一种中空平板陶瓷膜支撑体及制备方法

文档序号:1841077 发布日期:2021-11-16 浏览:13次 >En<

阅读说明:本技术 一种中空平板陶瓷膜支撑体及制备方法 (Hollow flat ceramic membrane support and preparation method thereof ) 是由 尹晓琴 于 2021-07-30 设计创作,主要内容包括:本发明公开了一种中空平板陶瓷膜支撑体及其制备方法。所述制备方法包括如下步骤:(1)将骨料、造孔剂、粘结剂和水混匀造粒、干燥后,干压成型,得到表面具有凸起物的平板陶瓷膜支撑体坯体和表面平整的平板陶瓷膜支撑体坯体;所述凸起物均匀分布在平板陶瓷膜支撑体坯体的上表面,与支撑体长度方向一致或垂直,且在支撑体长度方向和宽度方向上呈现间隔并列排布;(2)将凸起物上涂覆浆料后与表面平整的平板陶瓷膜支撑体坯体进行拼接;(3)将拼接后的支撑体坯体经过干燥、排胶、烧结得到中空平板陶瓷膜支撑体。本发明所述制备方法简单高效,成本较低,良品率高。所述中空平板陶瓷膜支撑体具有孔隙率高、抗折强度高、过滤通量大的特点。(The invention discloses a hollow flat ceramic membrane support and a preparation method thereof. The preparation method comprises the following steps: (1) uniformly mixing aggregate, a pore-forming agent, a binder and water, granulating, drying, and performing dry pressing to obtain a flat ceramic membrane support body blank with protrusions on the surface and a flat ceramic membrane support body blank with a smooth surface; the projections are uniformly distributed on the upper surface of the flat ceramic membrane support body blank, are consistent with or vertical to the length direction of the support body, and are arranged in parallel at intervals in the length direction and the width direction of the support body; (2) coating slurry on the bulges, and splicing the bulges with a flat ceramic membrane support body blank with a smooth surface; (3) and drying, removing the glue and sintering the spliced support body blank to obtain the hollow flat ceramic membrane support body. The preparation method disclosed by the invention is simple and efficient, and has the advantages of lower cost and high yield. The hollow flat ceramic membrane support has the characteristics of high porosity, high breaking strength and large filtration flux.)

一种中空平板陶瓷膜支撑体及制备方法

技术领域

本发明属于陶瓷膜技术领域,涉及一种中空平板陶瓷膜支撑体及制备方法。

背景技术

陶瓷膜支撑体一般由高强度、耐高温、耐腐蚀且热稳定性好的大颗粒陶瓷骨料和相对容易烧结的粘结剂构成,大颗粒陶瓷骨料主要为支撑体提供高的强度。支撑体成型技术有挤出成型、流延成型、凝胶注模等。但现有技术存在以下缺点:第一,目前制备平板陶瓷膜最常用的技术是挤出成型,因为成型的坯体含水率较高(15%以上),产品的干燥效率低,特别对于大尺寸样品,干燥和烧成过程非常容易变形,开裂,导致良品率很低。而且烧成后不变形的样品也可能形成很多微小裂纹,使得产品性能下降。其他的制备技术还有流延成型、凝胶注膜等,只适用于小尺寸产品的小型试验。其次,陶瓷膜支撑体原料价格昂贵,烧成温度高,针对不需要耐强酸或强碱的分离过程,如油水分离、海水淡化和饮用水处理等领域,采用陶瓷粉料、造孔剂、粘结剂的原料制备的陶瓷膜支撑体价格过高,且能耗大。最后,目前压制成型技术造孔剂的加入量较少,主要依靠颗粒堆积形成孔道,孔隙率低,过滤通量小;若提高造孔剂加入量,则容易因排胶不完全而发生黑心、翘曲和开裂等现象;若通过降低烧成温度减少烧结收缩或者降低压制压力来减少颗粒堆积密度来提高孔隙率,会导致支撑体强度严重下降。

