水计量系统

文档序号:1902882 发布日期:2021-11-30 浏览:22次 >En<

阅读说明:本技术 水计量系统 (Water metering system ) 是由 W·J·拉杜切尔 B·沃恩 于 2017-07-18 设计创作,主要内容包括:本发明涉及水计量系统。公开了用于计量水的方法、系统和装置,包括在计算机存储介质上编码的计算机程序。一方面,方法包括从连接到第一管道的第一仪表接收在一时间段期间收集的第一音频数据和在该时间段期间收集的第一温度数据的动作。所述动作还包括从连接到第二管道的第二仪表接收在该时间段期间收集的第二音频数据和在该时间段期间收集的第二温度数据。所述动作还包括基于第一音频数据、第一温度数据、第二音频数据和第二温度数据,确定在该时间段期间相对于已流动通过第二管道的材料的第二量的已流动通过第一管道的材料的第一量。(The invention relates to a water metering system. Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for metering water are disclosed. In one aspect, a method includes the acts of receiving, from a first meter connected to a first conduit, first audio data collected during a time period and first temperature data collected during the time period. The actions also include receiving, from a second meter connected to the second conduit, second audio data collected during the time period and second temperature data collected during the time period. The actions further include determining, based on the first audio data, the first temperature data, the second audio data, and the second temperature data, a first amount of material that has flowed through the first conduit relative to a second amount of material that has flowed through the second conduit during the time period.)

水计量系统

本申请是于2017年7月18日提交的题为“水计量系统”的发明专利申请201780054863.9的分案申请。

相关申请的交叉引用

本申请要求在2016年7月18日提交的美国申请No.62/363,754的优先权,所述美国申请通过引用被结合。

技术领域

本说明书通常涉及测量水流量。

背景技术

水计量是测量水使用的过程。水表可用于测量由公共供水系统供水的住宅和商业建筑使用的水的体积。水表也可用于水源、井或整个水系统,以确定通过系统特定部分的流量。

发明内容

根据本申请中描述的主题的创新方面,用于计量水的方法包括从连接到第一管道的第一仪表接收在一时间段期间收集的第一音频数据和在该时间段期间收集的第一温度数据;从连接到第二管道的第二仪表接收在该时间段期间收集的第二音频数据和在该时间段期间收集的第二温度数据;并基于第一音频数据、第一温度数据、第二音频数据和第二温度数据,确定在该时间段期间相对于已流动通过第二管道的材料的第二量的已流动通过第一管道的材料的第一量。

这些和其他实现每个都可选地包括以下特征中的一个或多个。确定在该时间段期间相对于已流动通过第二管道的材料的第二量的已流动通过第一管道的材料的第一量的动作包括确定在特定量的时间期间第一管道的第一温度至少已改变阈值温度变化量的动作;确定第二管道的第二温度在特定量的时间期间至少已改变阈值温度变化量;在确定在特定量的时间期间第一管道的第一温度至少已改变阈值温度变化量后,确定第一管道的第一温度发生改变的第一经过时间;在确定在特定量的时间期间第二管道的第二温度至少已改变阈值温度变化量后,确定第二管道的第二温度发生改变的第二经过时间;并基于第一经过时间和第二经过时间,确定相对于在特定量的时间期间已流动通过第二管道的材料的第二量的在特定量的时间期间已流动通过第一管道的材料的第一量。

确定在该时间段期间相对于已流动通过第二管道的材料的第二量的已流动通过第一管道的材料的第一量的动作包括基于第一音频数据,确定与第一音频数据对应的第一音频能量的第一水平的动作;基于第二音频数据,确定与第二音频数据对应的第二音频能量的第二水平;确定在特定量的时间期间第一音频能量的第一水平至少已改变阈值能量变化量;确定在特定量的时间期间音频能量的第二水平至少已改变阈值能量变化量;在确定在特定量的时间期间第一音频能量的第一水平至少已改变阈值能量变化量后,确定第一音频能量的第一水平至少已改变阈值能量变化量的第一经过时间;在确定在特定量的时间期间第二音频能量的第二水平至少已改变阈值能量变化量后,确定第二音频能量的第二水平至少已改变阈值能量变化量的第二经过时间;以及基于第一经过时间和第二经过时间,确定相对于在特定量的时间期间已流动通过第二管道的材料的第二量的在特定量的时间期间已流动通过第一管道的材料的第一量。

第一管道和第二管道为水管,并且材料为水。第一管道和第二管道为气体管道,并且材料为天然气或丙烷。动作还包括传输对仪表数据的请求。响应于对仪表数据的请求,接收第一和第二音频数据以及第一和第二温度数据。动作还包括从第一仪表接收指示在该时间段期间第一仪表移动了的数据;并且响应于接收到指示在该时间段期间第一仪表移动了的数据,提供指示第一仪表的移动的数据用于显示。动作还包括从连接到第三管道的第三仪表接收在该时间段期间收集的流量数据,所述第三管道向第一管道和第二管道进行供给;并且基于在该时间段期间相对于已流动通过第二管道的材料的第二量的已流动通过第一管道的材料的第一量,并基于来自第三仪表的流量数据,确定在该时间段期间已流动通过第一管道的材料的第一绝对量和在该时间段期间已流动通过第二管道的材料的第二绝对量。

该方面的其他实施例包括在计算机存储设备上记录的相应系统、装置和计算机程序,每一个都被配置为执行方法的操作。

可实施本说明书中描述的主题的特定实施例,以实现以下优点中的一个或多个。用户可以能够在不为每个单元安装单独流量计的情况下,计算多单元建筑的单独单元的水消耗。

本说明书中描述的主题的一个或多个实施例的细节在附图和以下描述中阐述。根据说明书、附图和权利要求,主题的其他特征、方面和优点将变得显而易见。

附图说明

图1说明用于从连接到不同管道的多个仪表收集仪表数据的示例系统;

