一种用于熔炼铝锂合金坩埚的涂料及其制备和涂覆方法

文档序号:1883996 发布日期:2021-11-26 浏览:16次 >En<

阅读说明:本技术 一种用于熔炼铝锂合金坩埚的涂料及其制备和涂覆方法 (Coating for smelting aluminum-lithium alloy crucible and preparation and coating methods thereof ) 是由 刘晓光 马天豪 郝智藩 王俊升 李斌 孙加林 薛文东 于 2021-08-16 设计创作,主要内容包括:一种用于熔炼铝锂合金的坩埚的涂料及其制备和涂覆方法。涂料成分为粘结剂占40-90wt%,骨料占10-60wt%。所述粘结剂中含磷酸二氢铝10-50wt%,碳和B-(2)O-(3)混合粉体共3-5wt%,缓蚀剂0.5-3wt%,固化剂0.5-3wt%,填料0.5-5wt%等,分散剂0.1-2wt%,余量为水。骨料为六方氮化硼BN,颗粒度为500-800目;涂料制备方法为:先将聚乙烯醇60mol%和硼酸40mol%,按照溶胶凝胶法制得聚乙烯醇硼酸酯凝胶,并在空气条件下于400-600℃裂解,得到碳和B-(2)O-(3)粉体;然后将其与磷酸二氢铝、缓蚀剂、固化剂、分散剂和填料一并与水混合,得到以磷酸二氢铝(浓度为10-50wt%)为主的混浊液;最后将其该混浊液与BN粉末球磨22-26h,得到磷酸二氢铝结合的BN涂料。本发明涂料分散性和流动性好,易涂覆,与基底附着力强,高温化学结构稳定,抗热震性优异。(A coating for a crucible for smelting aluminum lithium alloy and a preparation and coating method thereof. The coating comprises 40-90 wt% of binder and 10-60 wt% of aggregate. 10-50 wt% of aluminum dihydrogen phosphate, carbon and B in the binder 2 O 3 3-5 wt% of mixed powder, 0.5-3 wt% of corrosion inhibitor, 0.5-3 wt% of curing agent, 0.5-5 wt% of filler and the like, 0.1-2 wt% of dispersant and the balance of water. The aggregate is hexagonal boron nitride BN, and the granularity is 500-800 meshes; the preparation method of the coating comprises the following steps: firstly, 60mol percent of polyvinyl alcohol and 40mol percent of boric acid are prepared into polyvinyl alcohol borate gel according to a sol-gel method, and the polyvinyl alcohol borate gel is cracked at the temperature of 400-600 ℃ under the air condition to obtain carbon and B 2 O 3 Powder; then mixing the aluminum dihydrogen phosphate, the corrosion inhibitor, the curing agent, the dispersing agent and the filler with water to obtain turbid liquid mainly containing aluminum dihydrogen phosphate (the concentration is 10-50 wt%); finally, ball milling the turbid liquid and BN powder for 22-26h to obtain the BN coating combined with the aluminum dihydrogen phosphate. The coating has the advantages of good dispersibility and fluidity, easy coating, strong adhesion with a substrate, stable high-temperature chemical structure and excellent thermal shock resistance.)

一种用于熔炼铝锂合金坩埚的涂料及其制备和涂覆方法

技术领域

本发明属于材料加工领域,具体涉及一种用于熔炼铝锂合金坩埚的涂料配方及其制备和涂覆方法。

技术背景

铝锂合金具有低密度、高弹性模量、高比刚度、高比强度、低疲劳裂纹扩展速率以及优异的抗腐蚀能力等优点,是航天、航空、航海和无人机等领域的理想材料。然而该合金熔体具有高反应活性,因此熔炼过程极具挑战性。特别是对于熔炼铝锂合金的坩埚的使用性能要求苛刻。相对而言,高纯石墨坩埚比陶瓷坩埚和普通石墨-粘土坩埚的稳定性高,是目前熔炼铝锂合金的首选坩埚之一。但是耿桂宏等在航空学报(2003,9(2),81-84)的研究表明:由于锂离子的半径小,容易在石墨坩埚中结构较疏松的部位渗出,同时锂和碳在长时间熔炼和保温状态下,也容易反应生成碳化锂。这不仅导致铝锂合金的纯度和性能降低;同时坩埚被侵蚀后有“漏铝”的危险,使用寿命也因此而降低。

