有机固废气化一体化高效制氢和制甲烷工艺

文档序号:1931269 发布日期:2021-12-07 浏览:19次 >En<

阅读说明:本技术 有机固废气化一体化高效制氢和制甲烷工艺 (Organic solid waste gasification integrated efficient hydrogen and methane production process ) 是由 樊文俊 宋云彩 冯杰 荆洁颖 李文英 于 2021-09-27 设计创作,主要内容包括:本发明属于煤化工和有机固废处理技术领域,且公开了有机固废气化一体化高效制氢和制甲烷工艺,包括气化炉、净化塔、甲烷化、制氢反应器与PSA分离设备,通过往气化炉内部注入煤、有机固废原料与气化剂水、氧,经过三者混合共气化步骤,制备得到合成气,内部产生的灰渣定期处理即可。本发明通过设置一整套的处理流程,利用有机固废一体化同时制备高纯氢、高纯甲烷和CO2的富集,可以将低品位的含碳原料转化为高纯度的产品,同时此工艺过程可以同时利用到有机固废气化的水,补充进入制氢反应器,提高了工艺过程中H元素的利用率。(The invention belongs to the technical field of coal chemical industry and organic solid waste treatment, and discloses an organic solid waste gasification integrated efficient hydrogen production and methane production process. The invention sets a whole set of treatment flow, utilizes the integration of organic solid wastes to simultaneously prepare the enrichment of high-purity hydrogen, high-purity methane and CO2, can convert low-grade carbon-containing raw materials into high-purity products, and simultaneously can simultaneously utilize water gasified by the organic solid wastes to supplement and enter the hydrogen production reactor in the technical process, thereby improving the utilization rate of H elements in the technical process.)

有机固废气化一体化高效制氢和制甲烷工艺

技术领域

本发明属于煤化工和有机固废处理技术领域,具体是有机固废气化一体化高效制氢和制甲烷工艺。

背景技术

随着经济的迅速发展,生活质量的提高,产生的生活垃圾与固体废弃物也日益增多,而这些固废垃圾中依旧含有较高能量,因此充分利用固体废弃物不仅可以缓解环境压力,还能提高元素和能量的利用率;另外,煤与有机固废的共气化没有增加操作难度,并且由于煤与固废的相互作用,能够提高元素和能量的利用率,减少污染物的排放。

此外,制氢是一个耗水量非常大的工艺,固废垃圾相较于煤炭来说,水的含量也相对较多,其水分可为后续制氢工段进行补水,可降低工艺的用水量,符合国家的节水战略,目前,工业上的氢来源主要来自煤制氢工艺,如何用煤高效地制备氢气是一个重要的技术难题。

为了解决上述问题,本专利提出了有机固废气化一体化高效制氢和制甲烷工艺。

发明内容

本发明的目的是针对以上问题,本发明提供了有机固废气化一体化高效制氢和制甲烷工艺,具有以有机固废热转化合成气为原料,利用特殊设计的夹套反应器实现合成气甲烷化和制氢过程的一体化,实现了有机固废同时制备高纯氢和高纯甲烷的目的;此外,通过耦合两个反应,本发明可同时得到高纯氢气、甲烷和二氧化碳,并可以利用固废里的水来补充系统的氢源的优点。

为实现上述目的,本发明提供如下技术方案:有机固废气化一体化高效制氢和制甲烷工艺,包括气化炉、净化塔、甲烷化、制氢反应器与PSA分离设备,该有机固废气化一体化高效制氢和制甲烷工艺具体操作步骤如下:

(1)通过往气化炉内部注入煤、有机固废原料与气化剂水、氧,经过三者混合共气化步骤,制备得到合成气,内部产生的灰渣定期处理即可;

(2)将(1)步骤中得到的合成气通入到净化塔内部,脱除分离其中的灰分、焦油、水与含硫化合物,得到干净的合成气;

(3)将步骤(2)中得到的干净合成气通入到甲烷化反应器内部,随后在其内部进行甲烷化反应,制备出甲烷;

(4)将步骤(3)中得到的甲烷进行分离,分理出一部分高品质甲烷和一部分甲烷混合气体;

(5)将步骤(4)中得到的甲烷混合气体通入到制氢反应器中,在此过程中加入对应的材料进行甲烷水蒸气重整反应制备氢气;

(6)将步骤(5)得到的氢气经过PSA分离设备处理,就能够得到高品质氢气,一部分氢气则是回流到甲烷化反应器工段完成所需氢气的补充。

作为本发明的一种优选技术方案,步骤(5)中对应的材料具体指的是金属镍作为催化剂、氧化钙为吸收剂、水体进行补充。

作为本发明的一种优选技术方案,步骤(1)中,调节气化剂氧当量、进水量和气化炉炉温,以达到气化炉内焦油产生最少;步骤(2)中,在气化炉出口处以生物质半焦为催化剂,催化焦油的裂解。

作为本发明的一种优选技术方案,步骤(2)中将合成气降温至80-100℃,灰渣和少量焦油沉降脱除,通过甲醇吸收塔脱除合成气中的硫和含硫化合物。

作为本发明的一种优选技术方案,步骤(3)中采用流化床反应器,反应温度为220-480℃,采用高活性、高耐磨甲烷化催化剂,氢气来源为合成气内的氢气与后续制氢过程回流的氢气组成。

作为本发明的一种优选技术方案,步骤(5)中制氢反应器,使用Ni/CaO复合催化剂在反应温度为550-650℃、压力0.1MP条件下进行反应,复合催化剂可在催化剂再生塔内在600-700℃、0.1MP下进行再生,并副产高浓度CO2