图2说明用于处理表数据的示例系统和用于从管道收集仪表数据的示例设备;

图3说明用于处理仪表数据以确定相对用量的示例方法;

图4说明使用温度计测量通过管道的流速的示例方法;

图5说明使用麦克风测量通过管道的流速的示例方法;

图6说明计算设备和移动计算设备的示例。

具体实施方式

图1说明用于从连接到不同管道的多个仪表收集仪表数据的示例系统100。简而言之,如下文更详细地描述的,系统100包括从表面仪表110、115和120收集数据的计算设备105。表面仪表110、115和120从位于多单元建筑125中的不同管道收集音频和温度数据。计算设备105还从流量计130收集流量数据。计算设备105处理音频数据、温度数据和流量数据,以计算对应于表面仪表110、115和120中的每一个的用量。

如图1中说明的,多单元建筑125包括两个公寓单元,公寓A和公寓B。公寓A有卧室A、浴室A、厨房A和起居室A。公寓B有卧室B、浴室B、厨房B和起居室B。公寓A和公寓B二者都没有专用水表。水管140为公寓A提供水,分支水管135服务于公寓B。流量计130测量公寓A和公寓B二者的水消耗,而不区分公寓A的用量和公寓B的用量。

虽然本示例中多单元建筑125仅包括两个公寓单元,但多单元建筑125可包括多个单元,并且可以是住宅、商业或工业空间。多单元建筑125可以有一个流量计130,或者可以有多个流量计。例如,多单元建筑125可以每层或每排(tier)有一个流量计。此外,管道可输送任何类型的材料。例如,管道可为公寓A和公寓B提供天然气。

为了测量公寓A和公寓B的单独水消耗,管道工可以在管道140中安装流量计。在不同的情况下,多单元建筑125的管道可能必须被重新配置,以考虑到管道工可为每个公寓安装流量计的位置。为了避免重新配置管道或切割管道和安装流量计的复杂性,公寓管理者155可以将表面仪表110、115和120附接到每个公寓中的暴露的管道。

表面仪表110、115或120可被配置为使用胶带、夹子或类似紧固件附接到管道。可不必切割管道来安装表面仪表110、115或120。表面仪表110、115或120可包括麦克风、温度计、存储器和收发器。麦克风可以检测和记录周围环境中的音频数据。当表面仪表110、115或120连接到管道时,音频数据可包括流动通过管道的水的声音。温度计可以检测并记录管道的表面温度。

如图1中说明的,为了估计公寓B的水用量,公寓管理者155可以在管道140上安装表面仪表120。由于管道140是为公寓B且仅为公寓B提供水的唯一管道,公寓管理者155可以为公寓B安装一个表面仪表120。为了估计公寓A的水用量,公寓管理者155可以安装表面仪表110和115。公寓管理者155可将表面仪表110安装在厨房B中的管道145上,并将表面仪表115安装在浴室B中的管道150上。在一些情况下,公寓管理者155可在浴室中安装多个表面仪表。例如,在不接触为所有浴室水槽、厕所和淋浴提供水的管道的情况下,公寓管理者155可以在水槽、厕所供水和淋浴头中的每一个处安装表面仪表。

每个表面仪表110、115或120以周期性间隔(例如,每秒)记录相应管道的音频和温度。每个表面仪表110、115或120可以由电池供电,并且能够在没有新电池的情况下长时间运行。例如,表面仪表110、115或120可以能够用一组电池运行一年。

表面仪表110、115或120可被配置为从计算设备105接收对数据的请求。为了节省电池电量,表面仪表110、115或120可在特定时间段激活相应的收发器。例如,表面仪表110、115或120可每月激活收发器两天。在这两天期间,表面仪表110、115或120能够接收对数据的请求。响应于请求,表面仪表110、115或120可以传输存储的温度数据和存储的音频数据。在传输至计算设备105后,表面仪表110、115或120可以删除存储的温度数据和存储的音频数据。限制在其期间表面仪表110、115或120能够接收和传输数据的窗口可以保存电池电量。

在使用浴室A和厨房A时,居民通过管道140取水。表面仪表120可连续记录管道140的音频数据和温度。管道140的温度可以随着水流动通过管道140而改变,并且在水移动通过管道140时,水可能生成声波。在使用浴室B时,居民通过管道150取水。与表面仪表120类似,表面仪表115记录其附接到的管道150的音频数据和温度。在使用厨房B时,居民通过管道145取水。水改变管道145的温度,并在水移动通过管道145时生成声波。

在一些实现中,公寓A和公寓B可能对热水和冷水二者有独立进水管道。在这种情况下,公寓管理者155可将表面仪表添加到每个热水管道,以测量每个公寓的居民使用的热水。例如,如果表面仪表120附接到冷水管道,则公寓管理者155可以将表面仪表添加到相应的热水管道。在一些实现中,公寓可能有单独的热水器。在这种情况下,公寓管理者155可以将表面仪表添加到热水的入口或出口,收集与热水用量相关的数据。

在表面仪表110、115和120的收发器处于活动状态的窗口期间,公寓管理者155可以与计算设备105一起在多单元建筑125周围移动。计算设备105可包括与表面仪表110、115和120通信的应用程序。应用程序可以激活计算设备105的短程无线电或其他类似的无线通信模块。应用程序可以请求来自表面仪表110、115和120中的每一个的数据。应用程序可以使用表面仪表110、115和120中的每一个的唯一标识符来请求数据。在表面仪表110、115和120中的每一个的安装期间,公寓管理者可以用应用程序存储每个表面仪表的位置。当在多单元建筑125周围移动时,计算设备105可以使用位置传感器(诸如GPS)确定其位置,并查验(ping)附近的表面仪表。