为解决上述问题,在坩埚内表面涂覆涂料是最有效的措施之一。鉴于铝锂合金熔体的活度较高,传统的耐火涂层Al2O3,ZnO,ZrO2等容易被铝锂合金润湿并发生还原反应,导致污染合金成分,降低合金性能。因此,研发新型的与铝锂合金不润湿、不反应的坩埚涂料至关重要。经热力学计算,在铝锂合金液中化学稳定(即与铝锂合金液不反应)的材料有MgO、Y2O3、SiC和BN等。

有研究发现在石墨坩埚上等离子喷涂Al2O3,然后涂MgO,熔炼铝锂合金;这种方法存在成本高,MgO与石墨基底附着力低,与石墨热膨胀系数相差较大以及高温下抗热震性差等缺点。通常只能熔炼1~2炉。

专利CN109020554A和CN110172627A采用喷枪喷涂的方式分别在不锈钢坩埚内壁涂SiC和Y2O3涂层。这种方法不仅成本高昂,而且涂层能够被铝锂合金熔体润湿或者渗透,大幅降低其使用寿命。

专利CN112521778A表明六方BN具有与铝锂合金不润湿不反应的特性,并且能够在氧化气氛中使用至850℃,在非氧化性气氛中使用至1372℃。同时考虑到氮化硼具有与石墨相类似的晶体结构,且热导率大、热膨胀系数(约5.85*10-6K-1)(邹春荣,氮化物纤维增强氮化硼陶瓷基透波复合材料的制备与性能研究,国防科学技术大学博士论文,2016)与石墨(约2*10-6K-1)更匹配。因此适用于铝锂合金熔炼的石墨坩埚的涂层骨料。

然而,没有高效的结合剂,就无法在石墨表面上实现氮化硼涂料的牢固附着力,也无法满足高温结构稳定性等多重使用要求。鉴于此,无机结合剂无疑是最佳选择。陈洋等人在耐火材料(2018,52,154-157)指出硅酸盐类和溶胶凝胶类等无机粘结剂具有良好的高温性能,但是硅酸盐类易与铝锂合金反应。因此,在铝锂合金熔炼坩埚中的使用受到了限制。溶胶凝胶类粘结剂成膜困难,需要借助其他成膜物质复合使用。然而磷酸盐(磷酸铝,磷酸镁等)能够克服上述缺点。特别是磷酸二氢铝可在室温溶于水,形成均匀胶体,具有良好的流动性和成膜性。同时磷酸二氢铝粘结剂在温度400-800℃,通过缩水聚合逐步形成具有三维网络状结构的正交型磷酸铝(陈晓龙,磷酸铝胶粘剂的制备及力学性能研究,哈尔滨工业大学,硕士论文,2011),并在1200-1400℃时保持稳定。再继续升高温度至1600℃,该正交型磷酸铝转化为结构稳定的方石英型磷酸铝(郝瑞华,磷酸盐基高温粘结剂的制备及其粘结性能研究,天津大学,硕士论文,2012)。由此可见,磷酸二氢铝是一种在室温时成膜性好且高温下具有稳定三维网络状结构的粘结剂。然而,磷酸二氢铝粘结剂和石墨基底以物理结合力为主,缺少化学结合力,仍然存在附着力偏低的问题。因此,本发明针对上述问题,提出新的解决方案。

