一种高激光损伤阈值薄膜及其制备方法

文档序号:1860254 发布日期:2021-11-19 浏览:33次 >En<

阅读说明:本技术 一种高激光损伤阈值薄膜及其制备方法 (High laser damage threshold film and preparation method thereof ) 是由 梁玉 钟奇 于 2021-07-27 设计创作,主要内容包括:本发明涉及光学薄膜技术领域,具体来说涉及一种高激光损伤阈值薄膜及其制备方法,所述薄膜包括利用电子束蒸发制备前20层的介质膜;以及利用化学法溶胶凝胶法制备电场强度最大的最外4层膜层。本发明所提供的一种高激光损伤阈值薄膜及其制备方法,通过电子束蒸发与溶胶凝胶法相结合的方式,以及膜系结构设计与镀膜工艺的优化,制备在1064nm波段同时具有高反射率兼高损伤阈值的的光学薄膜,并且机械性能优异,薄膜牢固度强。同时可以有效的解决由于化学膜易扩撒等特点带来的镀制难题,镀制出的薄膜应力较小、附着力强,能在光学系统中正常稳定使用。(The invention relates to the technical field of optical films, in particular to a high laser damage threshold film and a preparation method thereof, wherein the film comprises a medium film of the front 20 layers prepared by electron beam evaporation; and preparing the outermost 4 film layers with the maximum electric field strength by using a chemical sol-gel method. According to the high laser damage threshold thin film and the preparation method thereof, the optical thin film which has high reflectivity and high damage threshold at the 1064nm waveband is prepared in a mode of combining electron beam evaporation and a sol-gel method and optimizing a film system structure design and a coating process, and the thin film is excellent in mechanical property and strong in film firmness. Meanwhile, the problem of difficult plating caused by the characteristic that a chemical film is easy to spread can be effectively solved, and the plated film has small stress and strong adhesive force and can be normally and stably used in an optical system.)

一种高激光损伤阈值薄膜及其制备方法

技术领域

本发明涉及光学薄膜技术领域,具体来说涉及一种高激光损伤阈值薄膜及其制备方法。

背景技术

应用于大功率、高能量密度激光器中的光学膜系和基底元件是整个激光系统的重要组成部分,其抗激光损伤性能的优劣直接关系到系统的输出水平,这也成为阻碍强激光系统发展和广泛应用的关键障碍。由于介质薄膜材料对于1064nm激光的本征吸收大,光学薄膜的激光损伤阈值降低,1064nm高反膜作为激光系统中最常用的光学元件之一,提高其抗激光损伤性能的重要性就不言而喻。限制1064nm激光高反膜中损伤阈值的最根本因素为镀膜材料的能带隙,能带隙越大,阈值就越高。然而在制备过程中引入的杂质或结构等缺陷会使生产薄膜的带隙降低,从而降低损伤阈值,常规的1064nm高反膜由规整1/4波长厚度的HfO2和SiO2交替组成,受限于材料的能带隙,阈值无法进一步明显提升。由于化学膜具有较高的孔隙率、低的热吸收和低的缺陷密度,因此化学膜的损伤阈值普遍高出物理膜一倍多。但化学法镀膜也存在比较多的缺点,例如胶体的配制过程中影响因素众多而复杂,薄膜的厚度和折射率很难精确控制,因为不适合膜层数太多膜系结构的镀制。

发明内容

本发明的目的在于解决现有技术的不足,提供一种物理-化学法混合制备1064nm高反膜反射膜系,通过优化镀制工艺,实现了在光学元件基板上镀制反射率高、附着力良好、损伤阈值高的高阈值反射光学薄膜。

为了实现上述目的,本发明一方面设计了一种高激光损伤阈值薄膜,包括利用电子束蒸发制备前20层的介质膜;利用化学法溶胶凝胶法制备电场强度最大的最外4层膜层。

本发明还具有如下优选的技术方案:

进一步的,采用HfO2和/或SiO2作为介质薄膜材料。

进一步的,所述薄膜的膜系结构为S/ (HL)^10 (AB)^2 / Air;其中S为元件基板,H为HfO2介质膜,L为SiO2介质膜,A为HfO2化学膜,B为SiO2化学膜。

