag aaagattcac ttcaaatcta 38460

tttattttta gataaattgt tattaaaaac gacgaagaaa cgtcagagga caacaaatcc 38520

tctaaactcc aaattataag tgagtccaac tatgttgacg taaggtaatt agagtatcca 38580

taaaagccct ggccgctttg gcccacaaag cagcttagaa tactacccaa ccccaaatat 38640

aatcaatcag gtgaggaagc tcgcaacaga tgcgagagtt ccactccaat caaaggcacc 38700

agaacatagc catcgacatc ttctcttctt tacccccctt gaaaccaaca gatcttaagg 38760

aagtccacta gtgaacaagg acataaccac tactcatgtg gaatgccaat cagcctctgt 38820

caaagggaag tccattagtg aacaaggaca tacccactgc tcaaggtagt catgtggaaa 38880

ttggaatccc aatcagcctt tgtcaaaagg aataagccac atcgcaatga agaaaaaggt 38940

gcaaaccaga tttattgcat ctccaacacg acataaatat cgagaatgag gcctttactg 39000

acaaaggaac tctggatttc caatttccac tgagcattgg actcagttga gaagtaattg 39060

gtcttgctag attctgttta cgcacatact cttaatgata aataaatgta acaggccaat 39120

tggtctggaa aaaaacagtt gataaaaggc tagtttgggc cttggggata aatataatct 39180

ggtatgagtt aataaatttc tgtttaaggt aaagagaatg tgttatgtgg gataatttaa 39240

tcaagaaaat cttagtaaga tggaggtagt ctaacttcca ttcctcaaaa tgtgtaattc 39300

cttataaaat cagtcagcct ctagatacat agttagcaaa aatggaaggt atagaagtgg 39360

gggtgaggga agaggaagga aagagaaccg cgatcaatca tattgttcgt gctcaagttt 39420

gagttgtgcc tatagctagt tagagtttgt ctatttcatt gtttttggtc agtgttcata 39480

ttctgagtgt catcgtgttt gggttctaga atgctccttt tcctaatgtc gacatttctc 39540

cactttactc tagaaaaatg atctcattgt agccattcca gcttcaattt taatggatac 39600

taagatccct ttcaggaaca atgttaaggt agatgttagt gttttaacag ccatgtggat 39660

gttagtgtct agaacgagtg gtcaaaacac tactagcctc aaaatattgt gatcagtctg 39720

aaaactctat gttagatggt tgcttttttt ggtaggttcg cttgttttgg ggggttagct 39780

ttgtttattt tcttcacaat ttgcccttaa acttttcaca aaatctacaa ttgaagattc 39840

ttaaatagat aacagacgtg tcagctactt caacagctaa ttgtacgaaa aagttcagct 39900

accttgaaac caaaccacta acagctagta cagtttgttt ctactattac atttatctaa 39960

tataacagct agtatttagt ccaacgatgt ataatatcaa tgaaatggaa ctaatctgta 40020

aattggacct taggcataag agtcgagttg agcaggtaca ctccaatcac caagttattt 40080

aagcttaaaa tgtctaactt ccaatgctgt ttgacgatac tcattgccaa gtgtttgtta 40140

cagatcaacc aagcaaataa agcaacaagt gaacagctgc actagtaccc aactgcgaat 40200

tttcgtcgat tgccaagtgc atgtctggga cacaatacca tcatgtccat acccattacc 40260

ttgcttagcc agctatcgta atccataaca cataaaaacc aacaaagtct tgatagtttc 40320

acaaatcaaa atgttcactt ttcattccaa ccaaaacaag caataaatct cttcatccat 40380

actcacaaga agaacaatct ctcacactac ccacttgatt agtaaaaacc ccaatcaaaa 40440

acaaaatcca acccacataa acaaatcaaa tttagtaact acccataaac tcaaaaacct 40500

caaatcacaa taccaataaa agagatatac aatcaatcaa aaaaaataca acaacagcta 40560

aacaaataac atcataaact aaagttattc attttatttc ctaactagag atcaattaag 40620

cagcataaaa caacatcact aattcaagtt aataatcatc aaattctata ctataaaaca 40680

tacatacctt accaaaacta cccagctgaa aattagggta gagctccaga aatcccggcg 40740

aaaaatccgg tgagaaattc agctaaattt gaaaacttct ttaggttaag tagtgtacac 40800

gatgaattga agatttttac aagcatatga aaatggtggt tgaaattgaa atgggggttt 40860

ttgaaaattg ttgcgacgcg taaaagtgga aaaaaaaaag gagagaatca aagaaatgag 40920

caagtttttg taggtgggtt tactgttgtt gcttttgttt gtgcacatta ctgactattc 40980

ttaattcttc catgcgtgtg ggggtgaagg aattgttttc ctaagttgtt tagccacttc 41040

atagagtcat tggatttgaa taatctaggg aataatgatc atgtgtttag tgtatctata 41100

aattataatt tatgtatgta tattgtatat gtggtgaggc atagaggaca aggtctaaga 41160

ggaatagagg attgtgaggg agtgtttcat gcttttaaga atgatgagtc attgagtgta 41220

ttaagttata agtagtattt gatcgagtag taaagtttgt atcacgtaaa tcagagtgat 41280

aattaggaat tgggatttgc tcaagtggtg agttttccca tctttccgag caaggtttct 41340

agggttcaat tcctacctca agcatttcct tgggatttaa ggggacggct cagaggaatt 41400

cttcttacca atattttaaa aaaaaaaaaa ttaagagtgg taatttagtt cagatcctac 41460

ctttatccgg ttcgaaacga cttcaagaaa aaaaaatccg acatcgttta aaatttttta 41520

cttccgactc atttaatccg cctccaactt tgaaacaagt agtcttattt cttttatgtt 41580

aagaaaattt gccaaaaaaa ccctttttaa agtccagttt tgcgaaaaaa aaaaacctta 41640

taaagcattc tttgtgaaaa caaaccaaaa agtaaattat ttttgcaaaa tgaaacctaa 41700

tctcattttt cggttttgac catggacttt tcgacattga ccacttctat ttatcttctt 41760

cctccataat cacagcctag ccaccactac caacacctgc cgctagcccc cacaacctgc 41820

acccccacaa cctccatcca ccccctcaag cggcaacccc ccttattccc atacgcggca 41880

accctacacc ttatcctcca cccccctccg cccttacctt ttctcctctc ccttcttccc 41940

tccatcaccc ctccccactc tcttctccct ttgcccccca tcgttgcacc acccataatc 42000

cctctctgta accccctctc ctcgcagctc cccctccctc ccagccaagg ttgaaaaatt 42060

acagaggcag tcgcatatgg ggatggggga ctatcgtcta aggggtggag agagggtttg 42120

ggggctgctg gtgggggtgg ggtaggctga atgtggtggg ggctgagggt ggggggtgaa 42180

ggtggggctg caggtcgggc tggcggtatg gagaaagaag ggaaatagaa gtggttaaca 42240

ccggaaagtc catgatcaac accgaaaaat gaaattaggt ttcatcttgc aaaaataatt 42300

tattactttt tgatttgttt tcgcaaagaa tgctttataa ggttttttcg cataacattt 42360

agacttttat catccctctt agatttgaca catattatac gaattatact aaaaagactc 42420

cttatagtaa ttcgactaat gttttattaa aatgaacctt tagaataact cgggtaatat 42480

<210> 54

<211> 201

<212> DNA

<213> Beta vulgaris

<400> 54

agagcagatt ggcatacttr tgaatattct cactggctat taaattctca gaagaaaaat 60

caacaccaag attatgacat gcttgtgcaa agacacaccc agtcatgaat gcatcatagc 120

cagcttcatg cttagcccca gagttccaat ttgaggayct gcaagaaaac atgggagtaa 180

gatggtttca cataaaacat g 201

<210> 55

<211> 201

<212> DNA

<213> Beta vulgaris

<400> 55

agagcagatt ggcatacttr tgaatattct cactggctat taaattctca gaagaaaaat 60

caacaccaag attatgacat gcttgtgcaa agacacaccc ggtcatgaat gcatcatagc 120

cagcttcatg cttagcccca gagttccaat ttgaggayct gcaagaaaac atgggagtaa 180

gatggtttca cataaaacat g 201

<210> 56

<211> 201

<212> DNA

<213> Beta vulgaris

<400> 56

gggtttcttc gaagtttgat tttgttacat ttttcaaaga gaaattagtt gttgatgttg 60

aataatgatg ataagtagtt agggttcgta gtaaggtgga cgaragagaa aatggcgtca 120

ctctgayrag cttcttcatt ttgttcttct tccttagctc tgttttcagt cactgcgcca 180

tttttttttt aaaaggaaga t 201

<210> 57

<211> 201

<212> DNA

<213> Beta vulgaris

<400> 57

gggtttcttc gaagtttgat tttgttacat ttttcaaaga gaaattagtt gttgatgttg 60

aataatgatg ataagtagtt agggttcgta gtaaggtgga ggaragagaa aatggcgtca 120

ctctgayrag cttcttcatt ttgttcttct tccttagctc tgttttcagt cactgcgcca 180

tttttttttt aaaaggaaga t 201

<210> 58

<211> 134

<212> DNA

<213> Beta vulgaris

<400> 58

caagcacaaa atcaaataat gagaatcaca ctatccaaag aaaatttcca tccacattta 60

tccaacacag ttatctctct tttacaccca aattatgtca accaaaaaca staaaacaag 120

tgagtgcagt agct 134

<210> 59

<211> 134

<212> DNA

<213> Beta vulgaris

<400> 59

caagcacaaa atcaaataat gagaatcaca ctatccaaag aaaatttcca tccacattta 60

tccaacacaa ttatctctct tttacaccca aattatgtca accaaaaaca staaaacaag 120

tgagtgcagt agct 134

<210> 60

<211> 134

<212> DNA

<213> Beta vulgaris

<400> 60

taagtaaaaa gtggtaaaag aattaccaaa arcgcacara ataaattaat tagytggatw 60

taactattta acctattcct tttttctgtc gctataacta cttttgctta acttattgat 120

ggtttgatcg ttga 134

<210> 61

<211> 134

<212> DNA

<213> Beta vulgaris

<400> 61

taagtaaaaa gtggtaaaag aattaccaaa arcgcacara ataaattaat tagytggatw 60

taactaatta acctattcct tttttctgtc gctataacta cttttgctta acttattgat 120

ggtttgatcg ttga 134

<210> 62

<211> 150

<212> DNA

<213> Beta vulgaris

<400> 62

ttataatgta gagtcaaaat taatatcctt aactagtttt taagtccggg ttatatccta 60

gatatttata atattcattt attagtaaca ttttatttta taaatataat actaagcatt 120

atttggtttg ctggttaaga ctttagtgta 150

<210> 63

<211> 150

<212> DNA

<213> Beta vulgaris

<400> 63

ttataatgta gagtcaaaat taatatcctt aactagtttt taagtccggg ttatatccta 60

gatattaata atattcattt attagtaaca ttttatttta taaatataat actaagcatt 120

atttggtttg ctggttaaga ctttagtgta 150

<210> 64

<211> 201

<212> DNA

<213> Beta vulgaris

<400> 64

acatctacac tgggagactg ataaggacgt ttgcagatgt caagtatggg aatcatcatc 60

taacatgggt ggagattgtg tacaatgtta tttcattcat cgtggcaata attaccattg 120

ttgcgtttac tgtatatgcc aagagagcct tcgaagaact taagagggca gaagctaagg 180

aggatcgaga agaagaaacc t 201

<210> 65

<211> 201

<212> DNA

<213> Beta vulgaris

<400> 65

acatctacac tgggagactg ataaggacgt ttgcagatgt caagtatggg aatcatcatc 60

taacatgggt ggagattgtg tacaatgtta tttcattcat agtggcaata attaccattg 120

ttgcgtttac tgtatatgcc aagagagcct tcgaagaact taagagggca gaagctaagg 180

aggatcgaga agaagaaacc t 201

<210> 66

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer pCRBM4_S2

<400> 66

gtagttgaat ggtgggaatc c 21

<210> 67

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer pCRBM4_S3

<400> 67

caatattgcc cttactttat c 21

<210> 68

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer pSeq_LbCpf1_F4

<400> 68

accactcact cctcgataag 20

<210> 69

<211> 22

<212> DNA

<213> Artificial Sequence

<220>

<223> SEQ 70: pSeq_LbCpf1_R3

<400> 69

tagacctgct tctcaacctt ca 22

<210> 70

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer pSeq_Ribozyme_F

<400> 70

tgcagcggat ccaaattact g 21

<210> 71

<211> 18

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer pSeq_Ribozyme_R

<400> 71

cctggtccca ttcgccat 18

<210> 72

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer pSeq_tDT_F

<400> 72

ttacaagaag ctgtccttcc 20

<210> 73

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer pSeq_tDT_R

<400> 73

gtactgttcc acgatggtgt 20

<210> 74

<211> 19956

<212> DNA

<213> Beta vulgaris

<400> 74

aaatgataca ggggtatatt tgactctatg aatttcagaa atctaatcaa atttgctaag 60

cttccaatga ttctactaag ccctacaaat tacaagaatt agttactttc atctctctgt 120

cggcttcaga accagaagtg tacaatatct tgtcaaacaa actctgctta gaggagctct 180

ttcgatcatc ttttttcgat ttggaagttc ccggtgatag gattgacatt gctgttttct 240

cggtcaattc ttctggatct tggttctgtc catctatctc tggctccatt aatctggtct 300

tccaattaat tccgatagcc tcagcttgct ctgcaaacaa gacctttgag atcggggagc 360

tgcagatatc cttataaact tcataaccag cagcacaggt tttcccacct tccaacaact 420

ttgataaagg atgtaggaga gagatagaat catcactcgt ttctaaccta tccttcaagg 480

caaggaagtt aacagccaag tctgccttac taaactgaac aaatactgca gtttcatcca 540

agttatagat gcaagcaact gagtatatac caaacacttt acagatgcat tgttttatgt 600

cacttgcctt gagttttggg gagaatcccc aaatcaaaac tatgttagga tgcaaaatgt 660

taagaaacct ccttttagct gaactgataa cgggaatttc attcatatca ccagtgctta 720

gattgatcac atctccactg ttccaactaa gatagagcag attggcatac ttgtgaatat 780

tctcactggc tattaaattc tcagaagaaa aatcaacacc aagattatga catgcttgtg 840

caaagacaca cccggtcatg aatgcatcat agccagcttc atgcttagcc ccagagttcc 900

aatttgagga cctgcaagaa aacatgggag taagatggtt tcacataaaa catgtgtaga 960

agtgcagtga acactggcga aaacaatcta attttacgaa ttcattcact cactcagctt 1020

caaattaagt ttccccttta tttagggtgc cccaaaaaga tacactcttc tgtttacctt 1080

ctctctccaa gcgaccaatc ttttctctct tctccaacat cgttttcttt ttctctctct 1140

acccactatc cattttgtcc tcctacattt gataactatt cttaatctcc aagaaaatcc 1200

aatgtgtgaa ataattacgg gacagggagt atacagaagc agcccccttg ccaatatagt 1260

ttacaaatta ccctcagaat taggcttacc tttcccaaag gagcaataaa ttcaaacaaa 1320

tctaaaaggt acaaggcatt aagtgccgaa cctcatgtca tcaacctgga cctccacctt 1380

cacacatgga tgtacaccac cattagagga ttgtccagag gctatctcag ggcacaacag 1440

agaaaatgct gaggccaatg acgtgctggc tttattcaag aatttttgaa ggctcgtgtc 1500

tgcattcaaa agtattttcg tgtcgacaac atgaggaaaa tacttgtgga tctcgagaac 1560

aaactcttca acagttgatg gaagaggacc aaagaattta tggtaaatat gtgccatatc 1620

tgcaaaaaat tataatggat aagatgacaa gaaaagatac taggaaggcc ttcaagtaca 1680

aatattatat catgatgctg gacgaccgat gctcccacaa ttatgtttgt taccaaatgc 1740

ttcgaaggat aattactaaa ttatgtgaat ggtggttacc aagtgtcccg gaccatgcaa 1800

taacttctcc tttcagtgac caacaagaag aagacgtacc taaaaagcaa ttgtgaccta 1860

caattagctt cttttcagca gcgagaaggt caaggacatg ccggaaacct gcagctgctt 1920

ttattttgcg agttgcttgc tggtgagacc catacttcac ctcctcctac aagaacaaac 1980

agaacaatca cacatgcaga aagttcccca cataccaagt tgctgtctgc taaacactga 2040

aactaactta tctctacaaa caatgaagga agttcctcac cagaaggttg atcttatcat 2100

tgtcagattc tacaaaaaca ataagcttct gcaagatggc actgccgtca tgagcacaca 2160

caaaaacaag atccttgaag tgcttccttg taacctgtaa ttgcagatca ttagtatata 2220

ttcaagatgt tataaattta ttgaaaagca gcgtctaaaa caataaaagt catgcttaag 2280

gcatagagcg atagagcata gacacttcag agtttaataa gagcaaatac tccaggagaa 2340

cataaatata tttcatatca caaatcctag taccaactgg caacggctaa ctgccaattt 2400

atgtactgct caaaaaggcc aagcatctaa aagatggctt aaaagtcgga ttttataaga 2460

aagtcgtcac atgattgcta ttacattgac atatcaaagg tcaaatgctg aaatttggtt 2520

cagcttgata tatattaagc atacaaacga tacgttgaca agaaagccta acaagacatg 2580

aagcatcagg cacataacat tcaaaagatt accaattcaa tcaacttcag ctgatgagaa 2640

gtaaatccat tcaatcgaag agcaggacgc atactaaaaa atatggtttc aaattgttgt 2700

ttagattcaa cagcacttgg aagctcggca tttctgttct gtagcaacat atcatgccaa 2760

tcactgagcc gaattttcat ccgttcggag aataaaatat cagctacatt gcccaaaggt 2820

aaatctctaa cttcattaga atatgcccat ttcccgttat atactgaatt caagcgactc 2880

aaagcctcgt cttcctgtcg tctagataaa taagacacgc ctgagattat acaatgtgta 2940

aatttaccac aataatgaca tcatactgac aaaatctcaa acaaatagtt ctaataaagt 3000

catgttatct gaaatttcta tgaataggaa attgaacaaa accttcatgc ttttttccaa 3060

ctaaaattga catcttctac attaccttca tgtatgcatg cattgaagtc aaactggtat 3120

tttgccaaga agtcaatcga agttgtttgg cacaggaatt catatgatgg gccatcagtg 3180

ggaagctctt gacgtggaaa tatataaaaa ttatgcctga caatgaacca ttgtaaaatt 3240

attagatgga gtatctctat ttattgttta cagccaattg agcttttaac aattactata 3300

ggtagtgttt ggaaacttgt atttcatttc aaataatgga attgaaatct ggaatttaaa 3360

gtttgtattt caattcctaa tcactgtttt gtaaaggggg tttgatagaa gagagagaaa 3420

tagaggttta atggaggaga gagaaaaagt gtgggtttac taaaaaaaag agaaataaat 3480

attagaaagt gtgggtttac tcatagagtt gggatatgta tgaggagaga attttcaaat 3540

gccaaggtaa tagcttgaat gacaaattta ataatttcaa attccatgtc atccaaacaa 3600

tagatttcat ccaaatccaa gatttgaaat gaaatcttgc tatccaaaca tatcataaat 3660

taattagtaa tttagacttg ctttctgctg cacttactta tggaaataat tttacttcag 3720

tccttaaata acccgcaatt tacatcaaag gcactaatat aaacacctag ttacgaaatg 3780

gaaatatcag atatacctgt aaaagtaaag aaacaaaaat acaaccctga gcatgaaggt 3840

atccttcaaa agtgcaatat ctgcatactt agaaccggaa ttagaagtgc gaatgcagac 3900

aataaccatc ccaggatcag aaacgtccaa gaaagttgag attcatcatc cattctcttt 3960

agcaaattta tgaactctaa tatataaatc ataccccccc ccccatccaa aagcaattgt 4020

caagctgcct gaacccctca taatttagga tacaacaaag taatcctaaa agacccttta 4080