发明内容

为克服上述现有技术的上述缺点,本发明提供一种中空平板陶瓷膜支撑体及制备方法。

为实现上述目的,本发明采取的技术方案为:

一种中空平板陶瓷膜支撑体的制备方法,包括如下步骤:

(1)将骨料、造孔剂、粘结剂和水混匀,经过干燥、破碎、过筛、造粒、干燥后,采用干压成型,得到表面具有凸起物的平板陶瓷膜支撑体坯体和表面平整的平板陶瓷膜支撑体坯体;所述凸起物均匀分布在平板陶瓷膜支撑体坯体的上表面,与支撑体长度方向一致或垂直,且在支撑体长度方向和宽度方向上呈现间隔并列排布;

(2)将步骤(1)得到平板陶瓷膜支撑体坯体表面的凸起物上涂覆浆料后,与表面平整的平板陶瓷膜支撑体坯体进行拼接;

(3)将步骤(2)得到的拼接后的平板陶瓷膜支撑体坯体经过干燥、排胶、烧结得到中空平板陶瓷膜支撑体。

本发明采用干压成型技术,所得到的坯体含水率为5%-8%,远低于现有技术15%以上的含水率,可以避免坯体在干燥和烧成过程变形、开裂,导致良品率较低的现象;而且本发明所述中空平板陶瓷膜支撑体的制备方法对支撑体产品尺寸规格适用性广,工艺方法简单高效,成本较低,良品率高。另外,本发明所述平板陶瓷膜支撑体坯体表面的凸起物在支撑体长度方向和宽度方向上呈现间隔并列排布,因此得到的中空平板陶瓷膜支撑体内部结构具有多孔道,且相邻孔道之间互相连通,有利于提高水通量。

作为本发明的优选实施方案,所述骨料为矿物原料和陶瓷单相粉体的混合物,所述矿物原料和陶瓷单相粉体的质量百分含量比为5%-95%:5%-95%;所述陶瓷单相粉体为氧化铝、氧化锆、二氧化钛、碳化硅粉体中的至少一种;所述矿物原料包含如下质量百分含量的组分:5%~95%黏土、0~95%莫来石、0~95%铝矾土、0~10%长石、0~10%白云石、0~33%堇青石、0~10%方解石、0~50%微硅粉、0~20%膨润土;所述矿物原料和陶瓷单相粉体的质量百分含量比为5%-100%:0%-95%。

本发明通过添加矿物原料替代部分陶瓷单相粉体,一方面可以降低原料成本,本申请所述支撑体的成本为骨料仅为陶瓷单相粉体的支撑体成本的20%左右;另一方面可以降低热膨胀,减少后期干燥和烧结造成的变形和开裂现象。骨料中矿物原料和陶瓷单相粉体的质量百分含量比会影响步骤(3)中的烧结温度和时间,当骨料中仅含有陶瓷单相粉体时,烧结温度和时间均增大,会造成成本和效率的降低。

作为本发明的优选实施方案,所述造孔剂为淀粉、聚甲基丙烯酸甲酯微球、聚硅烷微球、锯末、棉花、竹粉、炭黑、石墨、碳酸盐中的一种;所述粘结剂为聚乙烯醇、羧甲基纤维素、羟乙基纤维素和木质纤维素中的至少一种。

作为本发明的优选实施方案,所述骨料、造孔剂、粘结剂的重量比为骨料:造孔剂:粘结剂=100:5-20:0.3-5。

本发明通过提高造孔剂的添加量,提升支撑体的孔隙率和过滤通量。本发明申请人通过大量的实验证明,骨料、造孔剂和粘结剂在上述种类和添加量的选择范围内所制备的中空平板陶瓷膜支撑体具有孔隙率高、抗折强度高、过滤通量大的效果。