发明内容

本发明的目的是提供一种用于熔炼铝锂合金的石墨坩埚涂料及其制备和涂覆方法。本发明依据磷酸二氢铝的加热过程中逐步脱水缩合,由磷酸二氢铝在中高温400-800℃逐渐转变为具有稳定的三维网络状结构的正交型磷酸铝,并且与骨料和石墨基底能够润湿和成膜的特性,将骨料以及各种添加剂牢固地附着在石墨基底上;为了进一步提高磷酸二氢铝粘结剂与石墨基底的结合力,本发明基于溶胶凝胶法,以聚乙烯醇和硼酸为原料合成聚乙烯醇硼酸酯凝胶,通过空气中400-600℃裂解得到碳和B2O3的混合物(简称c-B2O3)的原理(张云霏,碳化硼粉体的低温合成,大连理工大学,2011,硕士论文);再根据B2O3高温时形成的玻璃相能够与石墨基底润湿(任岩,石墨材料表面ZrB2-SiC基抗高温、超高温氧化防护涂层的制备与性能研究,中国科学技术大学,博士论文,2021);以及B2O3能够在还原性氮气气氛和较低温度(1300℃)下在石墨表面形成B4C等化学结合键的原理(张云霏,碳化硼粉体的低温合成,大连理工大学,2011,硕士论文),本发明采用c-B2O3与磷酸二氢铝制成复合粘结剂,进一步提高BN涂料与石墨基底的化学结合力和附着力。

一种用于熔炼铝锂合金坩埚的涂料,其特征在于涂料中粘结剂占40-90wt%,骨料BN占10-60wt%;其中其中粘结剂按质量百分比包含(10-50wt%)磷酸二氢铝粉,(3-5wt%)c-B2O3,(0.5-3wt%)缓蚀剂,(0.5-3wt%)固化剂,填料(0.5-5wt%),(0.1-2wt%)分散剂,余量为水。

进一步地,所述骨料为六方BN,颗粒度为500-800目。

进一步地,所述粘结剂中的主要成分为磷酸二氢铝(粒度150-200目),质量分数为10-50wt%;粘结剂中所用的c-B2O3由聚乙烯醇(60mol%)和硼酸(40mol%)按照溶胶凝胶法制得聚乙烯醇硼酸酯凝胶,并在空气条件下于400-600℃裂解得到的B2O3和碳的粉体(简称c-B2O3)。

除了良好的附着力,涂料的分散性和流动性也至关重要。没有优异的分散性和流动性,涂料的储存和涂层的均匀性都无法保障。为了获得分散均匀、流动性好的氮化硼涂料,本发明基于海泡石的良好流变性、增稠作用以及网络状结构(卢海川,朱海金,李宗要,邢秀萍,谢承斌,李立荣,王建东,水泥浆悬浮剂研究进展,油田化学,2014,31(2),307-311),或者磷酸钙的分散作用和高温稳定性(何光伟,潘任云,周其云,唐舜英,袁惠根,悬浮聚合用无机分散剂-磷酸钙的表征,合成树脂及塑料,1992,9,16-19)等特点,在综合考虑该分散剂与铝锂合金熔体反应惰性的基础上,采用海泡石或者磷酸钙为分散剂,调控氮化硼涂料的流变学性能。

进一步地,所述粘结剂中所使用的分散剂为海泡石或者磷酸钙,颗粒度为500-800目。

进一步地,所述粘结剂中还包括各种添加剂:缓蚀剂为铝酸钠或钼酸钠,固化剂为MgO或者镁铝尖晶石,填料为SiC纤维;其中,MgO或镁铝尖晶石的粒度为500-800目,铝酸钠或钼酸钠粒度为200-300目,SiC纤维直径为5-10微米,长径比为20。

如上所述用于熔炼铝锂合金坩埚的涂料的制备方法,其特征在于将磷酸二氢铝,c-B2O3,缓蚀剂、固化剂、分散剂和填料一并混合到水中,得到以磷酸二氢铝(浓度为10-50wt%)为主的混浊液;将该混浊液与BN粉末球磨22-26h,得到BN浆体涂料。

一种按上述方法制备的涂料在石墨坩埚上的涂覆方法,其特征在于将石墨坩埚内表面的杂质清除,并加热到65-95℃;涂料用刷涂、喷涂多种方式涂覆到坩埚内表面;风干后,升温到800-1300℃保温,随炉冷却,得到涂覆在坩埚表面的BN涂层。