caatactagt actcgggtat ttccacaatc ttctcatcat tgaatccaaa gcattgcatt 4140

tgaagaaatc aaatcataat ccattactat attagagcaa aatctatgtc attatagtat 4200

tggagagcaa gtatgactat taccccttta cactaggcaa aacacattgt cacaatgcta 4260

acttagtcat taaccaatat caatatggga ctgtggatat tcataaaatc gaagtttttc 4320

gcttgctcat aaactatctt tcattccagc acagtacaag agagaaaaga cagcattttc 4380

atacacttct ttctttagtt caaattcaca cagcagcaaa aaattcactt cttcatagct 4440

ttagctcagc aaacaaagca caaagcatgc aattactctc acacatagca caccaaaaaa 4500

acaaaaacca ctaaaaattc acacaaaaaa aaccaacaaa aattccatcg caatttcaac 4560

aatcaaaaca atcttctaag ttaaaaagag agataaagat gagaagaaaa actaacggat 4620

gagcaacgaa ggaattcttc gaagaatccc atcgaaatgg acaaacacca aattgaacaa 4680

cggcgaattt ctcagcagaa tctttcattt taaggtatcg aacatcgtgc cgatcaaact 4740

cgaacgattc gcgccaaggt gagcttgtaa ttccagtcat ttcgagatca atggcgacaa 4800

aatcggcaga ttttacatgc gtagtgaggt caattagggt ttcttcgaag tttgattttg 4860

ttacattttt caaagagaaa ttagttgttg atgttgaata atgatgataa gtagttaggg 4920

ttcgtagtaa ggtggaggaa agagaaaatg gcgtcactct gacaagcttc ttcattttgt 4980

tcttcttcct tagctctgtt ttcagtcact gcgccatttt tttaaaaaaa aggaagatga 5040

acaaagcaaa tattgaaccc aaattttgta attttggccc actttatatg tacccctccg 5100

tttcaaaata tggagcacgc cgcacacacg acatttaggg tcgaattttg aacattcttc 5160

aagatgatct aatggtataa tctctataat ttatatgtgg catattataa taagagtttt 5220

atgaagtcaa aaagtggatg tcatatattt aatgcatggt aagtttttcc taaatctgta 5280

tactagggta acatacatat gttgacttga agtatatata attcttgtag tataaatatg 5340

gctttggcca taagtagtaa tacacaacaa ctagaaaaat tgaaatcagt ccactgttat 5400

cttgtactct ataattttct gtttcctttt gtttcgcaac aaagacatat ttgtggtgaa 5460

agataatttt cgtaaattga atgacttata ttttgaaata aagagagtat taggtaaggt 5520

tacgtgcttt tcgcttgaat ttgttagacc tcaaatgtat atgtgattag aacggattgg 5580

ctctagtttt tattttatag aagtatatat gcatttttct tagagcacac tcgaaattac 5640

tttcggatag atatattcgg gaaaaaaaga ggttgaaggg aagttcatca ataattatgg 5700

taaaggaaaa aggacatcgt tacaattcta aattctagat aggatgtgat gataatccaa 5760

aagtcatctg aaaaactaaa caagtccaag atgctaatga ttcgagtaga gattgaatga 5820

gtgaccctaa ggattgtcaa ccctcttatt ctaacgtgtg taaaagaatt gacaactcta 5880

agagttactc aaacattttt cgattcgagt ggttaatata ccaatttgaa actattgaca 5940

ggagttattt taatgagtat aatggtcaat ggagcactga attccatctc acatagtcac 6000

atatttcatc tcaagttctg atgatttcaa acattgaaaa aagatgatac aagcaattaa 6060

ttcctaggga aacatattgt ggttttcatg gatacaagag tgagaataaa tcaaaactta 6120

ggctctaaca tttcttttct ctactagtaa ttgctaatta tatcaattca attgtcagtg 6180

taatcagtta atcaccaaat ctcttgtata gtcagtaaac tatacactgt ttagtcctct 6240

ggattttgcc cggtcgaatt atgcagcata accaaacttt gaagtttagt acttcctttg 6300

cacccaagtt agcttcacgg cccctgcctt ctggtggatg gtcaccctat gctttgagca 6360

ttctctgcaa tgcgcacgat attcaatgag aacgtcgcct tgaaaatcta aattgcaact 6420

aaaaattaga ttgaaatgaa acccacaaga gttgtttttc tgagtagttg gtgtagaatt 6480

cacaagtctt gctccattgt ttgaagatat gaagacaata atgtgctatg taaagtgcag 6540

ccgctagcta acagtggaag tggaaacttg atcattttac actcgcacaa gcgaaagctc 6600

ggctgacgtt gcaaactgaa gaaaaacctc tcaaaccaat tcgacttttg ctcaaagttg 6660

caaactaaag aaaaaggctg aatgcaaagc aagttcacca atgaacaata gatcggtgtt 6720

ggcctgaggc cacatcaagt gaagttgcct aattgcggcc ctctcatctg ttcacaggaa 6780

tcattttcca tatagaatca ctccaaaata aaagagcaaa gctgcaccag atgcagaagc 6840

ataactttca agacaactga tgacagataa atagcaaaag aatgcttaag aaatgatcaa 6900

aattgaatgg ctctggaatt acctcatcag ctgattttcc tttctctcta tctctctatc 6960

tctttactcg tctatggagc taccacatca catggcgttt catatgcttt ctgccgtcga 7020

actagacgtg cagcaaaagc tccatccatt gaatgcttca ctgggcatga gcgataaaac 7080

ccatcttcag ttaaaaagtc agatggaaca tatctgctta cagaatctct ttggaagtcc 7140

tatcacccaa caaagaatat attaaaatag agaaggagaa aagaacgtat ctatctgtca 7200

gcatccatat gaggtggaaa ctaggagtac tatataaagc cagtgcagta gctcctaccg 7260

gatgtctaag aaggaaggca gaaaccctat cttcgttttc ttcaagatca atggagcagg 7320

tactgtacac aagcacgcca tctggtttga ccagcctgta gatgttaaac aatcccacag 7380

acaaaaggga ataatatgag tgaaacaagt caacaggggg aaataaccaa taattctagg 7440

actgtcaaac tcaagctctt caaaaacaaa gatagctctt aatctcactt gcaagcagca 7500

tcgaacagct cgtcctgcaa cttctttagc tcttccatat cctctgactt tctattccaa 7560

cgcaaatccg gcctcttcag caaaaatata aagttggaac aaggctctta gatacaagaa 7620

ctgaaaaacc ttcgacatat aatggactct atcaagggca caatgacaaa ttctaaacat 7680

gagcatgtat atcaataaaa tactaagaac cctttcaatg gtactgctag aaggtttatt 7740

gctacacttt ttagtacacc atctataggt tttatagtac catcaaaatg gttcatggtg 7800

ccataagaaa attttatgta tttatggtac tatctaccat atctaatttt ctctgtaaaa 7860

atgtatttgt agatagagac cacgagttcc tcttttagat actgactttt ttttttctac 7920

atgatggcca acagacttct caaacaaaaa gaaaaagaaa atatttagat aatatgagca 7980

acaaaatagc aaccacctac ttttgatagt acacccaggc ccgaacaagg aacatctaaa 8040

agaactttat caaacttcga agtgttgctg tcctgaaaag aatagaaagt aactgcttca 8100

acaaagaaga agaggcagaa agcaaagcta gtacgcattt tgcaatgact tactgaaaag 8160

gagcgaagat cagcatggat gcaagtgatc acattatcaa cacgctgcag cttggctgtt 8220

tcttcaagta tccgtaaccg acctttattt atgtccattg ctgatatcat acctgaaaag 8280

ctacacattt agaatgcaga accagcatca ttggtagtta agttatcact ataccttggc 8340

cattcaagcg agatgccatg aagagtgtct tccctccagg agcagcacag caatcaatga 8400

tgtgatcacc aggctgtgga tccagaacag aaacagctag acctgcagcg aagtatagat 8460

gtaaacttgg gttgggctgt cacatttttt cacatcttat cttcctttct attctttcaa 8520

aactgaggag aaatggttgg gatttctata aacgtgagaa aaatggcatc agattagatg 8580

gttttactgc atgaaaaaaa ttgaatgtgt ttcggcatca cattactaca aggtcaaaag 8640

cactatcttt gaaaatgtag gacataatgg gacagagatg tgctgacctg cactctcatc 8700

ctggactgag cataaacctt cttttagaag tccagtttgt atcacaatct aggatatgag 8760

aaaacaactc aagatgtaat tgctcctaag atatcaatca tttcataata aacataaaag 8820

ttattattac aagacagcac ctgcatccca cttctgatgc agacaaagtc atccaaatgc 8880

aaggaaggct catgcgggac ctgcggacaa agtgttgtga tgcgcataga tatcgaaaga 8940

aggccctgta tagcactaat gagataagat tcagtaacct tcagcatgtt gagcttcaca 9000

acaaggtcat ctcgagttaa tccttttgca atattggccc tagtaccaag aaaaccatat 9060

gtattaacaa gagaaaagtg gcatagggat ctttatgact taggtaagca gttggcaatt 9120

agagagaata aaacccccaa acctcaagct gaaactcgga acactattgt tccacatcat 9180

caatttgata gctccttctt gcccaagata cttggtccac cgtcttacca tccactgaaa 9240

ggaaggtatt aaaagggaga aaagactcgt cagcatagaa aattgtacat cttaaatttt 9300

agaagtatag caccatcttc aggcatcagt caacgtaaat aaataccaca tctacaaata 9360

gaaccatact ttctggacag tcgggatcat gagcacagac aatactgcat gattattgcc 9420

tcgtattctc atgtatacaa gtatatgtaa cattaaatag cagtatttct tgagaaactc 9480

accacgggat gggaataagt tgtagcaagg gcacgtgctt gtgaacgatc atcaccctcc 9540

aatttgggta caggaaggga gtcattatcc tataaagaga aacagctttt gttttcaacc 9600

atatcaagac aaacagttta ttaaactata aacaacaaca atacacatgc acacacctac 9660

tgggaacaag atatatacta ctgataagta ttttctgatt gaagaaaaaa aatctcattt 9720

atttgcaaat atagatttaa tgacaagaaa gctttgaacc ttaaggaaaa ctagctttcg 9780

gaggatccca ttcaccatgt ttcctgcgcc tggtctaaga gcatacttgg caagattcac 9840

attctgcaat ataatccaac agtaagaaca cgacatggat ttagactcaa gtctctgaac 9900

ctatagaaca agtaaaatta gatcttatct catttgacaa tttaaaatta gatagtgcaa 9960

tattctgcag ttataagact tcatgtgtgc atactgcaca agtcatctta aaggtgttat 10020

taaagcttta attgccattt gacatcccct tgctcaactt tagcatgttt ttaggctaca 10080

acaatacgca ctgtctacat ggacatacaa attacaagcg tatggaaaag caataagcgc 10140

aaggaagtct tcagccagaa actctctatg agtccaacaa tatgcaacta aatatccaag 10200

taccgtgaat gagtaagaac taacctcgtc aacaacagca tatggtggca tttccagttt 10260

cacaatctca tagcatccaa tcctgaggat ctaaaattaa agataaatca atacacaaca 10320

tatgatatgg gtcggagcgt atataacaag tatagcaact acatttgaac agataacagc 10380

ctttgagaca ataaggaact ccgacattcc agtatatgcc agatttcata tctttagctc 10440

taaattgcca cgcaaaatgt tattgggcaa tatacctgta gcaggagagg ttccatgttc 10500

ctaaaggagc tttcatcatg gcatgaagaa acaataagat aatccagata ttttctccaa 10560

cgaattgaac caccaacaat gtcagtgacc tacaaagaca agttgtcaac ttaaaacttt 10620

tgaagcgtca tttcacttct gtagaccaat acaaaagcta ctactgcttt acatcataaa 10680

acctttagtc cttaggttca tctgattggc aaaaaaggtc cagatgcaag aaaagcaagt 10740

agctgtaatg ctgtattata tcagcattat tcagaacaga ataataaata tctacagatt 10800

ttgggtggaa gcttgatgat agagtatctc cacaaagaga actcgcttga gtcccaactc 10860

ccaaatctac ttttttggag tcacattatc agtcattttt tctggactct tataggaata 10920

gtgtgctatg taatgattta tggagcaggg gcatttcatg aatagcttta taagttagta 10980

tgggtgtctt ggggaataag ttaaagggtt agttagaggg aagaagtaca acatatatat 11040

agagcttttg taagaagggt ggttatgttg aaaatagatg agaaattggg tgagctcata 11100

gtagttcaat ttggactttg ggagagaatt aagcctcttg aaagcttgaa tatcatttac 11160

atttgttgtt tttactctta ttaatcaacc aaagttcatt ttcttccttt aatttctcca 11220

ttttagcact atgatttgtc caagctaagt gatttcttag catagtgcac agtgtagtat 11280

atcggagaac tcatttgagt cctgaaaggt cccacaagtt acatttttcc tactactact 11340

tgcaccaaaa caataagcat cattaagaca ttgtcactgg tccttcttag gttcttttgg 11400

aggggattcc tcagatgggg gaggcaccca tgaaggaaca tgttaccaag caatgggaca 11460

atgcaaaatg caccaataca gtagcttcac ttcattgatt gcatctatgt cacggaaaac 11520

tgaagaaaga agcaacacct caactttatc caggacagat atccactaac ctaggatgca 11580

agcttgagac tatttagcaa ttgcctctgg gatattaaat cagattacga ctatatttct 11640

acagttattg cttaagaaaa aggtacgatt tgaagcttgg gaagaaagag aacaagagta 11700

aaagaccaat ctgagatctc tttcatccag gtctctggtg cgaaatccaa gagtcctctc 11760

aacatattcc atctcattgt tccctgaacc ctttcctctc tcatttagaa gatcagcgaa 11820

ggcaccacca aactctatcc gcatcaatct cacagcagcc actggattta cacatgaaag 11880

caaaccagga gaaccataaa aatcacaaca aacttcctga tagcctactc actagcatca 11940

accattgtgt tcagcctaaa atgagcggct gttttcaatt gaacagcaac ttacatggac 12000

cactgcataa aagtgatttc ttaatccaga caaacaaaaa tgtttacttc aaccaactga 12060

atttgcatca gctcattagt gatttgacaa gttctaattt atgtatcaac aaacaagacc 12120

atatagctag gaaacaagag gcttaggcta agcttaatgc gtgaacaatg ttagatttca 12180

acctatcagc actgtggata actgcaaact gcgacttaaa taaggaagat aaaggaactg 12240

aatatgcaat ttcaaggtgc tcagcatttg aatcaacagt tacttcagat aattcagaac 12300

ataaaagatt tgaacattct aaggctacct catgattgca agcaatgtta cctgattcgc 12360

taaccctcac aagccacaag ccaaagaagc aatttggtaa atggttcatg gtacaactgt 12420

tcgcttttgg actaatctaa caatactagg tggtaaatta tgttcccata tctattacca 12480

taatgtacag caaattaggc agcactaatt ccaaatgacc caacaaaaaa agaggaagaa 12540

aatccaaaaa ttcaagccaa catatgcact aaaattacaa gcacaaaatc aaataatgag 12600

aatcacacta tccaaagaaa atttccatcc acatttatcc aacacaatta tctctctttt 12660

acacccaaat tatgtcaacc aaaaacacta aaacaagtga gtgcagtagc ttcacatcaa 12720

agaatatcaa tcacaaacac cacataataa aatttcaact cctgcccaaa caaaaaaaat 12780

ataaagaaaa aaaaacagca aaatttcaaa gataaaatag aaaaaaaaaa atcaaaatac 12840

agggggaaaa aaagtaaatt taccagctct atgaggcgaa acctgcaaat tcagcttctg 12900

ggttttctct gaaatatcaa gcacaataac cagcaattaa aaaaaattat aaataaaatt 12960

aaaaagaaaa gattgataat taaaatcaaa agagagcaat ttaaagcaca atcctttttt 13020

taccattttt tctgggagga agagcatcct tcgttttggg tttagacgaa aaaaatgaga 13080

gttgttgtat ttgtgcgcat gagtgatcat tgctggaaat gaaagtggga aagtggtaaa 13140

tgagtgcttt gtgaaattgg gttttgagga aaagtagaaa gaagaagaag ggtcgatgtc 13200

agagaagaga gagagtggat ggaaagtagt gatgattgcc tccattgttg ccggtgaagt 13260

gagctttctg caaatatttc actggactag ttttttttag cagataacgc taaaacagag 13320

aaagatgttc ggttaatttt aatttttgga catttaaatg actattcaat atgtttcaac 13380

cttttttttt taaaacaaag gaacaatact agtattagat tacgttaatg tttagtacat 13440

ccaatactta tgtgtgtttg acctaactta aaatcgtaag ttgtttaaaa tgtcggtgtc 13500

ttgtttttaa gagatatcat acttactatc tttggttttt actcttccat tgttaacaga 13560

aactgtattt atttgggtaa ggggtttgag tgaattcctg taagtatgag aaagttttga 13620

gtgaagcaag agaaagagag aagaaaggaa cttcgagtga agattgagag aaacaacagt 13680

tagtgggaac tgttgttggg aacttgagtt taggagctca ggttgtaccc cgagagaatt 13740

aataggtttg taacagagtc ggtggcctat tatagtggaa agtttgagtc aaaatccatt 13800

gtggccgatg tcgtttcttc ttattgggcc taggaagttt ttcctcgcta aaatttcctg 13860

tgttcccatt gtgtgttcct tagctagctt tcaattccgc aaaaagttac gtttattctc 13920

tcactataat tcacccccct cttatagtgc tcatattata caacaattga tatcaaagca 13980

ggaactctaa aaatacagaa atcatgttga gttcaagatc ttggaaaata tgaatactac 14040

agaaaaactg gaagaaaggt actctactca gagaccaccg atgttcaatg gcaaattcta 14100

cacaaactgg aagaactgaa tgaagatctt catcaaagcc gacaaatatc aggtttgtag 14160

aatcatagag gcaggcgatt ttgaagtcac taccactaat gacacatatg aggtaattcc 14220

taaattcata actcatttcg ataaagtata tttcgaaaag ttggaaatta acgttcttgc 14280

tattaaactg cttcattgtg gtcttagacc tcatgaacac aatcatgtca tgggatgcaa 14340

aatcgcaaaa caaatttggg atcttcttga agtcactcat gaaggtacgg gtaaagttaa 14400

gagatcaaaa atcgatcttt taatgaatca atatgaactt tttcaaatga aatataagga 14460

gtccactcaa gagatgttta cacgctttac taatactatt aatgagctaa cctctcttgg 14520

aaaagaaatt acatatgatg aacaggtaag aaaggtccca aggatcgttg gatggctaag 14580

gttacgcctt acaaaaaact aaggacttta cgaagttcaa tccggaacaa cttactggct 14640

cccttatgac tcacgagcta cacttggaca ctgagaatgg tgacttgtcc aaacagaagt 14700

cgattgcctt gaaagccatt tttgtcatac cgtcaattaa ttaagtaaaa agtggtaaaa 14760

gaattaccaa aaacgcacaa aataaattaa ttagttggat ataactaatt aacctattcc 14820

ttttttctgt cgctataact acttttgctt aacttattga tggtttgatc gttgaatcca 14880

agttttctcc acccacaaag atattataga ctttacttta aaaggtacga taaataatgt 14940

ttaatcaggt atgcatcaac cttgaaatta ttaatttatt aagatcaaat tatgcatatt 15000

tatattaaac gtacaggact tgtgcacaat ccatggatga tattgtagat tttgttgtaa 15060

aggagttagg gacaaatgat gttgaattaa gaatgatgag gaacaacatt gaggtaccta 15120

atggcataca agattatgtg gtaacaaagg tgaagaagtt ggttgtacca ggcaatacag 15180

cagcggcaag ccatatatag gatgagctac cataccctta tgttgtgaac tattgtcacc 15240

accaacaaga cattggtcat tacgacatca ctttagttga ggaatgataa acctcttttt 15300

gctagatatt tgcaaacatc tagcagataa agaggaataa aacactattt atatttcatg 15360

aacactattt gttagttgca tgaacactat ttttagttac acgaacacta gttttagtag 15420

catcatgaac actatttttt agcatcggaa ttttcacgac tactttttgg tttgactgac 15480

actctgcaat tttcgagata actttttggt gatatgggtc ccatgaaata gaagatttat 15540

atttcatgaa cactatttgt tagttgcatg aacaatattt ttagttacac gaacactagt 15600

tttagtagca tgaacactat tttttagcat cggaatcttt gcgactactt tttggtttga 15660

ctgacacttt gcaattttcg agataacttt tttgtttgac tgacaactat ttcctatata 15720