通过传输对来自表面仪表120的数据的请求,计算设备105从表面仪表110收集数据。作为响应,表面仪表120传输音频数据160和温度数据165。计算设备105接收数据160和165,存储数据160和165,并用识别表面仪表120的数据和当前时间段来标记数据160和165。在一些实现中,计算设备105可以在用户界面上显示计算设备105接收了音频数据160和温度数据165。在一些实现中,计算设备105可以向表面仪表120传输指示其成功接收了数据的信号。然后表面仪表120可以删除音频数据160和温度数据165。表面仪表120还可以在下一个指定时间段之前停用其收发器,即使在当前时间段期间还有一些时间。

通过传输对来自表面仪表110的数据的请求,计算设备105从表面仪表110收集数据。作为响应,表面仪表110传输音频数据170和温度数据175。计算设备105接收数据170和175,存储数据,并更新用户界面。

通过传输对来自表面仪表110的数据的请求,计算设备105从表面仪表115收集数据。表面仪表115可传输温度数据180。计算设备105接收数据180,存储数据,并更新用户界面。表面仪表115可能无法传输任何音频数据。表面仪表115的收发器或计算设备105的收发器可能遇到错误。在这种情况下,计算设备105可指示表面仪表115的音频数据仍未完成。计算设备105可向表面仪表115发送对音频数据的额外请求。

在一些实现中,计算设备105可与流量计130无线地连接。在这种情况下,流量计可以将指示7CCF已流动通过流量计130的流量数据185传输到计算设备105。

计算设备105或服务器可以处理接收的音频和温度数据,以确定公寓A和B的相对水用量。在一些实现中,计算设备105可以计算公寓A的水用量与公寓B的水用量的比率。计算设备可以使用比率和流量数据185来计算每个公寓A和B的绝对用量。此外,还关于图4和5讨论与计算水用量相关的细节。在一些实现中,用量读数可能不准确,因为表面仪表110、115和120可能不如流量计精确。

图2说明用于处理仪表数据的示例系统200和用于从管道收集仪表数据的示例设备250。简而言之,如下文更详细描述的,系统200可被配置为请求来自设备250的温度数据和音频数据。系统200可类似于图1的计算设备105。设备250可类似于图1的表面仪表110、115和120。

系统200包括收发器205。收发器205可以是能够无线地传输和接收数据的短程无线电模块。收发器205可以接收来自设备250的数据,并传输和接收来自位于云中的服务器的数据。

系统200包括音频分析器210和温度分析器215。音频分析器210和温度分析器215可以分析从设备250和其他类似设备接收的音频数据和温度数据。系统200可使用音频分析器210和温度分析器215生成相对水用量数据或水用量比率。音频分析器210和温度分析器215可以使用关于图4和图5讨论的过程。在一些实现中,音频分析器210和温度分析器215可以使用来自管内仪表的流量数据来确定绝对水用量数据。

系统200包括音频和温度数据存储器220。音频和温度数据存储器220可被配置为存储从设备250和其他类似设备接收的音频和温度数据。音频和温度数据存储器220可包括用于提供数据的特定设备的字段和用于设备250收集数据的时间段的字段。

系统200包括用户界面生成器225。用户界面生成器225可被配置为在系统200的屏幕上提供已向系统200提供音频和温度数据的设备250和其他类似设备、以及已向系统200提供流量数据的流量计的视觉指示用于显示。用户界面生成器225可被配置为显示由音频分析器210和温度分析器215执行的水用量计算的结果。

设备250包括收发器255。收发器255可以是能够无线地传输和接收数据的短程无线电模块。收发器255可在指定的时间段处于活动状态。例如,收发器255可以只在一个月的前两天期间处于活动状态。在其他时间期间,收发器255可处于非活动状态以节省电池电量。

设备250包括温度计260和麦克风265。设备250可被配置为附接到管道。设备250的面向管道的部分可包括温度计260和麦克风265。设备250可以以周期性间隔(诸如每500毫秒)对由麦克风265接收的音频数据采样。设备250可以以周期性间隔(诸如每3秒)对由温度计260检测的温度采样。

设备250可将采样的温度和音频数据存储在音频和温度数据存储器270中。设备250可在音频和温度数据存储器270中记录定时数据,以指示收集相应样品的时间。设备250可以将温度和音频数据存储在音频和温度数据存储器270中,直到数据被成功传输到系统200。

出于安全目的,对设备250可能有用的是检测其已被移动的时间。设备250可包括加速度计275。加速度计275或其他类似的运动传感器可向移动检测器280提供运动数据。移动检测器280可存储指示设备250移动了的时间的数据。此外或可选地,设备250可包括扬声器,并在移动时激活警报。当收发器255处于活动状态并从设备250接收请求时,任何存储的移动数据都可以被传输到系统200。

作为安全示例,居民可以将设备250从一个浴室移动到居民很少使用的另一浴室。居民可能希望使设备250测量没有像居民的单元中的其他管道那样频繁地流动通过水的管道处的温度和音频数据。移动检测器280可接收来自加速度计275的运动数据,并确定设备250已移动超过如果设备250保持在原始管道上的预期。设备250可将移动的时间传输到系统200。

图3说明用于处理仪表数据以确定相对用量的示例方法300。通常,方法300使用管道处记录的音频数据和温度数据来确定两个管道之间的相对流量。方法300将被描述为由包括一个或多个计算机的计算机系统(例如,如图1中示出的计算设备105或如图2中示出的计算系统200)执行。

系统从连接到第一管道的第一仪表接收在一时间段期间收集的第一音频数据和在所述时间段期间收集的第一温度数据(310)。在一些实现中,第一管道是水管。在一些实现中,第一管道是气体管道。在一些实现中,系统将对音频和温度数据的请求传输到第一仪表。第一仪表响应于该请求传输音频和温度数据。