进一步地,所述涂层的厚度为50-80微米。

综合来看,本发明基于MgO在铝锂合金熔体中的稳定性;SiC纤维对热震稳定性的提升作用(成林锋,碳-硅纤维耐蚀性与抗热震性研究,苏州大学,2012)和对铝锂合金的稳定性;铝酸钠对铝合金熔体的缓蚀作用(王文忠,金属缓蚀剂及其应用,电镀与环保,2007,6,43-44),和相对于CrO3和锌铬黄(CN109020554A和CN110172627A)更加环保等特点;制备BN涂料。该涂料中的各个组分能够相互协同作用,充分发挥BN对铝锂合金熔体的不润湿不反应性,磷酸二氢铝在高温下生成稳定的三维网络状结构磷酸铝的特性,以及B2O3在石墨表面原位形成B4C化学键的原理,达到增加涂层附着力和高温稳定性的效果。另外,本涂层在制备过程中以海泡石或者磷酸钙为分散剂,既能够兼顾涂层的悬浮稳定性,又能够进一步加强涂层的高温性能;SiC纤维既对铝锂合金熔体稳定,又能够提高涂层的抗热震稳定性;MgO既与铝锂合金不反应,又能够进一步降低磷酸二氢铝的固化温度(郝瑞华,磷酸盐基高温粘结剂的制备及其粘结性能研究,天津大学,硕士论文,2012)。因此,本发明中各个组分能够充分发挥协同作用,得到分散良好、固化温度低、附着力牢固、高温性能稳定、抗热震性良好的氮化硼涂料。

本发明的涂料的特征一在于采用BN为骨料,利用其不受大多数熔融金属,炉渣和浮渣的影响,也不与之浸润的特点,制备BN涂层,并提高石墨坩埚的使用寿命。此外,氮化硼涂料可以在高达1372℃的还原气氛下使用,在高达850℃下的氧化气氛下使用,抗热震性能、高温润滑性和抗腐蚀性优异。

本发明的特征二在于粘结剂选用磷酸二氢铝和c-B2O3复合粘结剂,采用MgO为固化剂,采用SiC纤维为填料,使氮化硼涂料与石墨基底同时具有良好的物理和化学结合力,同时具有固化温度低、抗热震性好、耐腐蚀性强和高温性能稳定的特点。将浆料球磨混合24h,制成用于熔炼铝锂合金的坩埚涂料。

本发明中的关键工艺是BN涂料的调控。所使用的海泡石或者磷酸钙具有优异的分散性能,是成功制备BN涂料的关键添加剂。它们能够使得BN粉体在磷酸二氢铝和c-B2O3的复合粘结剂的混悬液中呈现分散均匀并且流动性能良好的特点。

本发明中的BN涂料以易涂刷的液态形式提供,可以用水稀释至合适喷涂和刷涂的稠度,适用于涂覆在包括石墨在内的多种渗透性和非渗透性基底上。具有简便易操作的优点。

上述的涂覆方法中,升温到800-1300℃时的升温速度为5-10℃/min。

进一步地,对带有BN涂层的石墨坩埚进行热震试验,先加热到750℃,然后冷却到室温,重复进行抗热震实验6次,涂层没有裂纹或者脱落,说明该涂层具有良好的抗热震性;在铝锂合金熔体中浸没1小时,石墨坩埚中没有铝扩散,说明该涂层具有良好的化学稳定性。

附图说明

图1为本发明实施例1的用于熔炼铝锂合金的石墨坩埚的BN涂料的流变曲线;