tattgacagt tttacccctg ttagatgttt gcaaacatct agcaaaaaga ggtttatcat 15780

tcctccactt tagttagccc aacctccagt aacgccatcc agaccactgt cgtttgtcac 15840

tacgacactt acgcttggca accctatgtc ctagcccttc gatacctcga tatccgtccg 15900

ggcaatgtcc ccagtttgtc acttctctgc cattaatgac atattttgga gtatcaaacc 15960

caactccaag tatatatcgc aacatggctc agtaaagaga gtcatataat catgacgtag 16020

tttctatatg ccatcctacg tagtatcttg taacatgaat aacagcctgg tttgcaggtt 16080

gatggtacat ggtataaatt ggtattactc cctccggtct ttattagttt aatcctttct 16140

tttgtacaga gttataggag aaataatatt gtgggtcata gaaggaaaga gaaattatta 16200

ttttatgtta aagttgaatg tatgtgtgat gaaaagttag tagtcccatt tcaaaataga 16260

aaaaaaaaag gtaaactaat aagggacatc ccaaaaagga atacgggtaa actaataaat 16320

atccatgcag gttgttggta catggtacat gaagccgtcc aaaaccttca aaagcagtaa 16380

gtcctgctgc tatgccatat tcaaatattc aactccaaaa aaaaaaaaaa aaaaaatcaa 16440

aaatccgctt ttcagcgaaa atataggaaa taatccaaga atcgaaatcg aaataaagtc 16500

atgatgcaag tttggagagc tgaagttaca ctatatcgga gtacttactc aaatgttgat 16560

tagtactccg tgcgtttgaa gtaaagtcac atatggagta gttccaagct aggttgtaca 16620

gtgacggata aggatactgg gttgaaaagg tgaacgtcga gatttatacg tgtatttatt 16680

taaacaggat acgtatcata ttgggttctc atacgcgtac cagctgtgac ttagaaaaat 16740

taaccacgct atataggttc caagccctca tgattacctt ttcatagtgt aaatttcatg 16800

tagttgaatg gtgggaatcc aatcacaaaa acactgcagg taatggaaat gttccaactt 16860

tttccaagca ttttaaaata agacatgtga ttactaatta gggcgtgttc ggcaacagta 16920

attgtggtga tagtttttag ctgtgagagt agttgttagc tgtgctatta gcttttagtg 16980

gttggtgtgt agctgttagc tgttagatgt ccaagtagcg gtgtaaaata ttgatgttcg 17040

gtaaaagaag ctgtcaaagt agctgtctaa gaataactag ttaaaaattc aaataaaact 17100

ttaacatata atttatacac cactaaaagc tacccaaaag ctacaaattg tagcttttga 17160

caaacactac taaaacacta cttgtaccac taaaagctac ttacaccact atcttgccaa 17220

acactcttat tttttctaat tagtgttttg acctagtcaa gacactaaaa gctacttaaa 17280

aagcttgtgc cgaacatgcc aattctgaac caaggaacaa actataacaa aaaagtgcta 17340

tgtgaaactt ttgtaggcaa cagaagtaag gcatttttgg aatgtactaa caaatccgta 17400

ttaagacttg tacatgaaaa ttaccgtggt aacatttacc cacacttcct cattcacgta 17460

ctccgattca ttcttataag ggcataaccg cataaggcac atcaagatcc atgtatctaa 17520

tagtttaatt tgcctctgtg tttctgtatt aacaatgagc atagtgagtg caaaagccat 17580

ggaagctaga ttaaaaaggc catcattcta agttagacaa ttggaaacaa catcgagata 17640

cacgtacaca taagggctgc tcttctctat tactccctct gttcctaatc atttgctttt 17700

ttagcgggtt ccaaaggcct atgtttgacc actaatatat ttaaattaaa actggtgata 17760

tatattaaaa gaaaattatg atgaatttaa caaaaaccat atatgttatg tccttttttt 17820

tcctatatta atgaattttt acagtcaaag ttggtgaact ttgacccaaa aaaagaaatg 17880

gagcaaaaaa aaaaaaaaaa aaaaaaaact agggacaatg agtaacattt ttatctatgt 17940

ctttttaata tgaatatacg taacaaattc tgcaaaaata gagatagcaa ctaataacac 18000

gcatgaaaat gacaagttat attatacctt tttttctcaa tatatgaata tacgtaacaa 18060

attaactcca gtagttttta gtaaaactat tagattattg tgtaacatat actctggaaa 18120

tagtactaag atccattaca atctttattg agaaatttcc tcatgtaccc cctgaggttt 18180

ggcgtaattt ccaaataccc ctcatatttg aggaatttct caaataccct gatgtttttg 18240

tttagactca aaataccttt actatggaca gtaccctaat gtcattaagt tttccccttc 18300

tctctcccca attttctctc tcctcccatt cccccaccca ctacccactg cccactgcca 18360

agtaggggtg taagtggatt ggactggatt ggactttgcc aaattcaaat ccagtccaaa 18420

gttttttgga ctcgagaaat tgagtccaag tccgatccaa atattttttg agtccagtcc 18480

aatctagtcc gataattttt tcttgagtcc gaatccagtc cagtccagtc cgattattat 18540

atcttttttc ccgatttagg ttcaatgatt cacaacattt tttgagatgc ttgagcattt 18600

gacatctgat tcaattatca atatccacaa ataagattga aagcttaaat taaagtaaaa 18660

tactatgaat aaaaagttga attagatgct taccttgatc taagttgaga ggaagcatag 18720

agactgagaa ttaatctgag ggacaaatag agaatgcgag agtcgagaca gtgaggtaga 18780

aagaaaatga agagtaagag gaagtgagta ttaaggactg aggagtaaag taagatagaa 18840

ttagttggct actagcctac taatgcagta ttgctagtat aatttactta tttaacaaat 18900

ggagctaagt gcaatagttt agcgccaatt gacatattta gagagagaag gctgaaaaat 18960

ccaatatttt taaaatagta tcattatttt taatatatac attatatata aaaatatttt 19020

tggactggac tggacatatt ggactccaaa gggatgagtc caaatccaga caaaaaatat 19080

ttggacttga aaatttaagt ccgagtccag tccgaaaaat tttcagtcca atccagtccg 19140

acaaatttgg actggactgg attggactct gaacttttcg tagtccgctt acacccctac 19200

tgccaagtgc caaactgcca accccctttt ggttgagttg atatttgacg caaagacttg 19260

gcgtgttgga aggttcatta cacattttat ccaagtcaac tttgaagtct tcttagctag 19320

agactagagt gaacgtgttg gaaggttcat tacacatttt atccaatcaa actttgaagt 19380

cttcttagct agagactaga gtgaacgtgt tggaaggttc atgttcatga cattataaaa 19440

gtaataatag tgaaatttca caaagtattt ataaacccag gacagactca agagctctac 19500

ttattattag tgaaaaacaa acatacacac gacaataaca caacataaac aataatgaac 19560

atgaaaatcc tccttttgtt tgtcttcctt catcacctcc actacttcat ccatggcaga 19620

acacttacag aacgccaagc tttactaagt atcaaatctg ccattactta tgattattat 19680

aactctctct cctcatggaa aaacacaaca caccactgca gttggccata catcacttgc 19740

tcctcctctt cttcttcttc ttctgttatt tctctcaact tcaccatgtt atttctcgaa 19800

ggaattctct cccctgatat aggcttcctc accaacctgc aaaacctctc tattcgatct 19860

aacctttttt ctggcccact cccccattct ctctctctcc tcacccaact ccgctatctc 19920

gacgtttccc aaaacagttt cacaggtcca atccca 19956

<210> 75

<211> 19206

<212> DNA

<213> Beta vulgaris

<400> 75

ccaacaattt gttagccgat gaagagcatc aaaaccaaaa aaaacaaaaa aaattgatta 60

atatgcatga gtgtgacctt gttttccaaa gtttagcatt actattagtg tctcaattca 120

taataataaa aaaattagct tgttcaagat ttgtattttt attcaaagat tttttttgtc 180

tcttgtgctt cttttatctt atatatattt tttgtatggt ttgtttttgt ttaatattag 240

tccctccgct caaaatgatc tttcacgctt gagattggca ttaaggtcaa gagatgttgc 300

taagctttag aataaaaaaa ttccaaatgc atagagggaa agaaagcgag acaaaatgtt 360

ggagaaggca gagtaaatga tgtgatggag gataaatagt agaagtgtga taccgaaagt 420

ttgaaaataa taaggaattt tatttcttgc tggcactttg ttctagtaca ggtttttagc 480

ccttcaaaat gtttataatg tagagtcaaa attaatatcc ttaactagtt tttaagtccg 540

ggttatatcc tagatattaa taatattcat ttattagtaa cattttattt tataaatata 600

atactaagca ttatttggtt tgctggttaa gactttagtg tatatctatt tctttttttt 660

tttattgtat gcgtgtttac ataaactaaa gactataagg gatagtacca cgtggcgcag 720

ttccttgctt aggaacgtct tttaatatat taactagtat ttgggcccgg gcgttgctcc 780

gggttggtat tgtgtttccg aacatgatgt gcagtttttc ccattcccac taaaatatat 840

aaaggaaaac tcaacattta aaagatacaa atataataat atggacactt aaaacatgat 900

taaaagttga ttgagatggt aattgtgtca tgttataata gtaagaggtt gcctaattga 960

ggttgaggtg gtggagtagt ggtatcgctt cccatctgtt atccctgagg tataaggatc 1020

aaacctcata ggactcattt gagtaatttc ccatatcctc ctctcaaatg agtccttttc 1080

atctgacaaa aaaaaagagt ctaattttaa attaaaatta gacgatcttt tataaaatcg 1140

gcactttctg cacataggtc acaatttttt tgtttctatc tctctgcttt ctttaatttc 1200

acagtctcca actctccatc aacatcttac ttattttaga atagatgatg tatggtagta 1260

ttaaatggta aagtactaaa gctcctataa tacacagaag cttacatagt atagattcgt 1320

acatgagaca aggttacaat atactttctc cgttcttttt atattacaat aattactatt 1380

ttaagtagtt tcacatctat tgtaacaatt ccaattttgt tatagaaagc aactttaata 1440

attgacaata ttgcccttac tttatcttat taaaaccatc attaattact cactttctct 1500

tataaaattg cttttatttt ctaaggatga tttctctcct attctagtta attaaagagt 1560

tacttttgtg ctaaactgct catttattcc aaatccttaa aaattgtgtc caaacgtatt 1620

gttgtaatat aaaaagaaca gaggtactat tagtttgaat aaattttgat cagattaggt 1680

cacctttagg gggcgtttgg ttaggggtat tctggaaagg gtaagggaat caacttactt 1740

aattccctta cttgttgttt gtttgctcaa tttaatgatt ccctttaccc accccttact 1800

cccaaagtcc tttactctca ttctccccac cccccaaggt ttcacttacc ctttcttgat 1860

tcatcattga ccatatcttt gaccacccaa ctaccaccac cacttgacca cctaatcacc 1920

taaccaccta attacccaac cactattacc acccaacccc tccacctgcc caccaatcgg 1980

caccataact gcccaaccgt cgcccaatca agccacccaa ccggcaccat aaccgcccaa 2040

ccaagccacc caaccggcac cagaaattgt accaagctac ccacacacgt gaaaaccacc 2100

cacccacaag ccctagaaaa aatggaagaa tcgagagaaa gggaggggag agaaaagatg 2160

cagcgactag aaggggaggg ggaggatgtg acggcaaggg gagagggaac ttcgcagcgg 2220

caaagggagg ggaaacgtcg cgtcggcaaa gggctaaggt ggaattgacg gggttgcagc 2280

aacaagggga gggcatggag acgtcgtaac cgcaagggga ggggcagcgg cagtggaact 2340

ggggtggaga ggggtagtgg cggcactagg gtgtgggaga ggtggcgggg gatatcaaga 2400

gaggggggat atggtggtgt tatggtggaa gcaagaagaa gaaagaggaa agacaatgta 2460

ctaaccaaac aacacattaa atctaagggt tttggtttcc tttccccatc tacccctttc 2520

ttgattccat tccctttacc cctttacaac caaactcccc cttagttttt actacttata 2580

accttcaatt ttggctgttt tttgtgacat tttttacttc tccgagcctg gtcatatttt 2640

ctcccgaaac atttcgagga aagtcgaagt gacttgtgaa gttgtgcggg tgcttggcac 2700

catttgtgtt gcctcgaaaa gcatctgaat accccattta ttcctttctc ctgaaaccca 2760

aaattacctc gcaataaacg aaaagatatc catatatttg ttccaagcca catgactcct 2820

ttccaacgac ctcccatgtg accatgtcct tagaaggcat cccgtggcgt tcgaagctcg 2880

gacccccgga aagtccgaaa gtgtgtatta taactttcaa ttttggctgt ttttgggata 2940

ttttttactt cttcgggcct tgtcatattt tctctcgaaa cattcatagg attgtcaatg 3000

tgacttgtaa gttgtaacgt tgcacgggtg cttggcacaa tttgcattgc ctcgaaaagc 3060

ctctgaacac cccatttgtt catttctcgt gaaatccaaa attgcctcga aaaaaacgta 3120

aaggcatcca catattcgtt ccaagccaca taactcattt ccaatgacct cccatagagt 3180

ccgtagctcg gaccccagga aagtccaaaa acgtgtacta taaccttcaa ttttggctgt 3240

ttttgggaca tgtttggact tcaccggcct ggtcatatta tcttccgaag cattcctaca 3300

aaatccgacg agactagtaa cgttgttacg cgggtgcttg acaccatatg tgttgcctta 3360

gaaagccttt aaacacccca tttgttcatt tttcgtgaaa cccaaaattg tcccgaaatg 3420

aacataaatg catccatgta ttcgttgcaa gccacatgat ttctttccaa tgacctccca 3480

tatccttagg aggcatgcat catgtggcgt tcggcgagcg ggtctcggga aagtccgaaa 3540

gcctgtgtta taaccttcaa ttttggctat ttttgggaca tttttggcct ttttcaagcg 3600

tgttcatatt ttctcccgaa gcattcctag gttaggcgat gtgacttgta aagcgtgggt 3660

acttggcacc attttctttg cctcgaaaag tctttgagca ccacatttgt tcatttctcg 3720

tgaaattcaa aattgcctcg aaatgaacgt aaagacattc acatattcat tccaagccac 3780

acatgactcc tttccaatga cctcccaagc ccctaggagt cgtcccgtgg cgttcggatc 3840

cggagctcgg gcccccgaga atgtccgaaa ccgtgtatta tgaccttcaa tttttgctgt 3900

ttttggaaca ttttttgact tctctgggct ggtcatattt tctcccgaaa catttgtagg 3960

actaccgacg tgacttgtaa tgttgcgtgg gtgcttggca caatttgcat tgcctcgaaa 4020

aacctttaaa caccgcattt gttcatttct cgtgacaccc aaaactgcct cgaaatgaac 4080

gtaaaggcat ccatatattc gtttcatgcc acatgactcc tttccactga cctcccatgt 4140

ccctagaaag caccccatat ccgaaagctt gtattataac cttcaatttt ggctgttttt 4200

gggacacttg gactttttcg gttcgttcat attttctctc gaaatgttcc tagaaaaggt 4260

gacgtgagtt gtaacgttgc gcgggtacat ggaaccattt gccttgcctc gaaaaacctc 4320

tgaacaccgc atttgttcat ttctcgtgaa actcataatt acctcaaaat gaacgtaaat 4380

gcatccatat attttttcca agccacttga ctcttatcca atgacattct atgtccttag 4440

aaggcactgc ttgtcgtcca taattcgggc cagggaaatg tatgaaagtg tgtattataa 4500

ccttcaattt tggctgtttt tgagacaatt ttttacttct ccgggactgg tcatattttc 4560

tcccgaaaaa atacttcgag tgccgacgtg acttgtaacg tcgcgcggat gcttgacacc 4620

atttgtgtta cctcgaaaag cctttgaaca ccacatttgt tcatttctcg tgaaacccaa 4680

aattgcctcg aaatgaacgt aaaggcatcc acatatttgt tccaagccac atgactcatt 4740

tccaattctc tcccatgtcc ctaggaggca tcccgtggcg ttcggagctc ggaccctggg 4800

aaagtccgaa agcgtgtatt ataaccttca attttggctg tttttgggtc attttttgac 4860

gtctcttggc ttggtcatat tttgtgccga aacattccca ggattgccga cttgacttgt 4920

aacattgctc gagtgcttgg cacaatttgc attgcctcaa aaagactcta aacaccccat 4980

ttgttcattt ctcgggaaac ccaaaattac ctcgaaatga acgtaaaggc atccacatat 5040

tcgttccatg ccacatgact cttttccaat gacctcccat gtccctagga ggcatcccat 5100

ggcattcgga gctcgaacac tgggaaagtc cgaaagcgtg tattgtaacc ttcaattttg 5160

gttgtttgtg ggacattttt gggcttctcc gggcctggcc atattttctc ccgaaacgtt 5220

ccttggaaag ccgaagtgag ttgtaacatt gcacgggtgt ttggcaccat tagtgttgcc 5280

tcgaaaagcc tttaaccaac ccatttgttc atttctcgtg aaacctaaaa ctgcctcgaa 5340

atgaacgtaa atgcatccac atattcgttc caagccacat gactcctttc caatgacctt 5400

ccaggcccct aggagtcatc ttgtggcgtt tggagctcag tccccggtaa agtctgaaag 5460

cgtgtattat aaccttcaat tttggttgtt tttaagacat tatttgactt ctccgggact 5520

gggcatatta tctcccgaaa cattactagg agtgccgacg tgacttgtaa cgccgcgtgg 5580

gtgcttggcg caattgtgtt gcctcgaaaa gccattgaac acccccattt gttcatttct 5640

cgagaaaccc aaaattgcct cgaaatgaat gtaaaggcat cgacatattc attccaagcc 5700

acatggctca tttccaatga cctcccatat ccctaggtgt acaccccatt tgtctgatgt 5760

tataatagca agaggtcacg ggttcaaatc ttgttacaag ctaattttac ttttgttaat 5820

tgacatgact tatgtacaca ttggacaatt atagtggagt aacaaaggtg acatgtgacg 5880

cgtatacatt atcacacacg tcttttaata tatttgtata gatctagatt taagagtaat 5940

ttttttaatg cgcaatactt ggccaatttc ttctgtatca aatcataggt ctttggttgg 6000

ttcataagag taaagaccaa aataataatc tgaactgcaa aaattttctc caagagttaa 6060

aagtttgtat aagttagatt aaaaaaatta atgacatatg atgtagttgg acattaaata 6120

tgtaagttta gaagtaattg tgttaacata aaaaaagatt cgattataac ataaaaacta 6180

aagaaacaca aaggcgccgt acaacaatca atattaccca agtcccctca ttaatattaa 6240

gggatgacct agctcgtaca tatttaatta tctttgaaaa ttcgttgttc agacttgcta 6300

gttgctattc tatatttgta tattcattaa tcaatttttc aatatgtgag catttacatt 6360

ttaaactaga gcaaatattg tctcttttac tattttgttg ttgtcaaatt ttcaaaaata 6420

aattgctcaa atacttttcc tagtgacata aaaaatagag caaataatca aacagtagca 6480

gacccaggaa cttttacata atgtagacgg cataatgtgt taatttttgc ttcttttttc 6540

taatatcatc caataacaca attctgcttc tattagtttg tagtttcaga tgatgatacc 6600

caaacaataa gaccaagcaa caaattgata agattttgct tctctttctt ccacttggtg 6660

taactgtaac agctttgaag tttaacttca gtaatcagtt gcatatttgg catatgatca 6720

aaacaatcaa attattatgt atggaaaagc aaaaaacttc caggtttcca tctgaacaag 6780

gaggccaaga gggtggaagc aagcaaggat atatgatcat aaaatcctat gaatatgatg 6840

tacaaacctt ttctactgca attaggtaac ctaaatgata ccacctagga acagcaacaa 6900

cttatttaca gcactaaacc taaatcaggt taaagttaat cagaccacca tgtatctggg 6960

tggtctctcg agggaaagcg tctccatctg tatccgggta acagaggttt cttcttctcg 7020

atcctccttg gcttctgccc tcttaagttc ttcgaaggct ctcttggcat atacagtaaa 7080

cgcaacaatg gtaattattg ccactatgaa tgaaataaca ttgtacacaa tctccaccca 7140

tgttagatga tgattcccat acttgacatc tgcgaacgtc cttatcagtc tcccactgca 7200

aatgaatgct atcagcgtca atattcgaga taccaactca tttaactatt gaattgccaa 7260

aaacagatat ctttgaccat atatttgtta ctaaaaataa cgattgataa tgtgaaacta 7320

tcactgatag atttaaaaga acttttataa aagtatagtt tctctaatgt ataactgcag 7380