系统从连接到第二管道的第二仪表接收在所述时间段期间收集的第二音频数据和在所述时间段期间收集的第二温度数据(320)。在一些实现中,第二管道是水管。在一些实现中,第二管道是气体管道。在一些实现中,系统将对音频和温度数据的请求传输到第二仪表。第二仪表响应于该请求传输音频和温度数据。

在一些实现中,系统接收指示第一仪表或第二仪表移动了的数据。系统可以向用户显示指示仪表中的一个可能已移动的数据。在系统接收到来自移动的仪表的位置数据的情况下,系统可以指示移动的仪表的位置。在一些实现中,系统可只接收相对移动数据。系统可以将相对移动数据和与仪表的原始位置相关的数据结合,以确定新的位置。例如,系统可以接收系统移动了10米的数据。系统可能知道仪表过去在浴室A中,厨房A距离同一个单元中的浴室A约10米。系统可以估计移动的仪表可能在厨房A中。

基于第一音频数据、第一温度数据、第二音频数据和第二温度数据,系统确定在所述时间段期间相对于已流动通过第二管道的材料的第二量的已流动通过第一管道的材料的第一量(330)。

在一些实现中,系统确定在特定量的时间期间,第一管道的第一温度至少已改变阈值温度变化量。系统确定在特定量的时间期间第二管道的第二温度至少已改变阈值温度变化量。在确定在特定量的时间期间第一管道的第一温度至少已改变阈值温度变化量后,系统确定第一管道的第一温度发生改变的第一经过时间。在确定在特定量的时间期间第二管道的第二温度至少已改变阈值温度变化量后,系统确定第二管道的第二温度发生改变的第二经过时间。基于第一经过时间和第二经过时间,系统确定相对于在特定量的时间期间已流动通过第二管道的材料的第二量的在特定量的时间期间已流动通过第一管道的材料的第一量。

在一些实现中,基于第一音频数据,系统确定与第一音频数据对应的第一音频能量的第一水平。基于第二音频数据,系统确定与第二音频数据对应的第二音频能量的第二水平。系统确定在特定量的时间期间第一音频能量的第一水平至少已改变阈值能量变化量。系统确定在特定量的时间期间音频能量的第二水平至少已改变阈值能量变化量。在确定在特定量的时间期间第一音频能量的第一水平至少已改变阈值能量变化量后,系统确定第一音频能量的第一水平至少已改变阈值能量变化量的第一经过时间。在确定在特定量的时间期间第二音频能量的第二水平至少已改变阈值能量变化量后,系统确定第二音频能量的第二水平至少已改变阈值能量变化量的第二经过时间。基于第一经过时间和第二经过时间,系统确定相对于在特定量的时间期间已流动通过第二管道的材料的第二量的在特定量的时间期间已流动通过第一管道的材料的第一量。

在一些实现中,系统从连接到第三管道的第三仪表接收在所述时间段期间收集的流量数据,所述第三管道供给到第一管道和第二管道中。基于在所述时间段期间相对于已流动通过第二管道的材料的第二量的已流动通过第一管道的材料的第一量,并基于来自第三仪表的流量数据,系统确定在所述时间段期间已流动通过第一管道的材料的第一绝对量以及在所述时间段期间已流动通过第二管道的材料的第二绝对量。

下文描述的主题涉及测量管道中流速的方法。所述方法包括使用温度计测量管道的外部的温度。计算设备收集温度数据,并基于温度的变化确定通过管道的流速。另一方法包括使用麦克风收集管道的外部的音频数据。计算设备收集音频数据,并基于音频数据的变化确定通过管道的流速。在一些实现中,计算设备可以使用音频数据和温度二者来确定通过管道的流速。在一些实现中,计算设备可以使用温度来检测流量何时开始通过管道,并使用音频数据来检测流量何时停止,反之亦然。

图4说明使用温度计测量通过管道的流速的示例方法100。方法100可由位于管道附近的计算设备(诸如直接连接到温度计的计算设备)来执行。或者,方法100可由通过无线连接从温度计接收数据的计算设备执行。

计算设备从温度计接收管道的温度(405)。在一些实现中,管道是水管或提供另一液体的管道。在一些实现中,管道是提供任何类型的气体(诸如甲烷)的气体管道。温度计附接到管道的外部,并被配置为测量管道本身的温度。温度计可以被隔离地覆盖,以减少周围空气对温度读数的影响。在一些实现中,多个温度计被放置在管道的部分上。例如,第一温度计可以在距离墙壁一英尺处检测管道的温度。第二温度计可也在距离墙壁一英尺但在管道的外周上的不同位置处检测管道的温度。第三温度计可以在距离墙壁两英尺或距离管道下一分支一英尺处检测管道的温度。

计算设备确定在特定量的时间期间管道的温度至少已改变阈值温度变化量(410)。当计算设备监测温度时,计算设备以预定的间隔(例如一分钟)确定温度读数之间的差。计算设备基于校准过程确定阈值温度变化量。在一些实现中,校准过程可能基于管道的材料、管道的外直径、管道的内直径和流动通过管道的材料。例如,如果管道是铜的,外直径为1英寸,内直径为0.8英寸,并且水正在流动通过管道,则计算设备可监测2度的阈值温度变化量。在一些实现中,校准过程基于训练数据,包括管道的温度读数和通过管道的流量数据。例如,在温度计的设置过程期间,计算设备从温度计接收温度数据,从测量通过管道的流速的另一仪表接收流量数据。使用温度和流速数据,计算设备确定要检测的适当的阈值温度变化量。在一些实现中,取决于温度正在升高还是降低,阈值温度变化量可能不同。例如,如果温度正在升高,则阈值温度变化量可能为2度;如果温度正在降低,则可能为3度。