作为本发明的一种优选技术方案,将Ni负载在SiO2上作为外壳,将纳米级CaO作为芯材,制作出Ni/SiO2包覆CaO的核壳型结构。

作为本发明的一种优选技术方案,步骤(4)中高品质甲烷的纯度≥90%

作为本发明的一种优选技术方案,制氢反应器出口气体H2>96%,CO<500ppm,CO2<3%。

与现有技术相比,本发明的有益效果如下:

本发明通过设置一整套的处理流程,预先将有机固废原料与气化剂水与氧注入气化炉加工处理,随后产生的粗制合成气CO和H2在经过净化塔、甲烷化反应器、制氢反应器与PSA分离装置,最终有效的制取出高纯度甲烷与氢气,利用有机固废一体化同时制备高纯氢、高纯甲烷和CO2的富集,可以将低品位的含碳原料转化为高纯度的产品,同时此工艺过程可以同时利用到有机固废气化的水,补充进入制氢反应器,提高了工艺过程中H元素的利用率。

附图说明

图1为本发明整体制备流程示意图。

图中:1、有机固废原料;2、气化剂水与氧;3、粗制合成气CO和H2;4、净化后的合成气CO和H2;5、CH4与H2O;7、高品质甲烷和甲烷混合气体;8、低纯度氢气;11、高纯度反补氢气。

具体实施方式

下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。

如图1所示,本发明提供有机固废气化一体化高效制氢和制甲烷工艺,包括气化炉、净化塔、甲烷化、制氢反应器与PSA分离设备,其特征在于,该有机固废气化一体化高效制氢和制甲烷工艺具体操作步骤如下:

(1)通过往气化炉内部注入煤、有机固废原料与气化剂水、氧,经过三者混合共气化步骤,制备得到合成气,内部产生的灰渣定期处理即可;

(2)将(1)步骤中得到的合成气通入到净化塔内部,脱除分离其中的灰分、焦油、水与含硫化合物,得到干净的合成气;

(3)将步骤(2)中得到的干净合成气通入到甲烷化反应器内部,随后在其内部进行甲烷化反应,制备出甲烷;

(4)将步骤(3)中得到的甲烷进行分离,分理出一部分高品质甲烷和一部分甲烷混合气体;

(5)将步骤(4)中得到的甲烷混合气体通入到制氢反应器中,在此过程中加入对应的材料进行甲烷水蒸气重整反应制备氢气;

(6)将步骤(5)得到的氢气经过PSA分离设备处理,就能够得到高品质氢气,一部分氢气则是回流到甲烷化反应器工段完成所需氢气的补充。

其中,步骤(5)中对应的材料具体指的是金属镍作为催化剂、氧化钙为吸收剂、水体进行补充。

其中,步骤(1)中,调节气化剂氧当量、进水量和气化炉炉温,以达到气化炉内焦油产生最少;步骤(2)中,在气化炉出口处以生物质半焦为催化剂,催化焦油的裂解。

其中,步骤(2)中将合成气降温至80-100℃,灰渣和少量焦油沉降脱除,通过甲醇吸收塔脱除合成气中的硫和含硫化合物。

其中,步骤(3)中采用流化床反应器,反应温度为220-480℃,采用高活性、高耐磨甲烷化催化剂,氢气来源为合成气内的氢气与后续制氢过程回流的氢气组成。

其中,步骤(5)中制氢反应器,使用Ni/CaO复合催化剂在反应温度为550-650℃、压力0.1MP条件下进行反应,复合催化剂可在催化剂再生塔内在600-700℃、0.1MP下进行再生,并副产高浓度CO2

其中,将Ni负载在SiO2上作为外壳,将纳米级CaO作为芯材,制作出Ni/SiO2包覆CaO的核壳型结构。

其中,步骤(4)中高品质甲烷的纯度≥90%

其中,制氢反应器出口气体H2>96%,CO<500ppm,CO2<3%。

实施例一

将3340.8kg的固废与5011.2kg的煤混合后进行共气化,气化剂中水1830.48kg,氧气2784kg,气化温度1074℃;

气化炉中气化得到的合成气通入净化塔中,除去其中的H2S、COS等杂质;净化塔出口处的气体再经冷却器降温至40℃,通入闪蒸塔中除去其中的水分,得到的净化气体为CO2/CO/H2的混合气体;

将混合气体与回流H2混合通入甲烷化反应器中,在303℃、28.4bar条件下进行反应,反应器中的催化剂为高活性甲烷化催化剂,可得到纯度为95%的甲烷气体;

将反应所得甲烷气体经脱水净化,可分离出其中52.5%的甲烷作为产品,其余的气体经干燥与甲烷化工段脱除的水与额外的补水一起进入制氢工段;

制氢工段采用吸附强化一体化制氢,通过使用Ni/CaO复合催化剂在反应温度为550-650℃、压力0.1MP条件下进行反应;

复合催化剂可在催化剂再生塔内在600-700℃、0.1MP下进行再生,在这一工艺过程可产生纯度为99.99%的高纯氢气并副产纯度为90%-95%的高纯CO2

由以上数据可知,本工艺的能耗,煤耗、水耗等方面均优于传统的煤制甲烷技术,具有很大的工业化潜力。

需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。

尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由所附权利要求及其等同物限定。

7页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种含甲烷可燃气重整耦合化学链制备高纯氢气的工艺及应用

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!

技术分类