aaaatagaat ggggtagaca aatgaagtaa ttgttttgaa gaatgcaaaa ggtcaattca 7440

gtaatacttt tatacgtgat tgggggaagc attaaaaatc ccttctaaga taaagatgac 7500

ctcattggca atggaatcga catccacaga cccttgcatt agaacagagt ggaagtttct 7560

gtgaacttac gtgtagatgt aaagaaaagc ttctggcacc atccctgcaa ttgatcccca 7620

tagataaggc caaaacgtca tacttgtcac cacaactgcg tagttgaaga tagtataggg 7680

aaatggtgaa accctaaaga gtgccaccac gcggaactga tgaaaccagc taccttcggc 7740

agcaagccta agcatagcag ccttatccgg ccatctttgc aaccattgct aacaaggtac 7800

aaaaacataa acattgtgga cttaattaga caagaaagtt aaattaaaat caacattaga 7860

taatcaataa atcaaatgta agcagggaac atatttctta catggattct atcccggaag 7920

agcaatccaa gtaaataggg aagaatcatt ccaatagtag ttccaaccat gattatcaca 7980

aaaccaagac cataaccaaa gatcatgcct gcaagccaca tggatgggcc agaaggaatc 8040

agaaatacag ggaagattgc tagggaagta acaaggacca cagcaagaac cggacggcca 8100

aaggcagtgg cttcccattg catcattgga acaagaacct gcagagaaag taccaaaaac 8160

tttgaggcaa aaatttcctg cttgtatatt gcaaaaagta gtacagcgaa ggcattccgt 8220

gcagaatggc ttatagattg gaaatacgga gaacaatgca actataagca caggcccatc 8280

tcttgacttt tgggacaata acatggaccc ccagattgat ttataagttc tcacaccata 8340

gctagatttt gttggaactt tcataaatca tagtgacata agtatagcat aatattcatg 8400

ccttcgacag aagttttcgc atatggtaag gctactattg aaaaaattcc cttgtgtttg 8460

aagtacgcat aaaaatatct agtggcagtc aaccaaataa aacattctag gagtccctca 8520

aaaaattaaa gagtcatcag ttcagaagac tttaatatca atactttcta ttatccgggt 8580

ttggcatgca gtaaatttca tgagaaaagg aaaaatcagc tatttgatta tataaggaac 8640

taattcggat gtatcactaa gctttccatc gactggaaca tcgggagcta gtctccaata 8700

ctcgtcaagg atctaacata aacatcttct ccgcaatcaa aaagccaagg tcacatacat 8760

ctaggcctct gtctcattct gatggcatgg tatgatgcaa gttagacaac actattattt 8820

ggcagatgac acttaggggt ctaatattta agctcattca agataatcaa gtaatcaagt 8880

tcaatctcaa ggtttcagtt gcgctaaaaa atgtaatact tggctcattc agaattagtt 8940

tgttgaagct ggttggtatt tgcttcattt gttaatggaa ccaggctcat aaacaagctt 9000

tcattaggct aaacttattt aacaaaatca aaagcttaat actataattt ttgataggat 9060

ttcttttggg cagttataca tgagtaatga acaagctcta cacaatcttt tttaatgaac 9120

aagctttaat cgagctaggg tacgttctat tcaacttatt ggacctgaac ttattggaac 9180

ttatctgaac tgaacttatt gaacctgaac tgaacttatt ggaacttatt aaacctgatt 9240

ggacctgatt caacttattg gacctgattg aacctgattg gaacttattg gacctgattg 9300

aacctgattg accttattgg accttattgg aacttattga ccctgattga aacttattag 9360

accttattgg acctgattga aacttattag accttattga acctgattga aacttatttg 9420

accttattag acaaaaacat tattattatt attgttatta ttattattat tattattatt 9480

attattatta ttattattat tattattatt attattgtta acctgattga taacatttat 9540

atctttcata gttattagta acgaaaacat gttatctcta gttattcaaa gacgaattgc 9600

aaaatattgt aataataata ataataatat attattatta ttattattgt taaccttaat 9660

tatttgacca tgattataat attattcaat agcaatatga ataatcaaat aatagacaat 9720

aatacaagta taatactata cattgtggta ctttaataaa aaaattctaa taataacata 9780

atcagctaat agtaatatga ataataaaat aatagacata atacaaataa ataataaaat 9840

aatagacata atacagataa ataataaaat aatttacact aatacaagta taatactata 9900

taatcattgt ggtactttaa ttaaaattct aataataaca taatccgcta atagtgatat 9960

gaaattatga ataacaaaat agtggacaat aatacaaatg tttattaaac attgactatt 10020

tggaccttat tggaccttat tagacctgat tggaacttat tggaccttat tagacctgat 10080

tggaacttat tgcacctgat tggaacttat tacacctgat tggaacttat tgcacctgat 10140

tggaacttat tgcacctgat tggaacttat tgcacttatt agaccttatt gcaacttatc 10200

tgaacttatc tgaacttatt ggacctgaaa cttaattttt taagttgaac agaacgcacc 10260

cctagtatcc acgaacatag ttagttgttc atcgacaagg gtgttaattc cttgactata 10320

aaaaaaatat ctgctaatat gtcctccata ccatgtcttg atctgattcc caaaatcacg 10380

tgttttcgtg tctggtgacc acgttgctag acatggaaga caggtctaat tgttcagttt 10440

caagtcaggt tgattaaaca tatgttagca atatacaatc attattagtc aaactaattc 10500

aactcgggtt tggtttgatt caggttatgt cgaggatcag gtccaaatcg ggttaatcct 10560

tccaggtcaa atatatctaa gtctgttttg ccaaagtcta ctttttgtat ccgtgtccat 10620

gctaaatgac aaacaaaaag cagcttttac caagctcgaa tcagatttgt tcgcttaaag 10680

agtcacttcg ctcatttaca gcaacaatta aaggacaaaa cattgtccat tcaactactt 10740

acggatatta acttattggc aactgctagc gtaataaggc aatcaacagc actcggcctc 10800

aataatgaac ctacaaggag tccaatgacc aatacaaatt atcactggca tcatctagca 10860

cgacaatctc ttaactctaa gagtctaagt gccttgacat acaaaagtat tccttttaaa 10920

agtacccccg tgtggatatt ctgccaagca aatgcaatcg atacacccaa ttagggcttt 10980

tccattatga gtcctcagag cctcagattg taaaacaggt cagtaaaaga ggaaaatagt 11040

atttgattct tttgctaaac ccttggatat aagaatggtg acttgtattg tcacgccaag 11100

cttctttcat aaaagctgat catattatta tatgagagtt ctgagtttca aggtccgcat 11160

tcgatctaac tagacatcac ttccaattaa agttgagaaa cgaaactagg tgtcctcttt 11220

gtttcccaaa ggtgaacttt agatacttat tataagcata ttttgttatg aatcgggcta 11280

aggagagggc tactcttggt attgcataat tagttaatta cttagtagta gcttgaggaa 11340

taaggaagca agtaagttag aggaaagagt atgaaaatct gctataaagt gaggagagga 11400

gggatagaag gataatcaca aaattattga gttaactttg gttttagttg cttaggttgg 11460

gagtgtccag ccactcgaat gtcttgggac tgtaaacacc attgttcatg atctaattgc 11520

atcaatatta caattaactc atttctcttc ttatccatat tcatcttctt acaatcacaa 11580

ctatttccag atcatccatc caaatcttca tccacttgcc ttagtttcta ctccagattt 11640

cagtctatta caaattgatt tctacaatat gtcaattcat cacaaattat catgttttct 11700

gaacaaaagt tcactgtttc aggacaaata cagaaagaac tactttgatg cttagaacag 11760

atatattgta aaattgtatt cggaatttgg gatacaactg gagaagatat gaataaatag 11820

gcattcaggg agctcagaaa aacagaccgt gccatatggt gctctgctgc ataacaggaa 11880

ataatggata aagtatgaat aacgttataa cttcttaaaa acctagatga caagtatttt 11940

ggttgctttt tattattggt aggcaaggag aatactcaac aacagtttag ccttaaactg 12000

cttcttattt ctcctcttcc cctttttcct gatgatttgg ggttgtcact cagttctttt 12060

acctctcatt tccaggtact ttagagttat attacacaaa ggattgcaag agaagaacag 12120

gtcgccctgg catgcactca gaaagtatac gacccttcac aggaaatgtg gtgctccaag 12180

acttatatct caggctctca tgagtcatgt caaggaccat ctttaatcat ttgtattcta 12240

ggtttctcag gcgatgcggt gtgctggtgt gtctctccct cccacttgag tgtgtgtatt 12300

gtttgtgccc ctaagttttt atcttaacaa tcactactag tcaattagtc attaccaacc 12360

ctacccacct ctcttgttac tgttgttctt ggagatattt catatatgtc agcttagaac 12420

ttatattacg tttcttatta catattctct taagctcgcg cacatactct gtgatcgaag 12480

ggatccatat tagttatctt ttagtggagt tgttgtgaaa aaagactgca tagaaaaatt 12540

aagatagctc atagttgtaa atgtaattga acttttagat tgatagcctt gaggctgctt 12600

gcattgaacc aaccaaattc agccaggcta gtctatgcct ctttggtgtc acctggtagg 12660

ttgaatttgt gtagctgtag ttctacaaga gactgattta aaaatgtttt cgcactgaaa 12720

cagcttaaac cacaaaacag gaaagtgcag aacaaactcc agaaaatggt gcagaacata 12780

ccttctcaaa aaggaaagga actccccatt ttaacagtac gaggacaact gctacagcac 12840

taatggagga gatcaagatt ttgatccacc agatgaagga ttctgatctt gtttcagcct 12900

gagaatgtaa ggttgaagct tcaggcctct ttgtaatagc agatgtcacc agactaacaa 12960

attcactgtc gtcttgcata gcaggcccaa catctatgtc atgcttagtt agctccattg 13020

aatttggcat ctccaagaga tctcaagagc tgcccaaaaa gacggtacaa tattatgagc 13080

atacatgaca tgatgacaac ccataaagaa tatcataacc tgtcacattt tttattcaaa 13140

gttcaacagc cctcttacaa catgattgag aatggagggg aagagagaga gagttggtct 13200

cagacattga tcacataatc atttcaatta gttttaaagg tgctcatgaa atagaactag 13260

tgtcttaagc tggagacttc tgtatttttc atggttttag attatcaatc atattcttag 13320

aatctttgat ctctagaact ctttcctttc ctcccaatat tttttccact ttgtcttttg 13380

ttaattacgg cttcgctgca ggcctgcaat aaatctttta aatttttaca gatactatgt 13440

agagttgtat acataagctc taatctgaag acgattggtt tcgatgctag ttaatacaaa 13500

taaatatatt atggatataa tatgcagtaa attgggccat gggcaccagg gacaacttag 13560

acaagtatag tgcaactacc aggaaattta agctgggtac ctctgattca tcatgctggt 13620

tgataatatt attgcttcca caagtgttcg ctacggctca accaaactaa gtcacaactc 13680

acaagctgca caacccaact gacaattatc gcctattgtc taagctatac attacattac 13740

cccaatgcca caacgtggct cacgcctagg catggtaagg aagttcagat gtacgcagcc 13800

ttaccctttt aataacaaag aggctgtttc caggtgaccc ttaaatctta attgcaaaca 13860

ccatctgctg cttcacataa ataagcgact tcaaaattgt aaattaaaga atttgaatgc 13920

aaattgtgtg aaaaacaact ccatcaagaa tccattaagc acgctttact attagtatca 13980

ataataggaa acccttatat cccttttgac gaaggcacac atgcaacact aatgtgtcct 14040

tataaacttc atgaaagtat atctctacga aaccctttta gtcttatgtg attctttaag 14100

tgtccaactg atgattggtt acaaggtatt tagcccaaag tagcatttca gagagatggt 14160

gtagaatgag tagcttataa accgaggttg aggtgtaatc ctaataaatt aggaactaat 14220

accacaagag agatggacat gtagagatac aatatagtac agaataagat tatttgaaat 14280

ctttttacca gggaaactcc agaggtgttc cataaaacac aataccatat aactgggaga 14340

tcaatatttt agattaaaaa atataaaaat ctatttgggt tgagtatata gttggttagt 14400

ccaataatat ataaatttat aaggtggagg tcttcggtat atgacattcc aaatttgagt 14460

atcaaatgat atatatggtt ttccatactt gaatcccttt tcatgtacta cctctgtttc 14520

aaattaatag ttacacttac acttttcacg catgccaatg cagaactttg aggacatata 14580

tctttagttt tgtatttgta aaaattataa aaagtacata ttaataaaat acatattaat 14640

acgaatctaa caagatccca catgactatg attttattca cgtataaatc acaaacgagg 14700

gtcaaaatgc aattgtgaat agtgtaaaat gtcaaagtgt aactattaat ttgaaacgga 14760

ggtagtatgt gtttatgcaa cacttttcct ttttcccttt ttgctattta gtaatttatg 14820

taaaatactt ccattgaccc aaaagttggg tgattatagt ttacatctat cattattatt 14880

tatcattact atagattatt caccattgta atcaacttta taaaagtata cacaggtaac 14940

tcaggagtca ggggtgctgg gccaaacact tttatagttt aaggtgaaaa atctcgagaa 15000

tcttctcctg ccacgcaaaa tgagtgttct tccactttaa agatgttata acacttatct 15060

taacctacta ttcgtaaata acacttatct taacctacta ttcgtcaaga catacttgct 15120

tcatctcact aagaacgtct tagttttcat ttgaaattcg taccagaaag attcacttca 15180

aatctattta tttttagata aattgttatt aaaaacgacg aagaaacgtc agaggacaac 15240

aaatcctcta aactccaaat tataagtgag tccaactatg ttgacgtaag gtaattagag 15300

tatccataaa agccctggcc gctttggccc acaaagcagc ttagaatact acccaacccc 15360

aaatataatc aatcaggtga ggaagctcgc aacagatgcg agagttccac tccaatcaaa 15420

ggcaccagaa catagccatc gacatcttct cttctttacc ccccttgaaa ccaacagatc 15480

ttaaggaagt ccactagtga acaaggacat aaccactact catgtggaat gccaatcagc 15540

ctctgtcaaa gggaagtcca ttagtgaaca aggacatacc cactgctcaa ggtagtcatg 15600

tggaaattgg aatcccaatc agcctttgtc aaaaggaata agccacatcg caatgaagaa 15660

aaaggtgcaa accagattta ttgcatctcc aacacgacat aaatatcgag aatgaggcct 15720

ttactgacaa aggaactctg gatttccaat ttccactgag cattggactc agttgagaag 15780

taattggtct tgctagattc tgtttacgca catactctta atgataaata aatgtaacag 15840

gccaattggt ctggaaaaaa acagttgata aaaggctagt ttgggccttg gggataaata 15900

taatctggta tgagttaata aatttctgtt taaggtaaag agaatgtgtt atgtgggata 15960

atttaatcaa gaaaatctta gtaagatgga ggtagtctaa cttccattcc tcaaaatgtg 16020

taattcctta taaaatcagt cagcctctag atacatagtt agcaaaaatg gaaggtatag 16080

aagtgggggt gagggaagag gaaggaaaga gaaccgcgat caatcatatt gttcgtgctc 16140

aagtttgagt tgtgcctata gctagttaga gtttgtctat ttcattgttt ttggtcagtg 16200

ttcatattct gagtgtcatc gtgtttgggt tctagaatgc tccttttcct aatgtcgaca 16260

tttctccact ttactctaga aaaatgatct cattgtagcc attccagctt caattttaat 16320

ggatactaag atccctttca ggaacaatgt taaggtagat gttagtgttt taacagccat 16380

gtggatgtta gtgtctagaa cgagtggtca aaacactact agcctcaaaa tattgtgatc 16440

agtctgaaaa ctctatgtta gatggttgct ttttttggta ggttcgcttg ttttgggggg 16500

ttagctttgt ttattttctt cacaatttgc ccttaaactt ttcacaaaat ctacaattga 16560

agattcttaa atagataaca gacgtgtcag ctacttcaac agctaattgt acgaaaaagt 16620

tcagctacct tgaaaccaaa ccactaacag ctagtacagt ttgtttctac tattacattt 16680

atctaatata acagctagta tttagtccaa cgatgtataa tatcaatgaa atggaactaa 16740

tctgtaaatt ggaccttagg cataagagtc gagttgagca ggtacactcc aatcaccaag 16800

ttatttaagc ttaaaatgtc taacttccaa tgctgtttga cgatactcat tgccaagtgt 16860

ttgttacaga tcaaccaagc aaataaagca acaagtgaac agctgcacta gtacccaact 16920

gcgaattttc gtcgattgcc aagtgcatgt ctgggacaca ataccatcat gtccataccc 16980

attaccttgc ttagccagct atcgtaatcc ataacacata aaaaccaaca aagtcttgat 17040

agtttcacaa atcaaaatgt tcacttttca ttccaaccaa aacaagcaat aaatctcttc 17100

atccatactc acaagaagaa caatctctca cactacccac ttgattagta aaaaccccaa 17160

tcaaaaacaa aatccaaccc acataaacaa atcaaattta gtaactaccc ataaactcaa 17220

aaacctcaaa tcacaatacc aataaaagag atatacaatc aatcaaaaaa aatacaacaa 17280

cagctaaaca aataacatca taaactaaag ttattcattt tatttcctaa ctagagatca 17340

attaagcagc ataaaacaac atcactaatt caagttaata atcatcaaat tctatactat 17400

aaaacataca taccttacca aaactaccca gctgaaaatt agggtagagc tccagaaatc 17460

ccggcgaaaa atccggtgag aaattcagct aaatttgaaa acttctttag gttaagtagt 17520

gtacacgatg aattgaagat ttttacaagc atatgaaaat ggtggttgaa attgaaatgg 17580

gggtttttga aaattgttgc gacgcgtaaa agtggaaaaa aaaaaggaga gaatcaaaga 17640

aatgagcaag tttttgtagg tgggtttact gttgttgctt ttgtttgtgc acattactga 17700

ctattcttaa ttcttccatg cgtgtggggg tgaaggaatt gttttcctaa gttgtttagc 17760

cacttcatag agtcattgga tttgaataat ctagggaata atgatcatgt gtttagtgta 17820

tctataaatt ataatttatg tatgtatatt gtatatgtgg tgaggcatag aggacaaggt 17880

ctaagaggaa tagaggattg tgagggagtg tttcatgctt ttaagaatga tgagtcattg 17940

agtgtattaa gttataagta gtatttgatc gagtagtaaa gtttgtatca cgtaaatcag 18000

agtgataatt aggaattggg atttgctcaa gtggtgagtt ttcccatctt tccgagcaag 18060

gtttctaggg ttcaattcct acctcaagca tttccttggg atttaagggg acggctcaga 18120

ggaattcttc ttaccaatat tttaaaaaaa aaaaaattaa gagtggtaat ttagttcaga 18180

tcctaccttt atccggttcg aaacgacttc aagaaaaaaa aatccgacat cgtttaaaat 18240

tttttacttc cgactcattt aatccgcctc caactttgaa acaagtagtc ttatttcttt 18300

tatgttaaga aaatttgcca aaaaaaccct ttttaaagtc cagttttgcg aaaaaaaaaa 18360

accttataaa gcattctttg tgaaaacaaa ccaaaaagta aattattttt gcaaaatgaa 18420

acctaatctc atttttcggt tttgaccatg gacttttcga cattgaccac ttctatttat 18480

cttcttcctc cataatcaca gcctagccac cactaccaac acctgccgct agcccccaca 18540

acctgcaccc ccacaacctc catccacccc ctcaagcggc aacccccctt attcccatac 18600

gcggcaaccc tacaccttat cctccacccc cctccgccct taccttttct cctctccctt 18660

cttccctcca tcacccctcc ccactctctt ctccctttgc cccccatcgt tgcaccaccc 18720

ataatccctc tctgtaaccc cctctcctcg cagctccccc tccctcccag ccaaggttga 18780

aaaattacag aggcagtcgc atatggggat gggggactat cgtctaaggg gtggagagag 18840

ggtttggggg ctgctggtgg gggtggggta ggctgaatgt ggtgggggct gagggtgggg 18900

ggtgaaggtg gggctgcagg tcgggctggc ggtatggaga aagaagggaa atagaagtgg 18960