在确定在特定量的时间期间管道的温度至少已改变阈值温度变化量后,计算设备确定管道的温度发生改变的经过时间(415)。在此阶段,计算设备可以以更短的间隔(例如3秒)监测管道的温度。如果在更短的间隔或另一间隔内温度没有至少改变阈值,则计算设备可以确定管道的温度不再改变。例如,如果在特定时间计算设备测量到50.1度的温度,在特定时间加上两分钟测量到50.2度,则所述计算设备可确定温度已停止改变。如果温度从特定时间的50.1度改变到特定时间加上一分钟的50.2度,则计算设备确定温度仍在改变。

基于管道的温度正在改变的经过时间,计算设备确定在经过时间期间已流动通过管道的材料的量(420)。为了计算经过时间期间已流动通过管道的材料的流速,计算设备使用管道的材料、管道的外直径、管道的内直径和流动通过管道的材料。例如,如果管道是铜的,外直径是1英寸,内直径是0.8英寸,水正在流动通过管道,并且温度在10分钟内从50.0度改变为45.0度,则计算设备确定30加仑流动通过管道。在一些实现中,计算设备基于校准过程期间收集的训练数据确定在经过时间期间已流动通过管道的材料的量。

在一些实现中,计算设备存储与通过管道的流速相关的数据,并响应于请求向其他计算设备提供数据。例如,计费设备可能正在生成用水客户的账单。计费设备将请求发送到具有流速数据的计算设备。具有流速数据的计算设备验证请求,并且如果经验证,则向计费设备提供流速数据。然后,计费设备可以生成账单以提供给客户。

在一些实现中,通过确定来自多个温度计的所有测量结果满足阈值变化量或大多数测量结果满足阈值变化量的时间,计算设备可使用多个温度计配置来确定流速。例如,如果三个温度中的两个改变阈值温度变化量,则计算设备可以开始以更频繁的间隔监测温度,或者仅监测来自满足阈值的温度计的温度。在一些实现中,基于温度计处管道的特性,或者基于训练数据,或者基于两者,每个温度计都有不同的阈值温度变化量。

一旦液体或气体已流动通过管道一段时间,管道的温度达到稳定状态。在此期间,计算设备监测管道的温度,并确定管道处于恒定温度的经过时间。一旦液体或气体停止流动,管道的温度将返回初始温度。因此,如果计算设备测量管道达到恒定温度和管道返回初始温度之间经过的时间,则计算设备可以确定在经过时间期间通过管道的流速。

在一些实现中,一旦管道的温度达到稳定状态时计算设备检测的阈值温度变化量与当气体或液体起初开始流动时检测的阈值温度变化量相同。在一些实现中,阈值温度变化量不同,取决于管道的材料、管道的外直径、管道的内直径、以及流动通过管道的材料,或取决于训练数据,或两者兼而有之,两者中任一个较大。

在一些实现中,一旦管道的温度达到稳定状态时计算设备监测阈值温度变化量的时间的量与当气体或液体开始流动时计算设备监测阈值温度变化量的时间的量相同。在一些实现中,这两个时间段是不同的,并且基于管道的材料、管道的外直径、管道的内直径、以及流动通过管道的材料,或基于训练数据,或两者兼而有之。

图5说明使用麦克风测量通过管道的流速的示例方法500。方法500可由位于管道附近的计算设备(诸如直接连接到麦克风的计算设备)来执行。或者,方法500可由通过无线连接从麦克风接收数据的计算设备执行。

计算设备从麦克风接收与管道相关联的音频数据(505)。在一些实现中,管道是水管或提供另一液体的管道。在一些实现中,管道是提供任何类型的气体(诸如甲烷)的气体管道。麦克风附接到管道的外部,并被配置为测量从管道本身发出的声波。麦克风可以被隔离覆盖,以减少环境噪声对麦克风的影响。在一些实现中,多个麦克风被放置在管道的部分上。例如,第一麦克风可以在距离墙壁一英尺处检测从管道发出的声波。第二麦克风也可以在距离墙壁一英尺但在管道的外周上不同位置处检测从管道发出的声波。第三麦克风可以在距离墙壁两英尺或距离管道下一分支一英尺处检测从管道发出的声波。计算设备可以使用来自多个麦克风的音频数据来抵消噪音。

基于音频数据,计算设备确定与音频数据相关联的音频能量的水平(510)。当计算设备接收音频数据时,计算设备将音频数据转换为音频能量的水平。在一些实现中,计算设备计算音频数据的均方根或平均幅度,以确定音频能量的水平。在一些实现中,计算设备确定音频数据的频率分量,并使用频率分量确定管道的流速。

计算设备确定在特定量的时间期间,音频能量的水平至少已改变阈值能量变化量(515)。当计算设备计算音频能量的水平时,计算设备以预定的间隔(例如1分钟)确定音频能量的水平之间的差。计算设备基于校准过程确定阈值能量变化量。在一些实现中,校准过程可能基于管道的材料、管道的外直径、管道的内直径和流动通过管道的材料。例如,如果管道是铜的,外直径为1英寸,内直径为0.8英寸,并且水正在流动通过管道,则计算设备可监测2分贝的阈值能量变化量。在一些实现中,校准过程基于训练数据,包括管道的音频能量水平和通过管道的流量数据。例如,在麦克风的设置过程期间,计算设备从麦克风接收音频数据,并从正在测量通过管道的流速的另一仪表接收流量数据。使用音频数据和流速数据,计算设备确定要检测的适当的阈值能量变化量。在一些实现中,取决于音频能量水平是在增加还是减少,阈值能量变化量可能不同。例如,如果音频能量水平在增加,则阈值能量变化量可能是2分贝;如果音频能量水平在降低,则阈值能量变化量可能是3分贝。