图2为本发明实施例1的用于熔炼铝锂合金的石墨坩埚涂料烧结后的SEM图。

具体实施方式

本发明实施例中采用的磷酸二氢铝、铝酸钠、海泡石、氧化镁、碳化硅纤维和氮化硼为市购产品。

本发明实施例中的聚乙烯醇和硼酸为市购产品。

本发明实施例中的c-B2O3是通过溶胶凝胶法,将聚乙烯醇和硼酸制备成聚乙烯醇硼酸酯,并在空气中于400-600℃裂解而得。

本发明实施例中的坩埚为高纯石墨坩埚。

本发明实施例中物料混合时采用玻璃容器。

本发明实施例中采用的水为去离子水。

本发明实施例中的原料中磷酸二氢铝和铝酸钠在制备涂料的过程中均溶于水。

本发明实施例中的原料SiC为纤维状,直径为5-10微米,长径比为20。

本发明实施例中涂层的烧结温度为800-1300℃,保温2h。1300℃烧结后涂层的主要成分为BN,其余主要为Al2O3-P2O5等的复合物。

本发明实施例中烧结后的涂层厚度50~80微米。

实施例1

用于熔炼铝锂合金的石墨坩埚涂料的成分为粘结剂和骨料,其中粘结剂占总质量的90wt%,其余为骨料;所述的粘结剂中按质量百分比含磷酸二氢铝10wt%,c-B2O33 wt%,MgO 0.8wt%,铝酸钠1.5wt%,海泡石0.5wt%,SiC纤维1wt%,余量为水;所述的骨料为粒度500-800目的氮化硼,占总质量的10wt%;

磷酸二氢铝的粒度为150-200目,MgO的粒度为500~800目,铝酸钠的粒度为200-300目,海泡石的粒度为500-800目;制备方法为:

(1)将聚乙烯醇(60mol%)和硼酸(40mol%),通过溶胶凝胶法制备聚乙烯醇硼酸酯凝胶,在400-600℃裂解,得到c-B2O3

(2)将磷酸二氢铝,c-B2O3和铝酸钠、氧化镁、海泡石和SiC纤维等混合均匀,然后加入水,在搅拌条件下加热到50℃,制成混合溶液;

(3)向混合溶液中加入BN粉,搅拌均匀制成浆料;

(4)将浆料球磨混合24h,制成用于熔炼铝锂合金的石墨坩埚涂料;

涂覆方法为:

将石墨坩埚内表面杂质清除,然后将石墨坩埚加热到70℃;将用于熔炼铝锂合金的石墨坩埚涂料以刷涂或者喷涂的方式涂覆到石墨坩埚的内表面,然后空气中风干1h;将喷涂后的石墨坩埚升温到1300℃,升温速度为5℃/min,保温1h,随炉冷却至常温,获得表面涂覆有涂层的用于熔炼铝锂合金的石墨坩埚;涂层厚度为50-80微米。

实施例2

方法同实施例1,不同点在于:

(1)粘结剂占全部组分总质量的40%;粘结剂中按质量百分比含磷酸二氢铝30wt%,c-B2O3 3wt%,MgO 2wt%,铝酸钠1wt%,SiC纤维2wt%,余量为水;

(2)在搅拌条件下加热到60℃;浆料球磨混合24h;

(3)打磨后加热到80℃;空气中风干时间0.5h;喷涂后升温到1300℃,升温速度为10℃/min,保温1.5h;

实施例3

方法同实施例1,不同点在于:

(1)粘结剂占全部组分总质量的50wt%;粘结剂中按质量百分比含磷酸二氢铝30wt%,c-B2O3 5wt%,MgO 2wt%,铝酸钠1.3wt%,海泡石2wt%,SiC纤维1wt%,余量为水;

(2)在搅拌条件下加热到80℃;加入BN后将浆料球磨混合22h;

(3)打磨后加热到90℃;空气中风干时间0.5h;喷涂后升温到1300℃,升温速度为5℃/min,保温2h。

实施例4

方法同实施例3,不同之处在于:

(1)粘结剂成分占全部组分质量的60wt%,粘结剂中按质量百分比含磷酸二氢铝20wt%,c-B2O3 4wt%,MgO 1wt%,铝酸钠1.3wt%,SiC纤维1wt%,余量为水;骨料占全部组分质量的40wt%,为粒度为500-800目的BN。

(3)搅拌条件下,加热到80℃,浆料球磨混合23h

(4)打磨后加热到90℃,空气中风干时间0.5h,喷涂后升温至1300℃,速度为10℃/分。保温2h。

8页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种高导热陶瓷通用覆铜基板及其制备方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!