ttaacaccgg aaagtccatg atcaacaccg aaaaatgaaa ttaggtttca tcttgcaaaa 19020

ataatttatt actttttgat ttgttttcgc aaagaatgct ttataaggtt ttttcgcata 19080

acatttagac ttttatcatc cctcttagat ttgacacata ttatacgaat tatactaaaa 19140

agactcctta tagtaattcg actaatgttt tattaaaatg aacctttaga ataactcggg 19200

taatat 19206

<210> 76

<211> 2000

<212> DNA

<213> Beta vulgaris

<400> 76

tacgtaacaa attctgcaaa aatagagata gcaactaata acacgcatga aaatgacaag 60

ttatattata cctttttttc tcaatatatg aatatacgta acaaattaac tccagtagtt 120

tttagtaaaa ctattagatt attgtgtaac atatactctg gaaatagtac taagatccat 180

tacaatcttt attgagaaat ttcctcatgt accccctgag gtttggcgta atttccaaat 240

acccctcata tttgaggaat ttctcaaata ccctgatgtt tttgtttaga ctcaaaatac 300

ctttactatg gacagtaccc taatgtcatt aagttttccc cttctctctc cccaattttc 360

tctctcctcc cattccccca cccactaccc actgcccact gccaagtagg ggtgtaagtg 420

gattggactg gattggactt tgccaaattc aaatccagtc caaagttttt tggactcgag 480

aaattgagtc caagtccgat ccaaatattt tttgagtcca gtccaatcta gtccgataat 540

tttttcttga gtccgaatcc agtccagtcc agtccgatta ttatatcttt tttcccgatt 600

taggttcaat gattcacaac attttttgag atgcttgagc atttgacatc tgattcaatt 660

atcaatatcc acaaataaga ttgaaagctt aaattaaagt aaaatactat gaataaaaag 720

ttgaattaga tgcttacctt gatctaagtt gagaggaagc atagagactg agaattaatc 780

tgagggacaa atagagaatg cgagagtcga gacagtgagg tagaaagaaa atgaagagta 840

agaggaagtg agtattaagg actgaggagt aaagtaagat agaattagtt ggctactagc 900

ctactaatgc agtattgcta gtataattta cttatttaac aaatggagct aagtgcaata 960

gtttagcgcc aattgacata tttagagaga gaaggctgaa aaatccaata tttttaaaat 1020

agtatcatta tttttaatat atacattata tataaaaata tttttggact ggactggaca 1080

tattggactc caaagggatg agtccaaatc cagacaaaaa atatttggac ttgaaaattt 1140

aagtccgagt ccagtccgaa aaattttcag tccaatccag tccgacaaat ttggactgga 1200

ctggattgga ctctgaactt ttcgtagtcc gcttacaccc ctactgccaa gtgccaaact 1260

gccaaccccc ttttggttga gttgatattt gacgcaaaga cttggcgtgt tggaaggttc 1320

attacacatt ttatccaagt caactttgaa gtcttcttag ctagagacta gagtgaacgt 1380

gttggaaggt tcattacaca ttttatccaa tcaaactttg aagtcttctt agctagagac 1440

tagagtgaac gtgttggaag gttcatgttc atgacattat aaaagtaata atagtgaaat 1500

ttcacaaagt atttataaac ccaggacaga ctcaagagct ctacttatta ttagtgaaaa 1560

acaaacatac acacgacaat aacacaacat aaacaataat gaacatgaaa atcctccttt 1620

tgtttgtctt ccttcatcac ctccactact tcatccatgg cagaacactt acagaacgcc 1680

aagctttact aagtatcaaa tctgccatta cttatgatta ttataactct ctctcctcat 1740

ggaaaaacac aacacaccac tgcagttggc catacatcac ttgctcctcc tcttcttctt 1800

cttcttctgt tatttctctc aacttcacca tgttatttct cgaaggaatt ctctcccctg 1860

atataggctt cctcaccaac ctgcaaaacc tctctattcg atctaacctt ttttctggcc 1920

cactccccca ttctctctct ctcctcaccc aactccgcta tctcgacgtt tcccaaaaca 1980

gtttcacagg tccaatccca 2000

<210> 77

<211> 2000

<212> DNA

<213> Beta vulgaris

<400> 77

ccaacaattt gttagccgat gaagagcatc aaaaccaaaa aaaacaaaaa aaattgatta 60

atatgcatga gtgtgacctt gttttccaaa gtttagcatt actattagtg tctcaattca 120

taataataaa aaaattagct tgttcaagat ttgtattttt attcaaagat tttttttgtc 180

tcttgtgctt cttttatctt atatatattt tttgtatggt ttgtttttgt ttaatattag 240

tccctccgct caaaatgatc tttcacgctt gagattggca ttaaggtcaa gagatgttgc 300

taagctttag aataaaaaaa ttccaaatgc atagagggaa agaaagcgag acaaaatgtt 360

ggagaaggca gagtaaatga tgtgatggag gataaatagt agaagtgtga taccgaaagt 420

ttgaaaataa taaggaattt tatttcttgc tggcactttg ttctagtaca ggtttttagc 480

ccttcaaaat gtttataatg tagagtcaaa attaatatcc ttaactagtt tttaagtccg 540

ggttatatcc tagatattaa taatattcat ttattagtaa cattttattt tataaatata 600

atactaagca ttatttggtt tgctggttaa gactttagtg tatatctatt tctttttttt 660

tttattgtat gcgtgtttac ataaactaaa gactataagg gatagtacca cgtggcgcag 720

ttccttgctt aggaacgtct tttaatatat taactagtat ttgggcccgg gcgttgctcc 780

gggttggtat tgtgtttccg aacatgatgt gcagtttttc ccattcccac taaaatatat 840

aaaggaaaac tcaacattta aaagatacaa atataataat atggacactt aaaacatgat 900

taaaagttga ttgagatggt aattgtgtca tgttataata gtaagaggtt gcctaattga 960

ggttgaggtg gtggagtagt ggtatcgctt cccatctgtt atccctgagg tataaggatc 1020

aaacctcata ggactcattt gagtaatttc ccatatcctc ctctcaaatg agtccttttc 1080

atctgacaaa aaaaaagagt ctaattttaa attaaaatta gacgatcttt tataaaatcg 1140

gcactttctg cacataggtc acaatttttt tgtttctatc tctctgcttt ctttaatttc 1200

acagtctcca actctccatc aacatcttac ttattttaga atagatgatg tatggtagta 1260

ttaaatggta aagtactaaa gctcctataa tacacagaag cttacatagt atagattcgt 1320

acatgagaca aggttacaat atactttctc cgttcttttt atattacaat aattactatt 1380

ttaagtagtt tcacatctat tgtaacaatt ccaattttgt tatagaaagc aactttaata 1440

attgacaata ttgcccttac tttatcttat taaaaccatc attaattact cactttctct 1500

tataaaattg cttttatttt ctaaggatga tttctctcct attctagtta attaaagagt 1560

tacttttgtg ctaaactgct catttattcc aaatccttaa aaattgtgtc caaacgtatt 1620

gttgtaatat aaaaagaaca gaggtactat tagtttgaat aaattttgat cagattaggt 1680

cacctttagg gggcgtttgg ttaggggtat tctggaaagg gtaagggaat caacttactt 1740

aattccctta cttgttgttt gtttgctcaa tttaatgatt ccctttaccc accccttact 1800

cccaaagtcc tttactctca ttctccccac cccccaaggt ttcacttacc ctttcttgat 1860

tcatcattga ccatatcttt gaccacccaa ctaccaccac cacttgacca cctaatcacc 1920

taaccaccta attacccaac cactattacc acccaacccc tccacctgcc caccaatcgg 1980

caccataact gcccaaccgt 2000

<210> 78

<211> 5488

<212> DNA

<213> Artificial Sequence

<220>

<223> Codon-optimized LBcpf1

<400> 78

aagcttatcg atgtcgacag gccttaaggg ccagatcccc cgggctgcag gaattcgatc 60

tggcacgaca ggtttcccga ctggaaagcg ggcagtgagc gcaacgcaat taatgtgagt 120

tagctcactc attaggcacc ccaggcttta cactttatgc ttccggctcg tatgttgtgt 180

ggaattgtga gcggataaca atttcacaca ggaaacagct atgacatgat tacgaattca 240

aaaattacgg atatgaatat aggcatatcc gtatccgaat tatccgtttg acagctagca 300

acgattgtac aattgcttct ttaaaaaagg aagaaagaaa gaaagaaaag aatcaacatc 360

agcgttaaca aacggccccg ttacggccca aacggtcata tagagtaacg gcgttaagcg 420

ttgaaagact cctatcgaaa tacgtaaccg caaacgtgtc atagtcagat cccctcttcc 480

ttcaccgcct caaacacaaa aataatcttc tacagcctat atatacaacc cccccttcta 540

tctctccttt ctcacaattc atcatctttc tttctctacc cccaatttta agaaatcctc 600

tcttctcctc ttcattttca aggtaaatct ctctctctct ctctctctct gttattcctt 660

gttttaatta ggtatgtatt attgctagtt tgttaatctg cttatcttat gtatgcctta 720

tgtgaatatc tttatcttgt tcatctcatc cgtttagaag ctataaattt gttgatttga 780

ctgtgtatct acacgtggtt atgtttatat ctaatcagat atgaatttct tcatattgtt 840

gcgtttgtgt gtaccaatcc gaaatcgttg atttttttca tttaatcgtg tagctaattg 900

tacgtataca tatggatcta cgtatcaatt gttcatctgt ttgtgtttgt atgtatacag 960

atctgaaaac atcacttctc tcatctgatt gtgttgttac atacatagat atagatctgt 1020

tatatcattt tttttattaa ttgtgtatat atatatgtgc atagatctgg attacatgat 1080

tgtgattatt tacatgattt tgttatttac gtatgtatat atgtagatct ggactttttg 1140

gagttgttga cttgattgta tttgtgtgtg tatatgtgtg ttctgatctt gatatgttat 1200

gtatgtgcag cgaattcggc gcgccatggc tcctaagaag aagaggaagg ttagcaagct 1260

cgagaagttt accaactgct acagcctctc taagaccctc aggttcaagg ctatccctgt 1320

gggaaagacc caagagaata tcgacaacaa gaggctcctc gtcgaggatg agaagagagc 1380

tgaagattac aagggcgtga agaagctcct cgacaggtac tacctcagct tcatcaacga 1440

tgtgctccac agcatcaagc tcaagaacct caacaactac atcagcctct tccgtaagaa 1500

aaccaggacc gagaaagaga acaaagagct tgagaacctc gagatcaacc tccgtaaaga 1560

gatcgccaag gctttcaagg gaaacgaggg atacaagagc ctcttcaaga aggatattat 1620

cgagacaatc ctgcctgagt tcctggacga taaggatgag atcgctctcg tgaacagctt 1680

caacggattc actactgcct tcaccggatt cttcgacaac agggaaaaca tgttcagcga 1740

agaggccaag agcacctcta tcgctttcag atgcatcaac gagaacctca cgcgttacat 1800

cagcaacatg gacatcttcg agaaggtgga cgccatcttc gataagcacg aggtgcaaga 1860

aatcaaagag aagatcctca acagcgacta cgacgtcgag gacttttttg aaggggagtt 1920

cttcaacttc gttctcaccc aagagggcat cgacgtgtac aacgctatta tcggaggatt 1980

cgtgaccgag tctggggaga agattaaggg actcaacgag tacatcaacc tgtacaacca 2040

gaaaacgaag cagaagctcc cgaagttcaa gccgctctac aagcaggttc tctctgatcg 2100

tgagagcctc tcattttacg gtgagggtta cacctctgac gaggaagtgc ttgaggtttt 2160

ccgtaacacc ctcaacaaga acagcgagat cttctcgtcc atcaagaagt tggagaaact 2220

tttcaagaac ttcgacgagt acagcagcgc tgggatcttc gttaagaacg gacctgctat 2280

cagcaccatc agcaaggata ttttcggcga gtggaacgtg atcagggaca agtggaatgc 2340

tgagtacgat gacatccacc tcaagaagaa ggctgtcgtc actgagaagt acgaggatga 2400

caggcgtaag tcgttcaaga agatcggctc tttcagcctc gagcagcttc aagaatacgc 2460

tgatgctgat ctcagcgtgg tcgagaagct caaagagatc atcatccaga aggtcgacga 2520

gatctacaag gtgtacgggt cctctgagaa gttgttcgat gctgatttcg tcctcgagaa 2580

gagtctgaag aagaacgacg ctgtcgtcgc gatcatgaag gatttgctcg acagcgtgaa 2640

gtccttcgag aactatatca aggccttctt cggagagggc aaagagacta atagggacga 2700

gtctttctac ggggatttcg tgctcgctta cgatatcctc ctcaaggtgg accatatcta 2760

cgacgccatc agaaactacg tgacccagaa gccttacagc aaggacaagt tcaagttgta 2820

ctttcagaac ccgcagttca tgggcggatg ggacaaagac aaagagacag attacagggc 2880

caccatcctc aggtacgggt ctaagtacta cctggccatc atggacaaga aatacgccaa 2940

gtgcctccaa aagatcgaca aggatgacgt gaacgggaac tatgagaaga tcaactacaa 3000

gctccttccg ggaccgaaca agatgcttcc taaggtgttc ttcagcaaga aatggatggc 3060

ctactacaac ccgtctgagg acatccagaa aatctacaag aacgggacct tcaagaaagg 3120

cgacatgttc aacctcaacg actgccacaa gctcatcgat ttcttcaagg acagcatctc 3180

gcgttacccg aagtggtcta acgcttacga ctttaacttc agcgagacag aaaagtacaa 3240

ggatatcgcc gggttctacc gtgaggttga ggaacagggt tacaaggtta gcttcgagag 3300

cgcctccaag aaagaggttg acaagttggt cgaagagggc aagctctaca tgttccagat 3360

ctataacaag gacttctccg acaagagcca cggaactcct aacctccata cgatgtactt 3420

caagctgctt ttcgacgaga acaaccacgg gcagatcaga ctttctggtg gtgctgaact 3480

cttcatgcgt agggcctcac tcaagaaaga agagttggtt gttcacccgg ccaactctcc 3540

aatcgctaac aagaatcctg acaacccgaa aaagaccacc acgctgtctt acgacgtcta 3600

caaggacaaa aggttcagcg aggaccagta cgagcttcat atcccgatcg ctatcaacaa 3660

gtgcccgaag aacatcttca agatcaatac cgaggtgagg gtgctgctca agcacgatga 3720

taacccttac gtgatcggaa tcgatcgtgg tgagagaaac ctcctctaca tcgttgtggt 3780

ggacggaaag ggaaacatcg tcgagcagta cagcctgaac gagattatca acaatttcaa 3840

cggcatcagg atcaagaccg actaccactc actcctcgat aagaaagaaa aagagcgttt 3900

cgaggccagg cagaactgga cttctatcga aaacatcaaa gagttgaagg ccggctacat 3960

ctctcaggtg gtgcataaga tctgcgagct ggtggaaaag tacgatgctg tgatcgctct 4020

tgaggacctc aactctgggt tcaagaacag tagagtgaag gttgagaagc aggtctacca 4080

aaagttcgag aagatgctca tcgacaagct caactacatg gtggacaaaa agagcaaccc 4140

ttgcgctacc ggtggtgctc ttaagggata ccagatcacg aacaagttcg agtccttcaa 4200

gagcatgagc acccagaacg gcttcatctt ctatatccct gcttggctca ccagcaagat 4260

cgatccttct actggtttcg tgaacctgct caagaccaag tacacctcga tcgccgacag 4320

caagaagttc atctcgtctt tcgacaggat catgtacgtg ccggaagagg atcttttcga 4380

gttcgctctc gactataaga acttcagcag gaccgacgcc gactacatta agaagtggaa 4440

gctctactcc tacgggaacc gtatcaggat cttccgaaat ccgaagaaaa acaacgtgtt 4500

cgactgggaa gaagtgtgcc tcacctctgc ctacaaagaa ctgttcaaca agtacggcat 4560

caactaccag cagggtgata tcagggctct tttgtgcgag cagagcgaca aggcattcta 4620

cagctcattc atggccctca tgtctctcat gctccagatg aggaactcta tcaccggaag 4680

gaccgatgtg gacttcctta tctctccggt caagaactct gacgggatct tctacgacag 4740

ccgtaactat gaggctcaag agaacgctat cctgccgaag aatgctgatg caaacggggc 4800

ttacaacatt gcgagaaagg ttctctgggc tatcgggcag tttaagaaag cggaagatga 4860

gaagctcgac aaggtgaaga tcgccatctc caacaaagag tggcttgagt acgctcagac 4920

ctccgttaag cacaagaggc ctgctgctac taagaaagct ggccaggcca aaaagaagaa 4980

gtgaggcgcg ccgagctcca ggcctcccag ctttcgtccg tatcatcggt ttcgacaacg 5040

ttcgtcaagt tcaatgcatc agtttcattg cccacacacc agaatcctac taagtttgag 5100

tattatggca ttggaaaagc tgttttcttc tatcatttgt tctgcttgta atttactgtg 5160

ttctttcagt ttttgttttc ggacatcaaa atgcaaatgg atggataaga gttaataaat 5220

gatatggtcc ttttgttcat tctcaaatta ttattatctg ttgtttttac tttaatgggt 5280

tgaatttaag taagaaagga actaacagtg tgatattaag gtgcaatgtt agacatataa 5340

aacagtcttt cacctctctt tggttatgtc ttgaattggt ttgtttcttc acttatctgt 5400

gtaatcaagt ttactatgag tctatgatca agtaattatg caatcaagtt aagtacagta 5460

taggcttgag ctccctagga tcaagctt 5488

<210> 79

<211> 989

<212> DNA

<213> Petroselinum crispum

<400> 79

aattcgaatc caaaaattac ggatatgaat ataggcatat ccgtatccga attatccgtt 60

tgacagctag caacgattgt acaattgctt ctttaaaaaa ggaagaaaga aagaaagaaa 120

agaatcaaca tcagcgttaa caaacggccc cgttacggcc caaacggtca tatagagtaa 180

cggcgttaag cgttgaaaga ctcctatcga aatacgtaac cgcaaacgtg tcatagtcag 240

atcccctctt ccttcaccgc ctcaaacaca aaaataatct tctacagcct atatatacaa 300

cccccccttc tatctctcct ttctcacaat tcatcatctt tctttctcta cccccaattt 360

taagaaatcc tctcttctcc tcttcatttt caaggtaaat ctctctctct ctctctctct 420

ctgttattcc ttgttttaat taggtatgta ttattgctag tttgttaatc tgcttatctt 480

atgtatgcct tatgtgaata tctttatctt gttcatctca tccgtttaga agctataaat 540

ttgttgattt gactgtgtat ctacacgtgg ttatgtttat atctaatcag atatgaattt 600

cttcatattg ttgcgtttgt gtgtaccaat ccgaaatcgt tgattttttt catttaatcg 660

tgtagctaat tgtacgtata catatggatc tacgtatcaa ttgttcatct gtttgtgttt 720

gtatgtatac agatctgaaa acatcacttc tctcatctga ttgtgttgtt acatacatag 780

atatagatct gttatatcat tttttttatt aattgtgtat atatatatgt gcatagatct 840

ggattacatg attgtgatta tttacatgat tttgttattt acgtatgtat atatgtagat 900

ctggactttt tggagttgtt gacttgattg tatttgtgtg tgtatatgtg tgttctgatc 960

ttgatatgtt atgtatgtgc agctgaacc 989

<210> 80

<211> 8726

<212> DNA

<213> Artificial Sequence

<220>

<223> Resistance gene expression cassette

<400> 80

tttatttaaa catgatacgt atcatattga gtactcatac gcgtaccagc tgtgacttag 60

aaaaattaac cacgctatat aggttccaag ccctcatgat taccttttca tagtgtaaat 120

ttcatgtagt tgaatggtgg gaatccaatc acaaaaacac tgcaggtaat ggaaatgttc 180

caactttttc caagcatttt aaaataagac atgtgattac taattagggc gtgttcggca 240

acagtaactg tggtgatagt ttttagctgt gagaatagtt gttagctgtg ctgttagctt 300

ttagtggttg gtgtgtaact gttagctgtt agatgtccaa gtagcggtgt aaaatattga 360

tgttcgataa aagaagctgt caaagtagct gtttaagaat aactagttat aaattcaaat 420

aaatctttaa tatataattt atacaccact aaaagctacc caaaagctac aatctaccca 480

aaagctacaa tctacccaaa agctacaaat tgtagctttt gacaaacact actaaaacac 540

tacttgtacc actaaaagct acttacacca ctatcttgcc aaacgctctt attttttcta 600

attagtgttt tgacctaatc aagacactaa aagctactta aaaagcttgt gccgaacacg 660