在确定特定量的时间期间音频能量的水平至少已改变阈值能量变化量后,计算设备确定与管道相关联的音频能量的水平至少已改变阈值能量变化量的经过时间(520)。在此阶段,计算设备可以以较短的间隔(例如3秒)计算管道的音频能量水平。如果在较短的间隔或另一间隔内音频能量水平不能满足阈值,则计算设备可以确定管道的音频能量的水平不再在阈值能量变化量之外。例如,如果计算设备在特定时间测量到1.7分贝的能量变化,在特定时间加上2分钟测量到1.8分贝的能量变化,则计算设备可以确定音频能量水平不再超过3分贝的阈值。如果在特定时间的能量水平变化为1.7分贝,在特定时间加上1分钟的能量水平变化为2.2分贝,则计算设备确定音频能量水平仍在阈值能量范围之外。

基于与管道相关联的音频能量的水平至少已改变阈值能量变化量的经过时间,计算设备确定在经过时间期间已流动通过管道的材料的量(525)。

为了计算经过时间期间已流动通过管道的材料的流速,计算设备使用管道的材料、管道的外直径、管道的内直径和流动通过管道的材料。例如,如果管道是铜的,外直径为1英寸,内直径为0.8英寸,并且水正在流动通过管道,以及在10分钟期间音频能量水平在阈值能量范围之外,则计算设备确定30加仑流动通过管道。在一些实现中,计算设备基于校准过程期间收集的训练数据,确定经过时间期间已流动通过管道的材料的量。

在一些实现中,计算设备计入音频能量改变的水平的因素,以确定流速。计算设备可以考虑音频能量变化的水平,而不只是考虑音频能量水平是否满足阈值能量水平。例如,1分贝的音频能量变化可对应于如2分贝的音频能量变化的流动通过管道的水的百分之八十。计算设备可考虑管道的材料、管道的外直径、管道的内直径以及流动通过管道的材料,或训练数据,或两者兼有,以确定什么流速对应于什么音频能量变化。

在一些实现中,计算设备可接收音频能量水平数据和温度数据,以确定通过管道的流速。例如,计算设备可以对基于温度数据和基于音频能量水平数据确定的流速的求平均来确定通过管道的流速。

在一些实现中,计算设备存储与通过管道的流速相关的数据,并响应于请求向其他计算设备提供该数据。例如,计费设备可能正在生成用水客户的账单。计费设备向具有流速数据的计算设备发送请求。具有流速数据的计算设备验证请求,并且如果经验证,则向计费设备提供流速数据。然后,计费设备可以生成账单以提供给客户。

在一些实现中,通过确定根据来自多个麦克风的数据计算的所有能量水平满足阈值变化量或大部分能量水平满足阈值变化量的时间,计算设备可以使用多个麦克风配置来确定流速。例如,如果三个能量水平中的两个改变阈值能量变化量,则计算设备可以以更频繁的间隔开始监测麦克风,或者仅监测与满足阈值的能量水平相关联的麦克风。在一些实现中,基于麦克风处的管道的特性或基于训练数据或两者兼有,每个麦克风都有不同的阈值能量变化量。

当气体或液体正在流动通过管道时,由计算设备确定的能量水平将相对恒定。一旦气体或液体停止流动,能量水平返回初始能量水平。当能量水平恒定时,计算设备监测能量水平,并存储能量水平在阈值能量变化量之上的经过时间。当气体或液体停止流动时,计算设备监测能量水平,将可能确定能量水平在第二特定量的时间内已改变第二阈值能量变化量。在一些实现中,第二阈值能量变化量与流量开始时的阈值能量变化量相同,而在其他实现中则不同。在一些实现中,第二特定量的时间与流量开始时的特定量的时间相同,而在其他实现中则不同。基于管道的材料、管道的外直径、管道的内直径和流动通过管道的材料,或基于训练数据,或两者兼有,计算设备确定所有四个值。

在一些实现中,计算设备使用温度和声音的组合来确定通过管道的流量。例如,计算设备可以使用温度来确定流量何时开始通过管道,使用音频能量水平来确定流量何时停止。作为另一个示例,计算设备可以使用音频能量水平来确定流量开始的时间,使用温度来确定流量结束的时间。

本申请中描述的水表可用于用户希望测量水流量但不希望通过移除、切割或添加管道来安装水表的各种情况。例如,在多家庭住宅中,管理公司可能希望测量没有单独水表的单独单元的水消耗。通过使用胶水、胶带、束线带或任何其他类型的扎带或粘合剂将仪表附接到对每个单元进行供给的管道,管理公司可以安装这些仪表。由多于一个管道供给的单元可以具有附接到每条管道的仪表。仪表可以被链接到计费系统,为以前没有仪表的单元生成单独的账单。在一些实现中,每个仪表可能包括示出试图移除的迹象的防篡改带。当某人试图移除仪表时,每个仪表也会生成警报。

在一些实现中,仪表可被配置有振动传感器。振动传感器可以检测水或其他材料正在流动通过管道时管道中发生的振动。仪表可包括围绕管道的外周的多个振动传感器。从振动传感器接收数据的计算设备可以确定水流速随着水流量的增加而增加。在一些实现中,当材料改变其流速时,可能会发生管道的振动。在这种情况下,计算设备可以基于振动的变化率来确定水流速。

在一些实现中,计算设备基于声音、温度和振动的组合来确定通过管道的流量。这三者的任何组合都可以用来检测流量的开始和流量的结束。例如,计算设备可以使用来自温度和振动传感器的数据来确定流量何时开始,仅使用麦克风数据来确定流量何时停止。作为另一示例,计算设备可以使用声音、温度和振动数据来确定流量何时开始,以及使用声音和振动数据来确定流量何时停止。在一些实现中,可使用环境温度、材料流动的温度、季节、一天中的时间、月、一周中的天等等来确定可使用什么数据。

在一些实现中,附接到管道的仪表设备可能使用电池运行。为节省电池电量,设备可被配置为仅以特定间隔通信。例如,设备可以被配置为仅在周一中午到下午2点之间通信。在此期间,接收计算设备可以请求来自仪表设备中的每一个的数据。在一周的剩余时间,仪表设备只可从管道中收集数据。