作为本发明的优选实施方案,所述步骤(1)中,表面具有凸起物的平板陶瓷膜支撑体坯体和表面平整的平板陶瓷膜支撑体坯体的含水率为5%-8%。

本发明所述浆料为普通的具有粘结作用的浆料,没有具体型号限制,可使用公众的市售或自制的产品。

更优选地,所述浆料为骨料和水的混合物,所述骨料和水的重量比为50-70:30-50。

作为本发明的优选实施方案,所述步骤(1)中,干压成型的压力为30~60MPa。

作为本发明的优选实施方案,所述步骤(3)中,干燥的温度为30~150℃,干燥时间为30~90min;排胶的温度为600℃,排胶的保温时间为10~120min,排胶的升温速率为2~10℃/min;烧结的温度为1200~1500℃,烧结时间为30min~3h。

所述步骤(3)中,烧结的升温速率为5~20℃/min。

作为本发明的优选实施方案,所述凸起物为条状凸起物、S型凸起物或圆点凸起物。

本发明所述表面具有凸起物的平板陶瓷膜支撑体坯体和表面平整的平板陶瓷膜支撑体坯体的长度为200-1200mm,宽度为50-600mm,高度为1-15mm。

本发明所述中空平板陶瓷膜支撑体的制备方法制备的平板陶瓷膜支撑体坯体和中空平板陶瓷膜支撑体的尺寸分布较广,因此对产品尺寸规格适用性广。

作为本发明的优选实施方案,所述凸起物的高度为0.05-1mm,若凸起物为条状凸起物,凸起物的长度为5-1000mm,宽度为0.5-30mm;若凸起物为S型凸起物,凸起物的长度为5-1000mm,宽度为0.5-30mm;若凸起物为圆点凸起物,凸起物的直径为2-100mm;所述凸起物在支撑体长度方向上间隔尺寸为0.5-300mm,在支撑体宽度方向上间隔尺寸为1-100mm。

本发明所述中空平板陶瓷膜支撑体的长度为200-1200mm,宽度为50-600mm,高度为2-30mm。

本发明所述中空平板陶瓷膜支撑体的孔宽度为1-100mm,高度为0.05-1mm。

本发明还要求保护采用本发明所述中空平板陶瓷膜支撑体的制备方法制备的中空平板陶瓷膜支撑体。

与现有技术相比,本发明的有益效果为:

(1)本发明采用干压成型技术,所得到的坯体含水率为5%-8%,远低于现有技术15%以上的含水率,可以避免坯体在干燥和烧成过程变形、开裂,导致良品率较低的现象;而且本发明所述中空平板陶瓷膜支撑体的制备方法对支撑体产品尺寸规格适用性广,工艺方法简单高效,成本低,良品率高。

(2)本发明通过添加矿物原料替代部分陶瓷单相粉体,可以极大地降低原料成本,又可以降低热膨胀,减少后期干燥和烧结造成的变形和开裂现象。

(3)本发明所述平板陶瓷膜支撑体坯体表面的凸起物在支撑体长度方向和宽度方向上呈现间隔并列排布,因此得到的中空平板陶瓷膜支撑体内部结构具有多孔道,且相邻孔道之间互相连通,有利于提高水通量。

(4)采用本发明所述制备方法制备的中空平板陶瓷膜支撑体具有孔隙率高、抗折强度高、过滤通量大的效果。

附图说明

图1为本发明实施例1所述表面具有凸起物的平板陶瓷膜支撑体坯体的主视图和俯视图;

图2为本发明实施例1所述中空平板陶瓷膜支撑体的横截面和纵截面图;

图3为本发明实施例3所述中空平板陶瓷膜支撑体的横截面和纵截面图;

图4为本发明实施例4所述中空平板陶瓷膜支撑体的横截面和纵截面图;

图5为本发明实施例10所述中空平板陶瓷膜支撑体的横截面和纵截面图。

具体实施方式

为更好的说明本发明的目的、技术方案和优点,下面将结合具体实施例对本发明作进一步说明。

本发明实施例和对比例中,所述浆料为骨料和水的混合物,所述骨料包括如下重量百分含量的组分:20wt%黏土和80wt%氧化铝,所述骨料与水的重量比为75:25。

实施例1

本实施例所述中空平板陶瓷膜支撑体的制备方法,包括如下步骤:

(1)将30wt%氧化铝、20wt%氧化锆、20wt%高岭土、20wt%莫来石、10wt%钠长石为支撑体骨料,在骨料中加入为骨料用量5wt%的锯末、10wt%淀粉和30wt%羧甲基纤维素溶液(浓度1wt%)混合,经过干燥、破碎、过筛、造粒后,干燥至含水率为5%-8%后,在50MPa压力下压制成尺寸为1200*600*2mm的表面具有条状凸起物的平板陶瓷膜支撑体坯体和尺寸为1200*600*2mm的表面平整的平板陶瓷膜支撑体坯体,所述凸起物均匀分布在平板陶瓷膜支撑体坯体的上表面,与支撑体长度方向一致,且在支撑体长度方向和宽度方向上呈现间隔并列排列;所述凸起物的长度为30-200mm,宽度为3mm,厚度为0.5mm;凸起物在支撑体长方向上间隔50mm,在宽度方向间隔100mm;

(2)将步骤(1)得到平板陶瓷膜支撑体坯体表面的凸起物上涂覆浆料后,与表面平整的平板陶瓷膜支撑体坯体进行拼接;

(3)将步骤(2)得到的拼接后的平板陶瓷膜支撑体坯体在100℃下干燥2小时后,以10℃/min速率升温至600℃排胶保温30min,然后以20℃/min速率升温至1300℃烧结保持1h,得到中空平板陶瓷膜支撑体。

所得到的中空平板陶瓷膜支撑体的孔隙率为36%,抗折强度40MPa,纯水通量7600Lm-2h-1bar-1

图1和2分别为实施例1所述平板陶瓷膜支撑体坯体的主视图和俯视图与中空平板陶瓷膜支撑体的横截面和纵截面图。从图中可以看到,平板陶瓷膜支撑体坯体表面分布有条状凸起物,凸起物沿着支撑体长度方向分布,且在支撑体长度方向和宽度方向上呈现间隔并列排列,支撑体的纵截面含有多个矩形孔,根据纵截面和横截面图,可以看出支撑体内部含有多个通道,且相连通道互相连接。

实施例2

本实施例所述中空平板陶瓷膜支撑体的制备方法,包括如下步骤:

(1)将5wt%氧化铝、95wt%高岭土为支撑体骨料,在骨料中加入为骨料用量10wt%的竹粉、10wt%石墨和16wt%木质纤维素溶液(浓度5wt%)混合,经过干燥、破碎、过筛、造粒后,干燥至含水率为5%-8%后,在50MPa压力下压制成尺寸为1200*600*2mm的表面具有条状凸起物的平板陶瓷膜支撑体坯体坯体和尺寸为1200*600*2mm的表面平整的平板陶瓷膜支撑体坯体,所述凸起物均匀分布在平板陶瓷膜支撑体坯体的上表面,与支撑体长度方向一致,且在支撑体长度方向和宽度方向上呈现间隔并列排列;所述凸起物的长度为30-200mm,宽度为5mm,厚度为1mm;凸起物在支撑体长方向上间隔30mm,在宽度方向间隔15mm;

(2)将步骤(1)得到平板陶瓷膜支撑体坯体表面的凸起物上涂覆浆料后,与表面平整的平板陶瓷膜支撑体坯体进行拼接;

(3)将步骤(2)得到的拼接后的平板陶瓷膜支撑体坯体在100℃下干燥1.5小时后,以10℃/min速率升温至600℃排胶保温10min,然后以5℃/min速率升温至1300℃烧结保持1h,得到中空平板陶瓷膜支撑体。

所得到的中空平板陶瓷膜支撑体的孔隙率为40%,抗折强度34MPa,纯水通量6460Lm-2h-1bar-1

实施例3

本实施例所述中空平板陶瓷膜支撑体的制备方法,包括如下步骤:

(1)将80wt%二氧化钛、15%膨润土、5wt%微硅粉为支撑体骨料,在骨料中加入为骨料用量5wt%的炭黑和16wt%木质纤维素溶液(浓度5wt%)混合,经过干燥、破碎、过筛、造粒后,干燥至含水率为5%-8%后,在50MPa压力下压制成尺寸为1200*600*2mm的表面具有S型凸起物的平板陶瓷膜支撑体坯体和尺寸为1200*600*2mm的表面平整的平板陶瓷膜支撑体坯体,所述凸起物均匀分布在平板陶瓷膜支撑体坯体的上表面,与支撑体长度方向一致,且在支撑体长度方向和宽度方向上呈现间隔并列排列;所述凸起物的长度为30-200mm,宽度为5mm,厚度为0.5mm;凸起物在支撑体长方向上间隔30mm,在宽度方向间隔15mm;

(2)将步骤(1)得到平板陶瓷膜支撑体坯体表面的凸起物上涂覆浆料后,与表面平整的平板陶瓷膜支撑体坯体进行拼接;

(3)将步骤(2)得到的拼接后的平板陶瓷膜支撑体坯体在100℃下干燥1小时后,以10℃/min速率升温至600℃排胶保温120min,然后以5℃/min速率升温至1400℃烧结保持2h,得到中空平板陶瓷膜支撑体。

所得到的中空平板陶瓷膜支撑体的孔隙率为22%,抗折强度35MPa,纯水通量3520Lm-2h-1bar-1

图3分别为实施例3所述中空平板陶瓷膜支撑体的横截面和纵截面图。从图中可以看到,平板陶瓷膜支撑体坯体表面分布有S型凸起物,凸起物沿着支撑体长度方向分布,且在支撑体长度方向和宽度方向上呈现间隔并列排列,支撑体的纵截面含有多个矩形孔,根据纵截面和横截面图,可以看出支撑体内部含有多个通道,且相连通道互相连接。

实施例4

本实施例所述中空平板陶瓷膜支撑体的制备方法,包括如下步骤:

(1)将10wt%碳化硅粉体、10wt%白云石、10wt%方解石、33wt%堇青石、37wt%铝矾土为支撑体骨料,在骨料中加入为骨料用量10wt%的石墨和30wt%羟乙基纤维素溶液(浓度1wt%)混合,经过干燥、破碎、过筛、造粒后,干燥至含水率为5%-8%后,在60MPa压力下压制成尺寸为1200*600*2mm的表面具有圆点凸起物的平板陶瓷膜支撑体坯体坯体和尺寸为1200*600*2mm的表面平整的平板陶瓷膜支撑体坯体,所述凸起物均匀分布在平板陶瓷膜支撑体坯体的上表面,与支撑体长度方向一致,且在支撑体长度方向和宽度方向上呈现间隔并列排列;所述凸起物的直径为2mm,凸起物在支撑体长方向上间隔30mm,在宽度方向间隔15mm;

(2)将步骤(1)得到平板陶瓷膜支撑体坯坯体表面的凸起物上涂覆浆料后,与表面平整的平板陶瓷膜支撑体坯体进行拼接;

(3)将步骤(2)得到的拼接后的平板陶瓷膜支撑体坯体坯体在100℃下干燥1小时后,以10℃/min速率升温至600℃排胶保温30min,然后以5℃/min速率升温至1300℃烧结保持1h,得到中空平板陶瓷膜支撑体。

所得到的中空平板陶瓷膜支撑体的孔隙率为25%,抗折强度43MPa,纯水通量4000Lm-2h-1bar-1

图4分别为实施例4所述中空平板陶瓷膜支撑体的横截面和纵截面图。从图中可以看到,平板陶瓷膜支撑体坯体表面分布有圆点凸起物,凸起物沿着支撑体长度方向分布,且在支撑体长度方向和宽度方向上呈现间隔并列排列,支撑体的纵截面含有多个矩形孔,根据纵截面和横截面图,可以看出支撑体内部含有多个相互连接的通道。

实施例5

本实施例所述中空平板陶瓷膜支撑体的制备方法与实施例2唯一不同的是:所述步骤(1),支撑体骨料中氧化铝的加入量为45wt%、高岭土的加入量为55wt%;所述步骤(3),以5℃/min速率升温至1360℃烧结保持1h,得到中空平板陶瓷膜支撑体。