本发明的另一方面,还包括一种物理-化学法混合制备高激光损伤阈值薄膜的方法,所述方法包括以下步骤:

a.利用电子束蒸发、离子束辅助方式在光学元件基板上镀制SiO2低折射率层,镀制SiO2低折射率层采用离子源辅助工艺,是为了改善薄膜在熔融石英基板上的应力并获得较大的附着力;

b.利用电子束蒸发、离子束辅助方式镀制HfO2高折射率层;

c.电子束蒸发镀膜结束后运用溶胶凝胶法制备HfO2和SiO2介质膜,其中SiO2胶体的配置为以TEOS为有机醇盐前躯体,将TEOS,H2O,ETOH,NH3﹒H2O混合,再加入PVP,在室温下用磁力搅拌器充分搅拌,密封,在室温下陈化,HfO2胶体的配置为以HfOCl2﹒8H2O为原料,水热法合成HfO2溶胶,然后再通过溶剂替换,获得HfO2的乙二醇甲醚溶胶,运用提拉法制备HfO2及SiO2薄膜。

进一步的,所述步骤a之前还包括以下步骤: 对抛光过的光学元件基板清洗后,装入真空镀膜机加热抽气,并利用射频离子源对基板表面进行清洁。

进一步的,所述步骤b和c之间还包括以下步骤: 电子束蒸发镀膜结束后将光学元件基板在真空室缓慢退火并老化5小时。

发明的有益效果

本发明所提供的一种高激光损伤阈值薄膜及其制备方法的优点包括但不限于:本发明通过电子束蒸发与溶胶凝胶法相结合的方式,以及膜系结构设计与镀膜工艺的优化,制备在1064nm波段同时具有高反射率兼高损伤阈值的的光学薄膜,并且机械性能优异,薄膜牢固度强。 本发明简单易行,可重复性高,在整个镀制过程中本方法实用性极强,仅需真空镀膜设备和化学镀膜即可完成,不需添加外部设备。可以有效的解决由于化学膜易扩撒等特点带来的镀制难题,镀制出的薄膜应力较小、附着力强,能在光学系统中正常稳定使用。适合于批量生产,可以满足光学技术快速发展的市场需求,具有良好的经济效益。

具体实施方式

下面通过实施例,对本发明所采用的技术方案做进一步的说明,以便本领域技术人员更好的了解本发明所采用的技术方案。

首先,本发明所生产的高激光损伤阈值薄膜可满足以下技术指标:

1. 反射率在355nm波段大于99.5%;

2. 膜层牢固度:GJB2485-95;

3. 表面光洁度:美军标40/20;

4. 面型:1/10λ;

5. 激光损伤阈值:40J,10ns。

所述薄膜的具体制备过程如下:

S1、 将抛光后的光学元件基板使用去离子水加洗涤剂擦洗,用去离子水冲洗干净;然后用丙酮溶液侵泡15分钟,取出后再次用去离子水冲洗;最后用乙醇乙醚混合液擦拭干净。

S2、 将清洗干净后的光学元件基板放入工件架上,装入真空镀膜机中,待装件过程中导致的气流扰动停止后(约5分钟)后开始抽气,本底真空度抽至8×10-4Pa以下。在抽气过程中同时对基板进行加热,加热温度设置为160摄氏度。

S3、 真空度与温度达标后,利用射频离子源对基板表面进行清洁,除去基板表面附着的拂尘与微小颗粒污染物,所述离子源的离子束流为190mA,加速电压210V,电子束流210mA。

S4、 利用电子束蒸发、离子束辅助方式镀制SiO2低折射率层,沉积速率为3A/s,离子源的离子束流300mA,加速电压240V,电子束流350mA。镀制SiO2低折射率层采用离子源辅助工艺,是为了改善薄膜在熔融石英基板上的应力并获得较大的附着力。

S5、 利用电子束蒸发、离子束辅助方式镀制HfO2高折射率层,沉积速率为3.5A/s,离子源的离子束流310mA,加速电压250V,电子束流350mA。

S6、 镀膜结束后样品在真空室缓慢退火并老化5小时,缓慢退火是为了释放成膜以后的应力,防止薄膜龟裂。

S7、 电子束蒸发镀膜结束后运用溶胶凝胶法制备HfO2和SiO2介质膜,其中SiO2胶体的配置为以TEOS为有机醇盐前躯体,将TEOS,H2O,ETOH,NH3﹒H2O分别以体积60ml, 8ml,500ml, 2ml 混合,再加入PVP质量为0.305g,在室温下用磁力搅拌器充分搅拌3h以上,密封,在室温下陈化一个月使用。HfO2胶体的配置为以HfOCl2﹒8H2O为原料,水热法合成HfO2溶胶,然后再通过溶剂替换,获得HfO2的乙二醇甲醚溶胶,运用提拉法制备HfO2及SiO2薄膜。