在一些实现中,仪表可被配置为在流量超过阈值时生成可听见的或被递送到计算设备的警报。例如,当仪表检测到流速在3加仑/分钟以上时,仪表可生成警报。作为另一示例,仪表可能会在一天中的不同时间、一周中的天、月等等生成警报。在可能没人正在用水时,诸如在中午期间,当流量在0.3加仑/分钟以上时仪表可生成警报。此功能可有助于识别泄漏。

在一些实现中,仪表可以在逻辑上相互连接。对于测量对相同居住单元进行供给的管道的仪表,这些仪表可以被配置为共享数据,然后向计算设备供应一组数据。仪表还可以共享数据以生成警报。仪表可组合其数据来确定流量是否超过阈值。例如,如果阈值为0.3加仑/分钟,那么测量为0.2加仑/分钟的仪表如果逻辑上被连接到另一测量为0.2加仑/分钟的仪表,则可发出警报。

图6示出可用于实现本文描述的技术的计算设备600和移动计算设备650的示例。计算设备600旨在表示各种形式的数字计算机,诸如膝上型计算机、台式计算机、工作站、个人数字助理、服务器、刀片式服务器、大型机和其他适当的计算机。移动计算设备650旨在表示各种形式的移动设备,诸如个人数字助理、蜂窝电话、智能电话和其他类似的计算设备。本文示出的组件、它们的连接和关系、以及它们的功能仅用作示例,不旨在限制。

计算设备600包括处理器602、存储器604、存储设备606、连接到存储器604和多个高速扩展端口610的高速接口608、以及连接到低速扩展端口614和存储设备606的低速接口612。处理器602、存储器604、存储设备606、高速接口608、高速扩展端口610和低速接口612中的每一个都使用各种总线互连,并且可以被安装在通用主板上或如适用以其他方式安装。处理器602可以处理用于在计算设备600内执行的指令,包括存储在存储器604中或存储设备606上的指令,以在外部输入/输出设备(诸如耦合到高速接口608的显示器616)上显示用于GUI的图形信息。在其他实现中,如适用,可使用多个处理器和/或多个总线连同多个存储器和各类型的存储器。此外,可以连接多个计算设备,每个设备提供必要操作的部分(例如,作为服务器库、刀片服务器的组或多处理器系统)。

存储器604将信息存储在计算设备600中。在一些实现中,存储器604是易失性存储单元(一个或多个)。在一些实现中,存储器604是非易失性存储单元(一个或多个)。存储器604也可以是计算机可读介质的另一形式,诸如磁盘或光盘。

存储设备606能够为计算设备600提供大容量存储。在一些实现中,存储设备606可以是或包含计算机可读介质,诸如软盘设备、硬盘设备、光盘设备、或磁带设备、闪存或其他类似固态存储设备、或设备的阵列,包括存储区域网络或其他配置中的设备。指令可以被存储在信息载体中。当由一个或多个处理设备(例如处理器602)执行时,指令执行一个或多个方法,诸如上述的那些。指令也可以由诸如计算机可读介质或机器可读介质(例如,存储器604、存储设备606或处理器602上的存储器)之类的一个或多个存储设备存储。

高速接口608管理计算设备600的带宽密集型操作,而低速接口612管理较低的带宽密集型操作。这样的功能分配只是示例。在一些实现中,高速接口608被耦接到存储器604、显示器616(例如,通过图形处理器或加速器)和高速扩展端口610,所述高速扩展端口610可以接受各种扩展卡。在实现中,低速接口612被耦接到存储设备606和低速扩展端口614。可包括各种通信端口(例如,USB、蓝牙、以太网、无线以太网)的低速扩展端口614(例如,通过网络适配器)可被耦接到一个或多个输入/输出设备(诸如键盘、指向设备、扫描仪)或网络设备(诸如交换机或路由器)。

计算设备600可以多种不同的形式实现,如图所示。例如,它可以被实现为标准服务器620,或者实现多次为这样的服务器的组。此外,它可以在个人计算机(诸如膝上型计算机622)中实现。它也可以作为机架服务器系统624的部分来实现。或者,来自计算设备600的组件可以与移动设备(诸如移动计算设备650)中的其他组件组合。这样的设备中的每一个都可以包含计算设备600和移动计算设备650中的一个或多个,并且整个系统可以由互相通信的多个计算设备组成。

移动计算设备650包括处理器652、存储器664、输入/输出设备(诸如显示器654)、通信接口666和收发器668等组件。移动计算设备650还可以设置有存储设备(诸如微驱动器或其他设备)以提供额外的存储。处理器652、存储器664、显示器654、通信接口666和收发器668中的每一个都使用不同的总线互连,组件中的几个可以在通用主板上或者如适用以其他方式安装。

处理器652可以在移动计算设备650内执行指令,包括存储在存储器664中的指令。处理器652可以作为芯片的芯片组实现,包括独立的和多个模拟和数字处理器。例如,处理器652可提供对移动计算设备650的其他组件的协调,诸如用户界面的控制、由移动计算设备650运行的应用程序和通过移动计算设备650的无线通信。

处理器652可通过耦接到显示器654的控制接口658和显示接口656与用户通信。显示器654可以是例如TFT(薄膜晶体管液晶显示器)显示器或OLED(有机发光二极管)显示器,或其他适当的显示技术。显示接口656可包括用于驱动显示器654向用户呈现图形和其他信息的适当电路。控制接口658可以接收来自用户的命令,并将其转换以提交给处理器652。此外,外部接口662可提供与处理器652的通信,以使移动计算设备650与其他设备能够近区通信。例如,外部接口662可提供一些实现中的有线通信,或其他实现中的无线通信,并且还可使用多个接口。