所得到的中空平板陶瓷膜支撑体的孔隙率为42%,抗折强度35MPa,纯水通量7560Lm-2h-1bar-1

实施例6

本实施例所述中空平板陶瓷膜支撑体的制备方法与实施例2唯一不同的是:所述步骤(1),支撑体骨料中氧化铝的加入量为95wt%、高岭土的加入量为5wt%;所述步骤(3),以5℃/min速率升温至1460℃烧结保持2h,得到中空平板陶瓷膜支撑体。

所得到的中空平板陶瓷膜支撑体的孔隙率为42%,抗折强度33MPa,纯水通量7600Lm-2h-1bar-1

实施例7

本实施例所述中空平板陶瓷膜支撑体的制备方法与实施例3唯一不同的是:所述步骤(1),在骨料中加入为骨料用量20wt%的炭黑。

所得到的中空平板陶瓷膜支撑体的孔隙率为37%,抗折强度42MPa,纯水通量5890Lm-2h-1bar-1

实施例8

本实施例所述中空平板陶瓷膜支撑体的制备方法与实施例3唯一不同的是:所述步骤(1),在骨料中加入为骨料用量12wt%的炭黑。

所得到的中空平板陶瓷膜支撑体的孔隙率为33%,抗折强度50MPa,纯水通量4940Lm-2h-1bar-1

实施例9

本实施例所述中空平板陶瓷膜支撑体的制备方法与实施例3唯一不同的是:所述步骤(1),在骨料中加入为骨料用量8wt%的炭黑。

所得到的中空平板陶瓷膜支撑体的孔隙率为28%,抗折强度56MPa,纯水通量4090Lm-2h-1bar-1

实施例10

本实施例所述中空平板陶瓷膜支撑体的制备方法与实施例4唯一不同的是:步骤(1)中,所述圆点凸起物的直径为100mm;凸起物在支撑体长方向上间隔100mm,在宽度方向间隔50mm。

所得到的中空平板陶瓷膜支撑体的孔隙率为25%,抗折强度43MPa,纯水通量3980Lm-2h-1bar-1

图5分别为实施例10所述中空平板陶瓷膜支撑体的横截面和纵截面图。从图中可以看到,平板陶瓷膜支撑体坯体表面分布有圆点凸起物,凸起物沿着支撑体长度方向分布,且在支撑体长度方向和宽度方向上呈现间隔并列排列,支撑体的纵截面含有多个矩形孔,根据纵截面和横截面图,可以看出支撑体内部含有多个相互连接的通道。

实施例11

本实施例所述中空平板陶瓷膜支撑体的制备方法,包括如下步骤:

(1)将10wt%钾长石、20wt%白云石、30wt%高岭土、30wt%莫来石、10wt%钠长石为支撑体骨料,在骨料中加入为骨料用量10wt%的竹粉、10wt%石墨和16wt%木质纤维素溶液(浓度5wt%)混合干燥、破碎、过筛、造粒后,干燥至含水率为5%-8%后,在50MPa压力下压制成尺寸为1200*600*2mm的表面具有条状凸起物的平板陶瓷膜支撑体坯体坯体和尺寸为1200*600*2mm的表面平整的平板陶瓷膜支撑体坯体,所述凸起物均匀分布在平板陶瓷膜支撑体坯体的上表面,与支撑体长度方向一致,且在支撑体长度方向和宽度方向上呈现间隔并列排列;所述凸起物的长度为30-200mm,宽度为5mm,厚度为1mm;凸起物在支撑体长方向上间隔30mm,在宽度方向间隔15mm;

(2)将步骤(1)得到平板陶瓷膜支撑体坯体表面的凸起物上涂覆浆料后,与表面平整的平板陶瓷膜支撑体坯体进行拼接;

(3)将步骤(2)得到的拼接后的平板陶瓷膜支撑体坯体在100℃下干燥1.5小时后,以10℃/min速率升温至600℃排胶保温10min,然后以10℃/min速率升温至1200℃烧结保持10min,得到中空平板陶瓷膜支撑体。