实施例1

在本发明实施例1中,被镀制样品光学元件基板尺寸为Φ50mm*3mm。该膜系的结构为:S/ (HL)^10 (AB)^2 / Air,其中S为元件基板,H为HfO2介质膜((厚度266nm)),L为SiO2介质膜((厚度266nm)),A为HfO2化学膜,B为SiO2化学膜。物理法镀膜设备为国产真空镀膜机,配置射频子源,化学法镀膜方法为浸渍、提拉镀膜。

按上述工艺步骤S1~S7进行制备,其中,将抛光后的石英基板用去离子水加洗涤剂擦洗后,放入丙酮溶液侵泡15分钟,取出后在洁净台上用脱脂长丝棉蘸乙醇乙醚混合液(比例为2:1)擦拭干净。然后将石英基板放入真空镀膜设备中的工件架上,静止五分钟后开始抽气,本底真空为8×10-4Pa,在抽气过程中同时对基板进行加热,加热温度设置为160摄氏度。镀膜开始前,用离子源对基板清洗,离子源的离子束流190mA,加速电压210V,电子束流210mA。镀制第一层SiO2时,沉积速率为3A/s,离子源的离子束流300mA,加速电压240V,电子束流350mA; 镀制第二层HfO2时,利用电子束蒸发、离子束辅助方式镀制沉积速率为3.5A/s,离子源的离子束流310mA,加速电压250V,电子束流350mA。镀膜过程中,膜层厚度与速率均用石英晶振片监控。镀制结束后,经缓慢降温老化5个小时后将其取出。电子束蒸发镀膜结束后,进行化学法制备后4层,其中SiO2胶体的配置为以TEOS为有机醇盐前躯体,将TEOS,H2O,ETOH,NH3﹒H2O分别以体积60ml, 8ml, 500ml, 2ml 混合,再加入PVP质量为0.305g,在室温下用磁力搅拌器充分搅拌3h以上,密封,在室温下陈化一个月使用。HfO2胶体的配置为以HfOCl2﹒8H2O为原料,水热法合成HfO2溶胶,然后再通过溶剂替换,获得HfO2的乙二醇甲醚溶胶。运用提拉法制备HfO2及SiO2薄膜,提拉速度分别为200mm/min,300mm/min。

对实施例1进行检测,首先,将镀制的样品用紫外可见分光光度计测试,在1064nm处反射率大于99.5%,光谱性能完全满足光学系统中的使用需求。接着,对制备的样品进行了薄膜附着力检测,用Scotch 3M胶带覆盖样品薄膜表面,拉下胶带观测膜面是否脱落,经过20次相同区域检测,薄膜完整无脱落。

本发明与常规反射膜镀制工艺相比,其特点在于本发明是运用电子束蒸发与溶胶凝胶法相结合的方式,通过膜系结构设计与镀膜工艺的优化,制备在1064nm波段同时具有高反射率兼高损伤阈值的的光学薄膜,并且机械性能优异,薄膜牢固度强。

本发明的关键在于:

结合物理法镀膜和化学法镀膜的优点,利用蒸发技术制备多层介质膜为光学元件提供高反射率,实现其光谱性能,同时针对介质高反膜损伤阈值最薄弱的最外4层即电场强度最大的膜层,采用凝胶-溶胶法制备化学膜层替换。利用化学膜阈值高的特性提高光学元件抗激光损伤性能,同时由介质膜负责确保整体光学效率。同时在镀膜过程中,针对介质膜吸收大,牢固度低的特性,优化制备工艺,使金属膜层与介质膜层结合强度高,薄膜性能稳定,并且表面光洁度较高。

以上所述,仅为此发明的具体实施方式,但本发明的保护范围不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,根据本发明的技术方案和新型的构思加于等同替换或改变,都应涵盖在本发明的保护范围之内。

6页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种车用玻璃的多层复合膜

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!