存储器664将信息存储在移动计算设备650内。存储器664可以被实现为计算机可读介质(一个或多个)、易失性存储单元(一个或多个)或非易失性存储单元(一个或多个)中的一个或多个。还可以提供扩展存储器674,并通过扩展接口672将所述扩展存储器674连接到移动计算设备650,所述扩展接口672可以包括例如SIMM(单列直插式存储模块)卡接口。扩展存储器674可以为移动计算设备650提供额外的存储空间,或者也可以存储用于移动计算设备650的应用程序或其他信息。具体而言,扩展存储器674可以包括执行或补充上述过程的指令,还可以包括安全信息。因此,例如,扩展存储器674可以作为移动计算设备650的安全模块被提供,并且可以用允许安全使用移动计算设备650的指令来编程。此外,可以通过SIMM卡提供安全应用程序,连同附加信息,诸如以不可入侵的方式将识别信息放置在SIMM卡上。

如下文讨论的,存储器可包括例如闪存和/或NVRAM存储器(非易失性随机存取存储器)。在一些实现中,指令被存储在信息载体中。当由一个或多个处理设备(例如,处理器652)执行时,指令执行一个或多个方法,诸如上文讨论的那些。指令也可以由一个或多个存储设备(诸如一个或多个计算机可读介质或机器可读介质(例如存储器664、扩展存储器674或处理器652上的存储器))存储。在一些实现中,指令可以例如通过收发器668或外部接口662以传播的信号被接收。

移动计算设备650可通过通信接口666无线地通信,必要时可包括数字信号处理电路。通信接口666可提供各种模式或协议下的通信,诸如GSM语音呼叫(全球移动通信系统)、SMS(短消息服务)、EMS(增强消息服务)或MMS消息(多媒体消息服务)、CDMA(码分多址)、TDMA(时分多址)、PDC(个人数字蜂窝)、WCDMA(宽带码分多址)、CDMA2000或GPRS(通用分组无线服务)等。例如,这样的通信可以使用射频通过收发器668发生。此外,可能发生短程通信,诸如使用蓝牙、WiFi或其他这样的收发器。此外,GPS(全球定位系统)接收器模块670可将额外的导航相关无线数据和位置相关无线数据提供给移动计算设备650,如适用可由移动计算设备650上运行的应用程序使用。

移动计算设备650还可以使用音频编解码器660可听见地通信,所述音频编解码器660可以从用户接收口头信息并将其转换为可用的数字信息。音频编解码器660同样可以为用户生成可听见的声音,诸如通过扬声器,例如,在移动计算设备650的电话听筒中。这样的声音可以包括来自语音电话呼叫的声音,可以包括记录的声音(例如,语音消息、音乐文件等),也可以包括由在移动计算设备650上操作的应用程序生成的声音。

移动计算设备650可以以多种不同的形式实现,如图所示。例如,它可以作为蜂窝式电话680来实现。它也可以作为智能手机582、个人数字助理或其他类似移动设备的部分来实现。

本文描述的系统和技术的各种实现可在数字电子电路、集成电路、专门设计的ASIC(专用集成电路)、计算机硬件、固件、软件和/或其组合中实现。这些各种实现可以包括在一个或多个计算机程序中的实现,所述计算机程序在可编程系统上是可执行和/或可解释的,所述可编程系统包括至少一个可编程处理器、至少一个输入设备和至少一个输出设备,所述可编程处理器可以是专用的或通用的,耦接以接收来自存储系统的数据和指令,并向存储系统传输数据和指令。

这些计算机程序(也称为程序、软件、软件应用程序或代码)包括用于可编程处理器的机器指令,并且可以用高级过程和/或面向对象的编程语言、和/或以汇编/机器语言实现。如本文使用的,术语机器可读介质和计算机可读介质是指用于向可编程处理器提供机器指令和/或数据的任何计算机程序产品、装置和/或设备(例如,磁盘、光盘、存储器、可编程逻辑器件(PLD)),包括接收作为机器可读信号的机器指令的机器可读介质。术语机器可读信号是指用于向可编程处理器提供机器指令和/或数据的任何信号。

为了提供与用户的交互,本文描述的系统和技术可以在具有用于向用户显示信息的显示设备(例如,CRT(阴极射线管)或LCD(液晶显示器)监视器)以及键盘和指向设备(例如,鼠标或轨迹球)的计算机上实现,通过所述设备用户可以向计算机提供输入。其他类型的设备也可用于提供与用户的交互;例如,提供给用户的反馈可以是任何形式的感官反馈(例如,视觉反馈、听觉反馈或触觉反馈);并且来自用户的输入可以以任何形式接收,包括声音、语音或触觉输入。

本文描述的系统和技术可在计算系统中实现,所述计算系统包括后端组件(例如,作为数据服务器),或包括中间件组件(例如,应用服务器),或包括前端组件(例如,具有图形用户界面或Web浏览器的客户端计算机,通过其用户可以与本文描述的系统和技术的实现交互),或者这样的后端、中间件或前端组件的任何组合。系统的组件可以通过数字数据通信的任何形式或介质(例如,通信网络)互连。通信网络的示例包括局域网(LAN)、广域网(WAN)和互联网。

计算系统可以包括客户端和服务器。客户端和服务器通常彼此是远程的,典型地通过通信网络交互。客户端和服务器之间的关系是由于在各自计算机上运行并且相互具有客户端-服务器关系的计算机程序而产生的。

尽管上文已详细描述一些实现,但其他修改也是可能的。例如,当客户端应用程序被描述为访问代理(一个或多个)时,在其他实现中,代理(一个或多个)可能由一个或多个处理器实现的其他应用程序,诸如在一个或多个服务器上执行的应用程序采用。此外,图中描绘的逻辑流不需要示出的特定的顺序或连续顺序,以获得期望的结果。此外,根据描述的流,可提供其他动作,或可消除动作,并可将其他组件添加到描述的系统或从描述的系统移除。因此,其他实现在以下权利要求的范围内。

24页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种定位测量的超声波水表

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!

技术分类