ccaattctga accaaggaac aaactataac aaaaaagtgc tatgtggaac ttttgtaggc 720

aacagaagta aggcattttt ggaatgtact aacaaatccg tattaagact tgtacatgaa 780

aattaccgtg gtaacatttg cccacacttc ctcattcacg tactccgatt cattctgata 840

aggcacatca agatccatgt atctaatagt ttaatttgcc tctgtgtttc tgtattaaca 900

atgagcatag tgagtgcaaa agccatggaa gctagattaa aaaggccatc attctaagtt 960

agacaattgg aaacaacatc gagatacacg tacacataag ggctgctctt ctctattact 1020

ccctctgttc ctaatcattt gcttttttag cgggttccaa aggcctatgt ttgaccacta 1080

atatatttaa attaaaactg gtgatatata ttaaaagaaa attatgatga atttaacaaa 1140

aaccatatat gttatgtcct tttttttcct atattaatga atttttacag tcaaagttgg 1200

tgaactttga cccaaaaaaa gaaatggagc aaaaaaaaaa aaaaaaaaaa aaaactaggg 1260

acaatgagta acatttttat ctatgtcttt ttaatatgaa tatacgtaac aaattctgca 1320

aaaatagaga tagcaactaa taacacgcat gaaaatgaca agttatatta tacctttttt 1380

tctcaatata tgaatatacg taacaaatta actccagtag tttttagtaa aactattaga 1440

ttattgtgta acatatactc tggaaatagt actaagatcc attacaatct ttattgagaa 1500

atttcctcat gtaccccctg aggtttggcg taatttccaa atacccctca tatttgagga 1560

atttctcaaa taccctgatg tttttgttta gactcaaaat acctttacta tggacagtac 1620

cctaatgtca ttaagttttc cccttctctc tccccaattt tctctctcct cccattcccc 1680

cacccactac ccactgccca ctgccaagta ggggtgtaag tggattggac tggattggac 1740

tttgccaaat tcaaatccag tccaaagttt tttggactcg agaaattgag tccaagtccg 1800

atccaaatat tttttgagtc cagtccaatc tagtccgata attttttctt gagtccgaat 1860

ccagtccagt ccagtccgat tattatatct tttttcccga tttaggttca atgattcaca 1920

acattttttg agatgcttga gcatttgaca tctgattcaa ttatcaatat ccacaaataa 1980

gattgaaagc ttaaattaaa gtaaaatact atgaataaaa agttgaatta gatgcttacc 2040

ttgatctaag ttgagaggaa gcatagagac tgagaattaa tctgagggac aaatagagaa 2100

tgcgagagtc gagacagtga ggtagaaaga aaatgaagag taagaggaag tgagtattaa 2160

ggactgagga gtaaagtaag atagaattag ttggctacta gcctactaat gcagtattgc 2220

tagtataatt tacttattta acaaatggag ctaagtgcaa tagtttagcg ccaattgaca 2280

tatttagaga gagaaggctg aaaaatccaa tatttttaaa atagtatcat tatttttaat 2340

atatacatta tatataaaaa tatttttgga ctggactgga catattggac tccaaaggga 2400

tgagtccaaa tccagacaaa aaatatttgg acttgaaaat ttaagtccga gtccagtccg 2460

aaaaattttc agtccaatcc agtccgacaa atttggactg gactggattg gactctgaac 2520

ttttcgtagt ccgcttacac ccctactgcc aagtgccaaa ctgccaaccc ccttttggtt 2580

gagttgatat ttgacgcaaa gacttggcgt gttggaaggt tcattacaca ttttatccaa 2640

gtcaactttg aagtcttctt agctagagac tagagtgaac gtgttggaag gttcattaca 2700

cattttatcc aatcaaactt tgaagtcttc ttagctagag actagagtga acgtgttgga 2760

aggttcatgt tcatgacatt ataaaagtaa taatagtgaa atttcacaaa gtatttataa 2820

acccaggaca gactcaagag ctctacttat tattagtgaa aaacaaacat acacacgaca 2880

ataacacaac ataaacaata atgaacatga aaatcctcct tttgtttgtc ttccttcatc 2940

acctccacta cttcatccat ggcagaacac ttacagaacg ccaagcttta ctaagtatca 3000

aatctgccat tacttatgat tattataact ctctctcctc atggaaaaac acaacacacc 3060

actgcagttg gccatacatc acttgctcct cctcttcttc ttcttcttct gttatttctc 3120

tcaacttcac catgttattt ctcgaaggaa ttctctcccc tgatataggc ttcctcacca 3180

acctgcaaaa cctctctatt cgatctaacc ttttttctgg cccactcccc cattctctct 3240

ctctcctcac ccaactccgc tatctcgacg tttcccaaaa cagtttcaca ggtccaatcc 3300

catcttctct ctctctcctc acccaactcc gctatctcca cgtttccggc aacagtttca 3360

caggtccaat cccatctttt ctctctctcc tcacccaact ccgctatctc gacgtttccg 3420

acaacagttt cacaggtcca atcccatctt ctctctctct cctcacccaa ctccgctatc 3480

tcgacgtttc ctacaacaat ctaaatggca ctcttccctt atcggtcgtt gagaagatgt 3540

cggagctcag ctaccttaac cttaggtata actctttcta cggtgagatt ccaccggagt 3600

ttgggaaact taagaagctt gaaacattga atcttggtaa caacactctt tctgggagtc 3660

ttccatctga gttgggttca ttaaagagtt tgaaacatat ggacttttct agtaatatgc 3720

tatttggtga gatcccacaa tcttattctc ttcttcgaaa cttaatcgat attgatctta 3780

atagaaacaa gttatatggg agtatacctg attatattgg agattttccg gagttggaat 3840

cacttttatt agactcgaat aacttcacag ggagtatccc acaaaagtta ggtacaaacg 3900

ggaagttgca atatctagat ataagtaaca acaattttag tggtagtttg ccactaagtc 3960

tttgcaaagg agacaaactc caagatctgg acgcatccta taatttgttg gttgggtcaa 4020

ttcctgagag tttgggaagt tgcaagtcac ttgaaggagt gtacatggga aataatttct 4080

taaacgggtc gattcctaag ggcttgtttg ggagtgatgt ttcacttaat gacaaacttc 4140

ttagtggagg tctcgatgag aaattcggtg attgcgttaa tcttcgggac attgatctct 4200

ctaataataa gctatcaggg aagttacctg cgaccatcgg aaactgtatt catcttcggt 4260

ccttgacgct ttataataac acctgtaccg gacgtatccc tcaagagatt agcaagtgta 4320

agcagctaca gaccctcgat ctcagccaaa atcagttctc tggtgtgata cccaatgata 4380

ttacaggtaa gaaagtatat taaacttgtt acttttgaaa atattcgctc tagtttttgt 4440

ttcagttggt ccattctcac tttgtattat tgaaatatat cccaaaaaag taaatataat 4500

tatataaaag aatcttgcta aaaataatat gaattatttt tgtatgtgca aaataatgta 4560

caaatctaac taatttgttg tggataataa tattaattgt gtgaaatagt aaatgtgtgg 4620

agatatataa ctttatttat catattcact caggttttta ggtatttatt atgagttttg 4680

cattggagat atccaacttg acaatagtat ttttgtaata taccaatata taaagattac 4740

tgtacataac caaaatgtat acttttctta tttttataaa cttatatatt cctcttcttt 4800

gtatttatca caacattttt tatacccttt tgcctcatat taatagcaac acttataatt 4860

tatttattta ctttttattt cttggtctat aacctcatct acccacatat gacacaccct 4920

ataaaggacc cacatgatta accaaaatat acaaatatct tcaatgaaat taactttaac 4980

actaatatga taaaaatcat gtcccgcttt ttatcctcta actaagactc tgcataaagg 5040

tatattgcaa ttaatatgag atggaagagg tataataatt atatgatcaa attcctggat 5100

tgaaaaataa atatgagatt aaaagtggta tgtttttggt taaaagaaac tatccataaa 5160

gtatgttttt ggttaaaaga aactatgcaa cataccaatc aaatgtttat acgcttacaa 5220

tttatgtacc acttttttgt cattgttttt ctattgtttg ccatacgtac gttactaaat 5280

catgttgtct tttcacattt taactaacaa taaattacta ttgatacacc aaaaaaatct 5340

atgagcattg gagtacgttg tttgatagaa gcttcgtgct attatttctt gtcaaagaat 5400

ttcatatctc aatatcttct aatttaacaa tctaacgaaa tttttttgac ccaggaaaca 5460

aatccatttg caatctggaa aagatacaaa cacttaaatt atcaaacaat gctttgactg 5520

gtgaaatccc tcattgtgtt ggaaatatcg agctcatagc attatttctc caatcaaaca 5580

aactgaacgg taccataccc gcaaacttct caaagttatg tgattcattg atatatctag 5640

atcttagtga caatcaactc gaaggagttc tacctaagtc cttgtccaaa tgtcaaagtc 5700

tagaactcct aaatgtcggg aacaataggc taagagataa atttccttca tggttagaca 5760

acctcccacg tctccaagtt ttcagtgtgc gttttaacgc cttctacggt cctataacta 5820

gctcaccaaa agttagtcac ccatttccta tgctacaaat tatcgaccta tctaacaata 5880

agttttgtgg caagttgcca agaagatata tcaaaaactt tgcaaccatg cgcaatatga 5940

atgagtctgg tgttgggaat ccacagtacc tgggggactc atcaatatat agtattacgt 6000

actctatggt attgacattc aatgggttac aacaaaaata tgaaaagctt attgtgacga 6060

tgtcgacctt tgatatatcc agcaacaact ttactggaca gattccatat gttatagggg 6120

gattacgctc acttcgtaac cttaatctct ctcataatgt cttaaccggg aacattcctc 6180

catcaattgc aaaattgtct ttgcttcaag atttggacct ttcatcaaac agacttactg 6240

gtcgtatccc tcaagaatta gttagtttaa catttcttgg gagtttcaat gtttcgaaca 6300

atctattgga ggggtctata cctcatggtt tcaacttcga cacgtacaca gctaattcat 6360

accaggggaa tctcgaatta tgtggaaaac cattacctga gtgtggagaa agaagggcaa 6420

aaggcaccac taataatcaa gatgatccta aaaatgataa tgaacgaatg ttgtcgatgt 6480

ccgaaatcgt agttatgggg tttggcagtg gtgtactagt tgggttggct tggggatact 6540

atatgttttc agtgggaaag cccttttggt ttatcaagat ggctagcaaa atggaatcaa 6600

tattgattgg ttttttctga ccaacaattt gttagccgat gaagagcatc aaaaccaaaa 6660

aaaacaaaaa aaattgatta atatgcatga gtgtgacctt gttttccaaa gtttagcatt 6720

actattagtg tctcaattca taataataaa aaaattagct tgttcaagat ttgtattttt 6780

attcaaagat tttttttgtc tcttgtgctt cttttatctt atatatattt tttgtatggt 6840

ttgtttttgt ttaatattag tccctccgct caaaatgatc tttcacgctt gagattggca 6900

ttaaggtcaa gagatgttgc taagctttag aataaaaaaa ttccaaatgc atagagggaa 6960

agaaagcgag acaaaatgtt ggagaaggca gagtaaatga tgtgatggag gataaatagt 7020

agaagtgtga taccgaaagt ttgaaaataa taaggaattt tatttcttgc tggcactttg 7080

ttctagtaca ggtttttagc ccttcaaaat gtttataatg tagagtcaaa attaatatcc 7140

ttaactagtt tttaagtccg ggttatatcc tagatattaa taatattcat ttattagtaa 7200

cattttattt tataaatata atactaagca ttatttggtt tgctggttaa gactttagtg 7260

tatatctatt tctttttttt tttattgtat gcgtgtttac ataaactaaa gactataagg 7320

gatagtacca cgtggcgcag ttccttgctt aggaacgtct tttaatatat taactagtat 7380

ttgggcccgg gcgttgctcc gggttggtat tgtgtttccg aacatgatgt gcagtttttc 7440

ccattcccac taaaatatat aaaggaaaac tcaacattta aaagatacaa atataataat 7500

atggacactt aaaacatgat taaaagttga ttgagatggt aattgtgtca tgttataata 7560

gtaagaggtt gcctaattga ggttgaggtg gtggagtagt ggtatcgctt cccatctgtt 7620

atccctgaga tataaggatc aaacctcata ggactcattt gagtaatttc ccatatcctc 7680

ctctcaaatg agtccttttc atctgacaaa aaaaaatgtc taattttaaa ttaaaattag 7740

acgatctttt ataaaatcgg cactttctgc acataggtca caattttttt gtttctatct 7800

ctctgctttc tttaattcta cagtctccaa ctctccatca acatcttact tattttagaa 7860

tagatgatgt atggtagtat taaatggtaa agtactaaag ctcctataat acacagaagc 7920

ttacatagta tagattcgta catgagacaa ggttacaata tactttctcc gttcttttta 7980

tattacaata attactattt taagtagttt cacatctatt gtaacaattc caattttgtt 8040

atagaaagca actttaataa ttgacaatat tgcccttact ttatcttatt aaaaccatca 8100

ttaattactc actttctctt ataaaattgc ttttattttc taaggataat ttctctccta 8160

ttctagttaa ttaaagagtt acttttgtgc taaactgctc atttgttcca aatccttaaa 8220

aattgtgtcc aaacgcattg ttgtaatata aaaagaacag aggtactatt agtttgaata 8280

aattttgatc ggattaggtc acctttaggg ggcgtttggt taggggtatt ctggaaacgg 8340

taagggaatc aacttactta attcccttac ttgttgtttg tttgctcaat ttaatgattc 8400

cctttaccca ccccttactc ccaaagtcct ttactctcat tccccccacc ccccaaggtt 8460

tcacttaccc tttcttgatt catcattgac catatctttg accacccaac taccaccacc 8520

acttgaccac ctaatcacct aaccacctaa cccaaccact attaccaccc aacccctcca 8580

cctgcccacc aatcggcacc agaactgccc aaccgtcgcc caatcaagcc acccaaccgg 8640

caccataacc gcccaaccaa gccacccaac cggcaccaga aattgtacca agctacccac 8700

acacgtgaaa accacccacc cacaaa 8726

<210> 81

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer

<400> 81

atgttatctt taccacagtt 20

<210> 82

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer

<400> 82

gtccctaaat gaaatacgta aaac 24

<210> 83

<211> 3706

<212> DNA

<213> Artificial Sequence

<220>

<223> PCR Product

<400> 83

atgttatctt taccacagtt tgttgctctg acacaaccgg taaatgcatt ggcctttgtt 60

tttgatggca tcaactttgg agcatctgat tttgcatatt cagccttttc catggtaatt 120

cttttacaag aattttcatt ctttcttaag tataaacact tagcttggga caaacttctg 180

atcctatttc ttaatttttg caggtgatgg tggctgttat gagcattttg tgtttgatgt 240

ttctttcttc tcattacggt tttattggga tctgggtggc tctaactatt tacatgagcc 300

tccgcgcgtt tgctgaaggc gggaaacgac aatctgatcc ccatcaagct tgagctcagg 360

atttagcagc attccagatt gggttcaatc aacaaggtac gagccatatc actttattca 420

aattggtatc gccaaaacca agaaggaact cccatcctca aaggtttgta aggaagaatt 480

ctcagtccaa agcctcaaca aggtcagggt acagagtctc caaaccatta gccaaaagct 540

acaggagatc aatgaagaat cttcaatcaa agtaaactac tgttccagca catgcatcat 600

ggtcagtaag tttcagaaaa agacatccac cgaagactta aagttagtgg gcatctttga 660

aagtaatctt gtcaacatcg agcagctggc ttgtggggac cagacaaaaa aggaatggtg 720

cagaattgtt aggcgcacct accaaaagca tctttgcctt tattgcaaag ataaagcaga 780

ttcctctagt acaagtgggg aacaaaataa cgtggaaaag agctgtcctg acagcccact 840

cactaatgcg tatgacgaac gcagtgacga ccacaaaaga attccctcta tataagaagg 900

cattcattcc catttgaagg atcatcagat actcaaccaa tccttctaga agatctaagc 960

ttatcgataa gcttgatgta attggaggaa gatcaaaatt ttcaatcccc attcttcgat 1020

tgcttcaatt gaagtttctc cgatggcgca agttagcaga atctgcaatg gtgtgcagaa 1080

cccatctctt atctccaatc tctcgaaatc cagtcaacgc aaatctccct tatcggtttc 1140

tctgaagacg cagcagcatc cacgagctta tccgatttcg tcgtcgtggg gattgaagaa 1200

gagtgggatg acgttaattg gctctgagct tcgtcctctt aaggtcatgt cttctgtttc 1260

cacggcgtgc atgcttcacg gtgcaagcag ccgtccagca actgctcgta agtcctctgg 1320

tctttctgga accgtccgta ttccaggtga caagtctatc tcccacaggt ccttcatgtt 1380

tggaggtctc gctagcggtg aaacccgtat caccggtctt ttggaaggtg aagatgttat 1440

caacactggt aaggctatgc aagctatggg tgccagaatc cgtaaggaag gtgatacttg 1500

gatcattgat ggtgttggta acggtggact ccttgctcct gaggctcctc tcgatttcgg 1560

taacgctgca actggttgcc gtttgactat gggtcttgtt ggtgtttacg atttcgatag 1620

cactttcatt ggtgacgctt ctctcactaa gcgtccaatg ggtcgtgtgt tgaacccact 1680

tcgcgaaatg ggtgtgcagg tgaagtctga agacggtgat cgtcttccag ttaccttgcg 1740

tggaccaaag actccaacgc caatcaccta cagggtacct atggcttccg ctcaagtgaa 1800

gtccgctgtt ctgcttgctg gtctcaacac cccaggtatc accactgtta tcgagccaat 1860

catgactcgt gaccacactg aaaagatgct tcaaggtttt ggtgctaacc ttaccgttga 1920

gactgatgct gacggtgtgc gtaccatccg tcttgaaggt cgtggtaagc tcaccggtca 1980

agtgattgat gttccaggtg atccatcctc tactgctttc ccattggttg ctgccttgct 2040

tgttccaggt tccgacgtca ccatccttaa cgttttgatg aacccaaccc gtactggtct 2100

catcttgact ctgcaggaaa tgggtgccga catcgaagtg atcaacccac gtcttgctgg 2160

tggagaagac gtggctgact tgcgtgttcg ttcttctact ttgaagggtg ttactgttcc 2220

agaagaccgt gctccttcta tgatcgacga gtatccaatt ctcgctgttg cagctgcatt 2280

cgctgaaggt gctaccgtta tgaacggttt ggaagaactc cgtgttaagg aaagcgaccg 2340

tctttctgct gtcgcaaacg gtctcaagct caacggtgtt gattgcgatg aaggtgagac 2400

ttctctcgtc gtgcgtggtc gtcctgacgg taagggtctc ggtaacgctt ctggagcagc 2460

tgtcgctacc cacctcgatc accgtatcgc tatgagcttc ctcgttatgg gtctcgtttc 2520

tgaaaaccct gttactgttg atgatgctac tatgatcgct actagcttcc cagagttcat 2580

ggatttgatg gctggtcttg gagctaagat cgaactctcc gacactaagg ctgcttgatg 2640

agctcaagaa ttcgagctcg gtaccggatc ctctagctag agctttcgtt cgtatcatcg 2700

gtttcgacaa cgttcgtcaa gttcaatgca tcagtttcat tgcgcacaca ccagaatcct 2760

actgagtttg agtattatgg cattgggaaa actgtttttc ttgtaccatt tgttgtgctt 2820

gtaatttact gtgtttttta ttcggttttc gctatcgaac tgtgaaatgg aaatggatgg 2880

agaagagtta atgaatgata tggtcctttt gttcattctc aaattaatat tatttgtttt 2940

ttctcttatt tgttgtgtgt tgaatttgaa attataagag atatgcaaac attttgtttt 3000

gagtaaaaat gtgtcaaatc gtggcctcta atgaccgaag ttaatatgag gagtaaaaca 3060

cttgtagttg taccattatg cttattcact aggcaacaaa tatattttca gacctagaaa 3120

agctgcaaat gttactgaat acaagtatgt cctcttgtgt tttagacatt tatgaacttt 3180

cctttatgta attttccaga atccttgtca gattctaatc attgctttat aattatagtt 3240

atactcatgg atttgtagtt gagtatgaaa atatttttta atgcatttta tgacttgcca 3300

attgattgac aacatgcatc aatcgacctg cagccactcg aagcggccgc cactcgagtg 3360

gtggccgcat cgatcgtgaa gtttctcatc taagccccca tttggacgtg aatgtagaca 3420