所得到的中空平板陶瓷膜支撑体的孔隙率为32%,抗折强度30MPa,纯水通量6900Lm-2h-1bar-1

对比例1

本对比例所述中空平板陶瓷膜支撑体的制备方法,包括如下步骤:

(1)将氧化铝为支撑体骨料,在骨料中加入为骨料用量10wt%的竹粉、10wt%石墨和16wt%木质纤维素溶液(浓度5wt%)混合,经过干燥、破碎、过筛、造粒后,干燥至含水率为5%-8%后,在50MPa压力下压制成尺寸为1200*600*2mm的表面具有条状凸起物的平板陶瓷膜支撑体坯体坯体和尺寸为1200*600*2mm的表面平整的平板陶瓷膜支撑体坯体,所述凸起物均匀分布在平板陶瓷膜支撑体坯体的上表面,与支撑体长度方向一致,且在支撑体长度方向和宽度方向上呈现间隔并列排列;所述凸起物的长度为30-200mm,宽度为5mm,厚度为1mm;凸起物在支撑体长方向上间隔30mm,在宽度方向间隔15mm;

(2)将步骤(1)得到平板陶瓷膜支撑体坯体表面的凸起物上涂覆浆料后,与表面平整的平板陶瓷膜支撑体坯体进行拼接;

(3)将步骤(2)得到的拼接后的平板陶瓷膜支撑体坯体在100℃下干燥1.5小时后,以10℃/min速率升温至600℃排胶保温10min,然后以5℃/min速率升温至1600℃烧结保持3h,得到中空平板陶瓷膜支撑体。

所得到的中空平板陶瓷膜支撑体的孔隙率为38%,抗折强度30MPa,纯水通量6000Lm-2h-1bar-1

对比例2

本对比例所述中空平板陶瓷膜支撑体的制备方法,包括如下步骤:

(1)将80wt%二氧化钛、15%膨润土、5wt%微硅粉为支撑体骨料,在骨料中加入为骨料用量25wt%的炭黑和16wt%木质纤维素溶液(浓度5wt%)混合,经过干燥、破碎、过筛、造粒后,干燥至含水率为5%-8%后,在50MPa压力下压制成尺寸为1200*600*2mm的表面具有S型凸起物的平板陶瓷膜支撑体坯体和尺寸为1200*600*2mm的表面平整的平板陶瓷膜支撑体坯体,所述凸起物均匀分布在平板陶瓷膜支撑体坯体的上表面,与支撑体长度方向一致,且在支撑体长度方向和宽度方向上呈现间隔并列排列;所述凸起物的长度为30-200mm,宽度为5mm,厚度为0.5mm;凸起物在支撑体长方向上间隔30mm,在宽度方向间隔15mm;

(2)将步骤(1)得到平板陶瓷膜支撑体坯体表面的凸起物上涂覆浆料后,与表面平整的平板陶瓷膜支撑体坯体进行拼接;

(3)将步骤(2)得到的拼接后的平板陶瓷膜支撑体坯体在100℃下干燥1小时后,以10℃/min速率升温至600℃排胶保温120min,然后以5℃/min速率升温至1400℃烧结保持2h,得到中空平板陶瓷膜支撑体。

所得到的中空平板陶瓷膜支撑体的孔隙率为45%,抗折强度15MPa,纯水通量4800Lm-2h-1bar-1

对比例3

本比例所述中空平板陶瓷膜支撑体的制备方法与实施例3唯一不同的是:步骤(1)中,炭黑的用量为骨料的1wt%。

所得到的中空平板陶瓷膜支撑体的孔隙率为13%,抗折强度42MPa,纯水通量2200Lm-2h-1bar-1

最后所应当说明的是,以上实施例仅用以说明本发明的技术方案而非对本发明保护范围的限制,尽管参照较佳实施例对本发明作了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的实质和范围。

14页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种基于转移法的氧化铝陶瓷膜制备方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!