cgtcgaaata aagatttccg aattagaata atttgtttat tgctttcgcc tataaatacg 3480

acggatcgta atttgtcgtt ttatcaaaat gtactttcat tttataataa cgctgcggac 3540

atctacattt ttgaattgaa aaaaattggt aattactctt tctttttctc catattgacc 3600

atcatactca ttgctgatcc atgtagattt cccggacatg aagccattta caattgaata 3660

tatcctaagt aaaacctcat aggttttacg tatttcattt agggac 3706

<210> 84

<211> 26

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer

<400> 84

cgctgcggac atctacattt ttgaat 26

<210> 85

<211> 28

<212> DNA

<213> Artificial Sequence

<220>

<223> agttaacttt ccacttatcg gggcactg

<400> 85

agttaacttt ccacttatcg gggcactg 28

<210> 86

<211> 751

<212> DNA

<213> Artificial Sequence

<220>

<223> PCR Product

<400> 86

cgctgcggac atctacattt ttgaattgaa aaaaaattgg taattactct ttctttttct 60

ccatattgac catcatactc attgctgatc catgtagatt tcccggacat gaagccattt 120

acaattgaat atatcctaag taaaacctca taggttttac gtatttcatt tagggactaa 180

aatggtttag gataattact ttagctaaca taagataata aataaataaa taaataaaaa 240

taaaatggtt gtagataaat aaggaaatca ataatgaata tgagtgtgag tgataggacg 300

ggaatgggaa acttttacac tactttaacg ctattgaacg agtatgagta tgttataaac 360

gtaaaatgtt ttatgtgtta gacaatggcc tcaagtgaaa gtgaccctat taatggagga 420

aatgcaaacc acgagtctga ggtcacgctc gaagaaatga gggcaaggat cgacgcattg 480

cgtagcgacc ctgtttttgg agatgccacg ggagatgcta gtgataaccg aatggattta 540

atgaggttga tgatgatgga gcttttacaa ggaaatcgac aaaggcctag aactgaacaa 600

gaagagtgct caaacatgtt caagaggttt tcggctcata agcccccaac ttatgatgga 660

aagccagacc ccactgagtt tgaagaatgg ctcaacggca tggaaaaatt gttcgatgcc 720

acccagtgcc ccgataagtg gaaagttaac t 751

<210> 87

<211> 30

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer

<400> 87

gctctgacac aaccggtaaa tgcattggcc 30

<210> 88

<211> 29

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer

<400> 88

gcagattctg ctaacttgcg ccatcggag 29

<210> 89

<211> 1042

<212> DNA

<213> Artificial Sequence

<220>

<223> PCR Product

<400> 89

gctctgacac aaccggtaaa tgcattggcc tttgtttttg atggcatcaa ctttggagca 60

tctgattttg catattcagc cttttccatg gtaattcttt tacaagaatt ttcattcttt 120

cttaagtata aacacttagc ttgggacaaa cttctgatcc tatttcttaa tttttgcagg 180

cgatggtggc tgttatgagc attttgtgtt tgatgtttct ctcttctcat tacggtttta 240

ttgggatctg ggtggctcta actatttaca tgagcctccg cgcgtttgct gaaggcggga 300

aacgacaatc tgatccccat caagcttgag ctcaggattt agcagcattc cagattgggt 360

tcaatcaaca aggtacgagc catatcactt tattcaaatt ggtatcgcca aaaccaagaa 420

ggaactccca tcctcaaagg tttgtaagga agaattctca gtccaaagcc tcaacaaggt 480

cagggtacag agtctccaaa ccattagcca aaagctacag gagatcaatg aagaatcttc 540

aatcaaagta aactactgtt ccagcacatg catcatggtc agtaagtttc agaaaaagac 600

atccaccgaa gacttaaagt tagtgggcat ctttgaaagt aatcttgtca acatcgagca 660

gctggcttgt ggggaccaga caaaaaagga atggtgcaga attgttaggc gcacctacca 720

aaagcatctt tgcctttatt gcaaagataa agcagattcc tctagtacaa gtggggaaca 780

aaataacgtg gaaaagagct gtcctgacag cccactcact aatgcgtatg acgaacgcag 840

tgacgaccac aaaagaattc cctctatata agaaggcatt cattcccatt tgaaggatca 900

tcagatactg aaccaatcct tctagaagat ctaagcttat cgataagctt gatgtaattg 960

gaggaagatc aaaattttca atccccattc ttcgattgct tcaattgaag tttctccgat 1020

ggcgcaagtt agcagaatct gc 1042

<210> 90

<211> 665

<212> PRT

<213> Beta vulgaris

<400> 90

Met Ala Ala Thr Phe Thr Asn Pro Thr Phe Ser Pro Ser Ser Thr Pro

1 5 10 15

Leu Thr Lys Thr Leu Lys Ser Gln Ser Ser Ile Ser Ser Thr Leu Pro

20 25 30

Phe Ser Thr Pro Pro Lys Thr Pro Thr Pro Leu Phe His Arg Pro Leu

35 40 45

Gln Ile Ser Ser Ser Gln Ser His Lys Ser Ser Ala Ile Lys Thr Gln

50 55 60

Thr Gln Ala Pro Ser Ser Pro Ala Ile Glu Asp Ser Ser Phe Val Ser

65 70 75 80

Arg Phe Gly Pro Asp Glu Pro Arg Lys Gly Ser Asp Val Leu Val Glu

85 90 95

Ala Leu Glu Arg Glu Gly Val Thr Asn Val Phe Ala Tyr Pro Gly Gly

100 105 110

Ala Ser Met Glu Ile His Gln Ala Leu Thr Arg Ser Lys Thr Ile Arg

115 120 125

Asn Val Leu Pro Arg His Glu Gln Gly Gly Val Phe Ala Ala Glu Gly

130 135 140

Tyr Ala Arg Ala Thr Gly Lys Val Gly Val Cys Ile Ala Thr Ser Gly

145 150 155 160

Pro Gly Ala Thr Asn Leu Val Ser Gly Leu Ala Asp Ala Leu Leu Asp

165 170 175

Ser Val Pro Leu Val Ala Ile Thr Gly Gln Val Pro Arg Arg Met Ile

180 185 190

Gly Thr Asp Ala Phe Gln Glu Thr Pro Ile Val Glu Val Thr Arg Ser

195 200 205

Ile Thr Lys His Asn Tyr Leu Val Leu Asp Val Glu Asp Ile Pro Arg

210 215 220

Ile Val Lys Glu Ala Phe Phe Leu Ala Asn Ser Gly Arg Pro Gly Pro

225 230 235 240

Val Leu Ile Asp Leu Pro Lys Asp Ile Gln Gln Gln Leu Val Val Pro

245 250 255

Asp Trp Asp Arg Pro Phe Lys Leu Gly Gly Tyr Met Ser Arg Leu Pro

260 265 270

Lys Ser Lys Phe Ser Thr Asn Glu Val Gly Leu Leu Glu Gln Ile Val

275 280 285

Arg Leu Met Ser Glu Ser Lys Lys Pro Val Leu Tyr Val Gly Gly Gly

290 295 300

Cys Leu Asn Ser Ser Glu Glu Leu Arg Arg Phe Val Glu Leu Thr Gly

305 310 315 320

Ile Pro Val Ala Ser Thr Leu Met Gly Leu Gly Ser Tyr Pro Cys Asn

325 330 335

Asp Glu Leu Ser Leu His Met Leu Gly Met His Gly Thr Val Tyr Ala

340 345 350

Asn Tyr Ala Val Asp Lys Ala Asp Leu Leu Leu Ala Phe Gly Val Arg

355 360 365

Phe Asp Asp Arg Val Thr Gly Lys Leu Glu Ala Phe Ala Ser Arg Ala

370 375 380

Lys Ile Val His Ile Asp Ile Asp Ser Ala Glu Ile Gly Lys Asn Lys

385 390 395 400

Gln Pro His Val Ser Ile Cys Ala Asp Val Lys Leu Ala Leu Arg Gly

405 410 415

Met Asn Lys Ile Leu Glu Ser Arg Ile Gly Lys Leu Asn Leu Asp Phe

420 425 430

Ser Lys Trp Arg Glu Glu Leu Gly Glu Gln Lys Lys Glu Phe Pro Leu

435 440 445

Ser Phe Lys Thr Phe Gly Asp Ala Ile Pro Pro Gln Tyr Ala Ile Gln

450 455 460

Val Leu Asp Glu Leu Thr Asn Gly Asn Ala Ile Ile Ser Thr Gly Val

465 470 475 480

Gly Gln His Gln Met Trp Ala Ala Gln His Tyr Lys Tyr Arg Asn Pro

485 490 495

Arg Gln Trp Leu Thr Ser Gly Gly Leu Gly Ala Met Gly Phe Gly Leu

500 505 510

Pro Ala Ala Ile Gly Ala Ala Val Ala Arg Pro Asp Ala Val Val Val

515 520 525

Asp Ile Asp Gly Asp Gly Ser Phe Ile Met Asn Val Gln Glu Leu Ala

530 535 540

Thr Ile Arg Val Glu Asn Leu Pro Val Lys Ile Met Leu Leu Asn Asn

545 550 555 560

Gln His Leu Gly Met Val Val Gln Trp Glu Asp Arg Phe Tyr Lys Ala

565 570 575

Asn Arg Ala His Thr Tyr Leu Gly Asn Pro Ser Lys Ser Ala Asp Ile

580 585 590

Phe Pro Asp Met Leu Lys Phe Ala Glu Ala Cys Asp Ile Pro Ser Ala

595 600 605

Arg Val Ser Asn Val Ala Asp Leu Arg Ala Ala Ile Gln Thr Met Leu

610 615 620

Asp Thr Pro Gly Pro Tyr Leu Leu Asp Val Ile Val Pro His Gln Glu

625 630 635 640

His Val Leu Pro Met Ile Pro Ser Gly Ala Gly Phe Lys Asp Thr Ile

645 650 655

Thr Glu Gly Asp Gly Arg Thr Ser Tyr

660 665

<210> 91

<211> 1998

<212> DNA

<213> Artificial Sequence

<220>

<223> Acetolactate synthase with mutation

<400> 91

atggcggcta ccttcacaaa cccaacattt tccccttcct caactccatt aaccaaaacc 60

ctaaaatccc aatcttccat ctcttcaacc ctcccctttt ccacccctcc caaaacccca 120

actccactct ttcaccgtcc cctccaaatc tcatcctccc aatcccacaa atcatccgcc 180

attaaaacac aaactcaagc accttcttct ccagctattg aagattcatc tttcgtttct 240

cgatttggcc ctgatgaacc cagaaaaggg tccgatgtcc tcgttgaagc tcttgagcgt 300

gaaggtgtta ccaatgtgtt tgcttaccct ggtggtgcat ctatggaaat ccaccaagct 360

ctcacacgct ctaaaaccat ccgcaatgtc ctccctcgcc atgaacaagg cggggttttc 420

gccgccgagg gatatgctag agctactgga aaggttggtg tctgcattgc gacttctggt 480

cctggtgcta ccaacctcgt atcaggtctt gctgacgctc tccttgattc tgtccctctt 540

gttgccatca ctggccaagt tccacgccgt atgattggca ctgatgcttt tcaggagact 600

ccaattgttg aggtgacaag gtctattact aagcataatt atttagtttt ggatgtagag 660

gatattccta gaattgttaa ggaagccttt tttttagcta attctggtag gcctggacct 720

gttttgattg atcttcctaa agatattcag cagcaattgg ttgttcctga ttgggatagg 780

ccttttaagt tgggtgggta tatgtctagg ctgccaaagt ccaagttttc gacgaatgag 840

gttggacttc ttgagcagat tgtgaggttg atgagtgagt cgaagaagcc tgtcttgtat 900

gtgggaggtg ggtgtttgaa ttctagtgag gagttgagga gatttgttga gttgacaggg 960

attccggtgg ctagtacttt gatggggttg gggtcttacc cttgtaatga tgaactgtct 1020

cttcatatgt tggggatgca cgggactgtt tatgccaatt atgcggtgga taaggcggat 1080

ttgttgcttg ctttcggggt taggtttgat gatcgtgtga ccgggaagct cgaggcgttt 1140

gctagccgtg ctaagattgt gcatattgat attgactctg ctgagattgg gaagaacaag 1200

cagccccatg tgtccatttg tgctgatgtt aaattggcat tgcggggtat gaataagatt 1260

ctggagtcta gaatagggaa gctgaatttg gatttctcca agtggagaga agaattaggt 1320

gagcagaaga aggaattccc actgagtttt aagacatttg gggatgcaat tcctccacaa 1380

tatgccattc aggtgcttga tgagttgacc aatggtaatg ctattataag tactggtgtt 1440

gggcagcacc aaatgtgggc tgcgcagcat tacaagtaca gaaaccctcg ccaatggctg 1500

acctctggtg ggttgggggc tatggggttt gggctaccag ccgccattgg agctgcagtt 1560

gctcgaccag atgcagtggt tgtcgatatt gatggggatg gcagttttat tatgaatgtt 1620

caagagttgg ctacaattag ggtggaaaat ctcccagtta agataatgct gctaaacaat 1680

caacatttag gtatggttgt ccaattggaa gataggttct ataaagctaa ccgggcacat 1740

acataccttg gaaacccttc caaatctgct gatatcttcc ctgatatgct caaattcgct 1800

gaggcatgtg atattccttc tgcccgtgtt agcaacgtgg ctgatttgag ggccgccatt 1860

caaacaatgt tggatactcc agggccgtac ctgctcgatg tgattgtacc gcatcaagag 1920

catgtgttgc ctatgattcc aagtggtgcc ggtttcaagg ataccattac agagggtgat 1980

ggaagaacct cttattga 1998

<210> 92

<211> 21

<212> DNA

<213> beta vulgaris

<400> 92

cctgagagtt tgggaagttg c 21

<210> 93

<211> 23

<212> DNA

<213> beta vulgaris

<400> 93

atgtcccgaa gattaacgca atc 23

<210> 94

<211> 3720

<212> DNA

<213> Artificial Sequence

<220>

<223> modified genomic sequence of the gene mediating resistance

towards cercospora

<220>

<221> variation

<222> (16)..(18)

<400> 94

atgaacatga aaatcttact tttgtttgtc ttccttcatc acctccacta cttcatccat 60

ggcagaacac ttacagaacg ccaagcttta ctaagtatca aatctgccat tacttatgat 120

tattataact ctctctcctc atggaaaaac acaacacacc actgcagttg gccatacatc 180

acttgctcct cctcttcttc ttcttcttct gttatttctc tcaacttcac catgttattt 240

ctcgaaggaa ttctctcccc tgatataggc ttcctcacca acctgcaaaa cctctctatt 300

cgatctaacc ttttttctgg cccactcccc cattctctct ctctcctcac ccaactccgc 360

tatctcgacg tttcccaaaa cagtttcaca ggtccaatcc catcttctct ctctctcctc 420

acccaactcc gctatctcca cgtttccggc aacagtttca caggtccaat cccatctttt 480

ctctctctcc tcacccaact ccgctatctc gacgtttccg acaacagttt cacaggtcca 540

atcccatctt ctctctctct cctcacccaa ctccgctatc tcgacgtttc ctacaacaat 600

ctaaatggca ctcttccctt atcggtcgtt gagaagatgt cggagctcag ctaccttaac 660

cttaggtata actctttcta cggtgagatt ccaccggagt ttgggaaact taagaagctt 720

gaaacattga atcttggtaa caacactctt tctgggagtc ttccatctga gttgggttca 780

ttaaagagtt tgaaacatat ggacttttct agtaatatgc tatttggtga gatcccacaa 840

tcttattctc ttcttcgaaa cttaatcgat attgatctta atagaaacaa gttatatggg 900

agtatacctg attatattgg agattttccg gagttggaat cacttttatt agactcgaat 960

aacttcacag ggagtatccc acaaaagtta ggtacaaacg ggaagttgca atatctagat 1020

ataagtaaca acaattttag tggtagtttg ccactaagtc tttgcaaagg agacaaactc 1080

caagatctgg acgcatccta taatttgttg gttgggtcaa ttcctgagag tttgggaagt 1140

tgcaagtcac ttgaaggagt gtacatggga aataatttct taaacgggtc gattcctaag 1200

ggcttgtttg ggagtgatgt ttcacttaat gacaaacttc ttagtggagg tctcgatgag 1260

aaattcggtg attgcgttaa tcttcgggac attgatctct ctaataataa gctatcaggg 1320

aagttacctg cgaccatcgg aaactgtatt catcttcggt ccttgacgct ttataataac 1380

acctgtaccg gacgtatccc tcaagagatt agcaagtgta agcagctaca gaccctcgat 1440

ctcagccaaa atcagttctc tggtgtgata cccaatgata ttacaggtaa gaaagtatat 1500

taaacttgtt acttttgaaa atattcgctc tagtttttgt ttcagttggt ccattctcac 1560

tttgtattat tgaaatatat cccaaaaaag taaatataat tatataaaag aatcttgcta 1620

aaaataatat gaattatttt tgtatgtgca aaataatgta caaatctaac taatttgttg 1680

tggataataa tattaattgt gtgaaatagt aaatgtgtgg agatatataa ctttatttat 1740

catattcact caggttttta ggtatttatt atgagttttg cattggagat atccaacttg 1800

acaatagtat ttttgtaata taccaatata taaagattac tgtacataac caaaatgtat 1860

acttttctta tttttataaa cttatatatt cctcttcttt gtatttatca caacattttt 1920

tatacccttt tgcctcatat taatagcaac acttataatt tatttattta ctttttattt 1980

cttggtctat aacctcatct acccacatat gacacaccct ataaaggacc cacatgatta 2040

accaaaatat acaaatatct tcaatgaaat taactttaac actaatatga taaaaatcat 2100

gtcccgcttt ttatcctcta actaagactc tgcataaagg tatattgcaa ttaatatgag 2160

atggaagagg tataataatt atatgatcaa attcctggat tgaaaaataa atatgagatt 2220

aaaagtggta tgtttttggt taaaagaaac tatccataaa gtatgttttt ggttaaaaga 2280

aactatgcaa cataccaatc aaatgtttat acgcttacaa tttatgtacc acttttttgt 2340

cattgttttt ctattgtttg ccatacgtac gttactaaat catgttgtct tttcacattt 2400

taactaacaa taaattacta ttgatacacc aaaaaaatct atgagcattg gagtacgttg 2460

tttgatagaa gcttcgtgct attatttctt gtcaaagaat ttcatatctc aatatcttct 2520

aatttaacaa tctaacgaaa tttttttgac ccaggaaaca aatccatttg caatctggaa 2580

aagatacaaa cacttaaatt atcaaacaat gctttgactg gtgaaatccc tcattgtgtt 2640

ggaaatatcg agctcatagc attatttctc caatcaaaca aactgaacgg taccataccc 2700

gcaaacttct caaagttatg tgattcattg atatatctag atcttagtga caatcaactc 2760

gaaggagttc tacctaagtc cttgtccaaa tgtcaaagtc tagaactcct aaatgtcggg 2820

aacaataggc taagagataa atttccttca tggttagaca acctcccacg tctccaagtt 2880

ttcagtgtgc gttttaacgc cttctacggt cctataacta gctcaccaaa agttagtcac 2940

ccatttccta tgctacaaat tatcgaccta tctaacaata agttttgtgg caagttgcca 3000

agaagatata tcaaaaactt tgcaaccatg cgcaatatga atgagtctgg tgttgggaat 3060

ccacagtacc tgggggactc atcaatatat agtattacgt actctatggt attgacattc 3120

aatgggttac aacaaaaata tgaaaagctt attgtgacga tgtcgacctt tgatatatcc 3180

agcaacaact ttactggaca gattccatat gttatagggg gattacgctc acttcgtaac 3240

cttaatctct ctcataatgt cttaaccggg aacattcctc catcaattgc aaaattgtct 3300

ttgcttcaag atttggacct ttcatcaaac agacttactg gtcgtatccc tcaagaatta 3360

gttagtttaa catttcttgg gagtttcaat gtttcgaaca atctattgga ggggtctata 3420

cctcatggtt tcaacttcga cacgtacaca gctaattcat accaggggaa tctcgaatta 3480

tgtggaaaac cattacctga gtgtggagaa agaagggcaa aaggcaccac taataatcaa 3540

gatgatccta aaaatgataa tgaacgaatg ttgtcgatgt ccgaaatcgt agttatgggg 3600

tttggcagtg gtgtactagt tgggttggct tggggatact atatgttttc agtgggaaag 3660

cccttttggt ttatcaagat ggctagcaaa atggaatcaa tattgattgg ttttttctga 3720

<210> 95

<211> 2652

<212> DNA

<213> artificial sequence

<220>

<223> modified cDNA sequence of the gene mediating resistance towards

cercospora

<220>

<221> variation

<222> (55)..(57)

<400> 95

atgaacatga aaatcctcct tttgtttgtc ttccttcatc acctccacta cttcatacat 60

ggcagaacac ttacagaacg ccaagcttta ctaagtatca aatctgccat tacttatgat 120

tattataact ctctctcctc atggaaaaac acaacacacc actgcagttg gccatacatc 180

acttgctcct cctcttcttc ttcttcttct gttatttctc tcaacttcac catgttattt 240

ctcgaaggaa ttctctcccc tgatataggc ttcctcacca acctgcaaaa cctctctatt 300

cgatctaacc ttttttctgg cccactcccc cattctctct ctctcctcac ccaactccgc 360

tatctcgacg tttcccaaaa cagtttcaca ggtccaatcc catcttctct ctctctcctc 420

acccaactcc gctatctcca cgtttccggc aacagtttca caggtccaat cccatctttt 480

ctctctctcc tcacccaact ccgctatctc gacgtttccg acaacagttt cacaggtcca 540

atcccatctt ctctctctct cctcacccaa ctccgctatc tcgacgtttc ctacaacaat 600

ctaaatggca ctcttccctt atcggtcgtt gagaagatgt cggagctcag ctaccttaac 660

cttaggtata actctttcta cggtgagatt ccaccggagt ttgggaaact taagaagctt 720

gaaacattga atcttggtaa caacactctt tctgggagtc ttccatctga gttgggttca 780

ttaaagagtt tgaaacatat ggacttttct agtaatatgc tatttggtga gatcccacaa 840

tcttattctc ttcttcgaaa cttaatcgat attgatctta atagaaacaa gttatatggg 900

agtatacctg attatattgg agattttccg gagttggaat cacttttatt agactcgaat 960

aacttcacag ggagtatccc acaaaagtta ggtacaaacg ggaagttgca atatctagat 1020

ataagtaaca acaattttag tggtagtttg ccactaagtc tttgcaaagg agacaaactc 1080

caagatctgg acgcatccta taatttgttg gttgggtcaa ttcctgagag tttgggaagt 1140

tgcaagtcac ttgaaggagt gtacatggga aataatttct taaacgggtc gattcctaag 1200

ggcttgtttg ggagtgatgt ttcacttaat gacaaacttc ttagtggagg tctcgatgag 1260

aaattcggtg attgcgttaa tcttcgggac attgatctct ctaataataa gctatcaggg 1320

aagttacctg cgaccatcgg aaactgtatt catcttcggt ccttgacgct ttataataac 1380

acctgtaccg gacgtatccc tcaagagatt agcaagtgta agcagctaca gaccctcgat 1440

ctcagccaaa atcagttctc tggtgtgata cccaatgata ttacaggaaa caaatccatt 1500

tgcaatctgg aaaagataca aacacttaaa ttatcaaaca atgctttgac tggtgaaatc 1560

cctcattgtg ttggaaatat cgagctcata gcattatttc tccaatcaaa caaactgaac 1620

ggtaccatac ccgcaaactt ctcaaagtta tgtgattcat tgatatatct agatcttagt 1680

gacaatcaac tcgaaggagt tctacctaag tccttgtcca aatgtcaaag tctagaactc 1740

ctaaatgtcg ggaacaatag gctaagagat aaatttcctt catggttaga caacctccca 1800

cgtctccaag ttttcagtgt gcgttttaac gccttctacg gtcctataac tagctcacca 1860

aaagttagtc acccatttcc tatgctacaa attatcgacc tatctaacaa taagttttgt 1920

ggcaagttgc caagaagata tatcaaaaac tttgcaacca tgcgcaatat gaatgagtct 1980

ggtgttggga atccacagta cctgggggac tcatcaatat atagtattac gtactctatg 2040

gtattgacat tcaatgggtt acaacaaaaa tatgaaaagc ttattgtgac gatgtcgacc 2100

tttgatatat ccagcaacaa ctttactgga cagattccat atgttatagg gggattacgc 2160

tcacttcgta accttaatct ctctcataat gtcttaaccg ggaacattcc tccatcaatt 2220

gcaaaattgt ctttgcttca agatttggac ctttcatcaa acagacttac tggtcgtatc 2280

cctcaagaat tagttagttt aacatttctt gggagtttca atgtttcgaa caatctattg 2340

gaggggtcta tacctcatgg tttcaacttc gacacgtaca cagctaattc ataccagggg 2400

aatctcgaat tatgtggaaa accattacct gagtgtggag aaagaagggc aaaaggcacc 2460

actaataatc aagatgatcc taaaaatgat aatgaacgaa tgttgtcgat gtccgaaatc 2520

gtagttatgg ggtttggcag tggtgtacta gttgggttgg cttggggata ctatatgttt 2580

tcagtgggaa agcccttttg gtttatcaag atggctagca aaatggaatc aatattgatt 2640

ggttttttct ga 2652

<210> 96

<211> 883

<212> PRT

<213> artificial sequence

<220>

<223> modified protein sequence of the gene mediating resistance

towards cercospora

<220>

<221> VARIANT

<222> (209)..(209)

<400> 96

Met Asn Met Lys Ile Leu Leu Leu Phe Val Phe Leu His His Leu His

1 5 10 15

Tyr Phe Ile His Gly Arg Thr Leu Thr Glu Arg Gln Ala Leu Leu Ser

20 25 30

Ile Lys Ser Ala Ile Thr Tyr Asp Tyr Tyr Asn Ser Leu Ser Ser Trp

35 40 45

Lys Asn Thr Thr His His Cys Ser Trp Pro Tyr Ile Thr Cys Ser Ser

50 55 60

Ser Ser Ser Ser Ser Ser Val Ile Ser Leu Asn Phe Thr Met Leu Phe

65 70 75 80

Leu Glu Gly Ile Leu Ser Pro Asp Ile Gly Phe Leu Thr Asn Leu Gln

85 90 95

Asn Leu Ser Ile Arg Ser Asn Leu Phe Ser Gly Pro Leu Pro His Ser

100 105 110

Leu Ser Leu Leu Thr Gln Leu Arg Tyr Leu Asp Val Ser Gln Asn Ser

115 120 125

Phe Thr Gly Pro Ile Pro Ser Ser Leu Ser Leu Leu Thr Gln Leu Arg

130 135 140

Tyr Leu His Val Ser Gly Asn Ser Phe Thr Gly Pro Ile Pro Ser Phe

145 150 155 160

Leu Ser Leu Leu Thr Gln Leu Arg Tyr Leu Asp Val Ser Asp Asn Ser

165 170 175

Phe Thr Gly Pro Ile Pro Ser Ser Leu Ser Leu Leu Thr Gln Leu Arg

180 185 190

Tyr Leu Asp Val Ser Tyr Asn Asn Leu Asn Gly Thr Leu Pro Leu Ser

195 200 205

Val Leu Glu Lys Met Ser Glu Leu Ser Tyr Leu Asn Leu Arg Tyr Asn

210 215 220

Ser Phe Tyr Gly Glu Ile Pro Pro Glu Phe Gly Lys Leu Lys Lys Leu

225 230 235 240

Glu Thr Leu Asn Leu Gly Asn Asn Thr Leu Ser Gly Ser Leu Pro Ser

245 250 255

Glu Leu Gly Ser Leu Lys Ser Leu Lys His Met Asp Phe Ser Ser Asn

260 265 270

Met Leu Phe Gly Glu Ile Pro Gln Ser Tyr Ser Leu Leu Arg Asn Leu

275 280 285

Ile Asp Ile Asp Leu Asn Arg Asn Lys Leu Tyr Gly Ser Ile Pro Asp

290 295 300

Tyr Ile Gly Asp Phe Pro Glu Leu Glu Ser Leu Leu Leu Asp Ser Asn

305 310 315 320

Asn Phe Thr Gly Ser Ile Pro Gln Lys Leu Gly Thr Asn Gly Lys Leu

325 330 335

Gln Tyr Leu Asp Ile Ser Asn Asn Asn Phe Ser Gly Ser Leu Pro Leu

340 345 350

Ser Leu Cys Lys Gly Asp Lys Leu Gln Asp Leu Asp Ala Ser Tyr Asn

355 360 365

Leu Leu Val Gly Ser Ile Pro Glu Ser Leu Gly Ser Cys Lys Ser Leu

370 375 380

Glu Gly Val Tyr Met Gly Asn Asn Phe Leu Asn Gly Ser Ile Pro Lys

385 390 395 400

Gly Leu Phe Gly Ser Asp Val Ser Leu Asn Asp Lys Leu Leu Ser Gly

405 410 415

Gly Leu Asp Glu Lys Phe Gly Asp Cys Val Asn Leu Arg Asp Ile Asp

420 425 430

Leu Ser Asn Asn Lys Leu Ser Gly Lys Leu Pro Ala Thr Ile Gly Asn

435 440 445

Cys Ile His Leu Arg Ser Leu Thr Leu Tyr Asn Asn Thr Cys Thr Gly

450 455 460

Arg Ile Pro Gln Glu Ile Ser Lys Cys Lys Gln Leu Gln Thr Leu Asp

465 470 475 480

Leu Ser Gln Asn Gln Phe Ser Gly Val Ile Pro Asn Asp Ile Thr Gly

485 490 495

Asn Lys Ser Ile Cys Asn Leu Glu Lys Ile Gln Thr Leu Lys Leu Ser

500 505 510

Asn Asn Ala Leu Thr Gly Glu Ile Pro His Cys Val Gly Asn Ile Glu

515 520 525

Leu Ile Ala Leu Phe Leu Gln Ser Asn Lys Leu Asn Gly Thr Ile Pro

530 535 540

Ala Asn Phe Ser Lys Leu Cys Asp Ser Leu Ile Tyr Leu Asp Leu Ser

545 550 555 560

Asp Asn Gln Leu Glu Gly Val Leu Pro Lys Ser Leu Ser Lys Cys Gln

565 570 575

Ser Leu Glu Leu Leu Asn Val Gly Asn Asn Arg Leu Arg Asp Lys Phe

580 585 590

Pro Ser Trp Leu Asp Asn Leu Pro Arg Leu Gln Val Phe Ser Val Arg

595 600 605

Phe Asn Ala Phe Tyr Gly Pro Ile Thr Ser Ser Pro Lys Val Ser His

610 615 620

Pro Phe Pro Met Leu Gln Ile Ile Asp Leu Ser Asn Asn Lys Phe Cys

625 630 635 640

Gly Lys Leu Pro Arg Arg Tyr Ile Lys Asn Phe Ala Thr Met Arg Asn

645 650 655

Met Asn Glu Ser Gly Val Gly Asn Pro Gln Tyr Leu Gly Asp Ser Ser

660 665 670

Ile Tyr Ser Ile Thr Tyr Ser Met Val Leu Thr Phe Asn Gly Leu Gln

675 680 685

Gln Lys Tyr Glu Lys Leu Ile Val Thr Met Ser Thr Phe Asp Ile Ser

690 695 700

Ser Asn Asn Phe Thr Gly Gln Ile Pro Tyr Val Ile Gly Gly Leu Arg

705 710 715 720

Ser Leu Arg Asn Leu Asn Leu Ser His Asn Val Leu Thr Gly Asn Ile

725 730 735

Pro Pro Ser Ile Ala Lys Leu Ser Leu Leu Gln Asp Leu Asp Leu Ser

740 745 750

Ser Asn Arg Leu Thr Gly Arg Ile Pro Gln Glu Leu Val Ser Leu Thr

755 760 765

Phe Leu Gly Ser Phe Asn Val Ser Asn Asn Leu Leu Glu Gly Ser Ile

770 775 780

Pro His Gly Phe Asn Phe Asp Thr Tyr Thr Ala Asn Ser Tyr Gln Gly

785 790 795 800

Asn Leu Glu Leu Cys Gly Lys Pro Leu Pro Glu Cys Gly Glu Arg Arg

805 810 815

Ala Lys Gly Thr Thr Asn Asn Gln Asp Asp Pro Lys Asn Asp Asn Glu

820 825 830

Arg Met Leu Ser Met Ser Glu Ile Val Val Met Gly Phe Gly Ser Gly

835 840 845

Val Leu Val Gly Leu Ala Trp Gly Tyr Tyr Met Phe Ser Val Gly Lys

850 855 860

Pro Phe Trp Phe Ile Lys Met Ala Ser Lys Met Glu Ser Ile Leu Ile

865 870 875 880

Gly Phe Phe

<210> 97

<211> 2652

<212> DNA

<213> artificial sequence

<220>

<223> modified cDNA of the gene mediating resistance towards cercospora

<220>

<221> variation

<222> (625)..(627)

<400> 97

atgaacatga aaatcctcct tttgtttgtc ttccttcatc acctccacta cttcatccat 60

ggcagaacac ttacagaacg ccaagcttta ctaagtatca aatctgccat tacttatgat 120

tattataact ctctctcctc atggaaaaac acaacacacc actgcagttg gccatacatc 180

acttgctcct cctcttcttc ttcttcttct gttatttctc tcaacttcac catgttattt 240

ctcgaaggaa ttctctcccc tgatataggc ttcctcacca acctgcaaaa cctctctatt 300

cgatctaacc ttttttctgg cccactcccc cattctctct ctctcctcac ccaactccgc 360

tatctcgacg tttcccaaaa cagtttcaca ggtccaatcc catcttctct ctctctcctc 420

acccaactcc gctatctcca cgtttccggc aacagtttca caggtccaat cccatctttt 480

ctctctctcc tcacccaact ccgctatctc gacgtttccg acaacagttt cacaggtcca 540

atcccatctt ctctctctct cctcacccaa ctccgctatc tcgacgtttc ctacaacaat 600

ctaaatggca ctcttccctt atcgctcgtt gagaagatgt cggagctcag ctaccttaac 660

cttaggtata actctttcta cggtgagatt ccaccggagt ttgggaaact taagaagctt 720

gaaacattga atcttggtaa caacactctt tctgggagtc ttccatctga gttgggttca 780

ttaaagagtt tgaaacatat ggacttttct agtaatatgc tatttggtga gatcccacaa 840

tcttattctc ttcttcgaaa cttaatcgat attgatctta atagaaacaa gttatatggg 900

agtatacctg attatattgg agattttccg gagttggaat cacttttatt agactcgaat 960

aacttcacag ggagtatccc acaaaagtta ggtacaaacg ggaagttgca atatctagat 1020

ataagtaaca acaattttag tggtagtttg ccactaagtc tttgcaaagg agacaaactc 1080

caagatctgg acgcatccta taatttgttg gttgggtcaa ttcctgagag tttgggaagt 1140

tgcaagtcac ttgaaggagt gtacatggga aataatttct taaacgggtc gattcctaag 1200

ggcttgtttg ggagtgatgt ttcacttaat gacaaacttc ttagtggagg tctcgatgag 1260

aaattcggtg attgcgttaa tcttcgggac attgatctct ctaataataa gctatcaggg 1320

aagttacctg cgaccatcgg aaactgtatt catcttcggt ccttgacgct ttataataac 1380

acctgtaccg gacgtatccc tcaagagatt agcaagtgta agcagctaca gaccctcgat 1440

ctcagccaaa atcagttctc tggtgtgata cccaatgata ttacaggaaa caaatccatt 1500

tgcaatctgg aaaagataca aacacttaaa ttatcaaaca atgctttgac tggtgaaatc 1560

cctcattgtg ttggaaatat cgagctcata gcattatttc tccaatcaaa caaactgaac 1620

ggtaccatac ccgcaaactt ctcaaagtta tgtgattcat tgatatatct agatcttagt 1680

gacaatcaac tcgaaggagt tctacctaag tccttgtcca aatgtcaaag tctagaactc 1740

ctaaatgtcg ggaacaatag gctaagagat aaatttcctt catggttaga caacctccca 1800

cgtctccaag ttttcagtgt gcgttttaac gccttctacg gtcctataac tagctcacca 1860

aaagttagtc acccatttcc tatgctacaa attatcgacc tatctaacaa taagttttgt 1920

ggcaagttgc caagaagata tatcaaaaac tttgcaacca tgcgcaatat gaatgagtct 1980

ggtgttggga atccacagta cctgggggac tcatcaatat atagtattac gtactctatg 2040

gtattgacat tcaatgggtt acaacaaaaa tatgaaaagc ttattgtgac gatgtcgacc 2100

tttgatatat ccagcaacaa ctttactgga cagattccat atgttatagg gggattacgc 2160

tcacttcgta accttaatct ctctcataat gtcttaaccg ggaacattcc tccatcaatt 2220

gcaaaattgt ctttgcttca agatttggac ctttcatcaa acagacttac tggtcgtatc 2280

cctcaagaat tagttagttt aacatttctt gggagtttca atgtttcgaa caatctattg 2340

gaggggtcta tacctcatgg tttcaacttc gacacgtaca cagctaattc ataccagggg 2400

aatctcgaat tatgtggaaa accattacct gagtgtggag aaagaagggc aaaaggcacc 2460

actaataatc aagatgatcc taaaaatgat aatgaacgaa tgttgtcgat gtccgaaatc 2520

gtagttatgg ggtttggcag tggtgtacta gttgggttgg cttggggata ctatatgttt 2580

tcagtgggaa agcccttttg gtttatcaag atggctagca aaatggaatc aatattgatt 2640

ggttttttct ga 2652

<210> 98

<211> 21

<212> DNA

<213> Beta vulgaris

<400> 98

cgtttccggc aacagtttca c 21

<210> 99

<211> 21

<212> DNA

<213> Beta vulgaris

<400> 99

agagagagag aggagtgggt t 21

150页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:用于治疗肝脏疾病的GHRH或其类似物

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!