一种高压直挂式储能变流器

文档序号:1940890 发布日期:2021-12-07 浏览:8次 >En<

阅读说明:本技术 一种高压直挂式储能变流器 (High-voltage direct-hanging energy storage converter ) 是由 刘嘉 谢景煌 关学忠 欧阳逸风 温富光 邹宇 于 2021-08-10 设计创作,主要内容包括:本发明公开了一种高压直挂式储能变流器,本发明的变流子模块根据自身输出功率和预设的下垂方程,进行一次调频和一次调压,使输出电压具备下垂特性,储能变流器可以实现电压源模式并机,无需同步信号。(The invention discloses a high-voltage direct-hanging energy storage converter, wherein a converter submodule carries out primary frequency modulation and primary voltage regulation according to self output power and a preset droop equation, so that the output voltage has the droop characteristic, and the energy storage converter can realize voltage source mode parallel operation without synchronous signals.)

一种高压直挂式储能变流器

技术领域

本发明涉及一种高压直挂式储能变流器,属于变流器技术领域。

背景技术

分布式发电相比于传统大电网,具有绿色无污染,安装地点灵活,能量利用率高,减少了长线路的输电损耗能量等特点。但是其自身存在的问题也逐渐暴露出来,分布式电源控制困难、不稳定、成本较高。随着电力电子技术与现代控制的发展,微电网出现了,它由微源、负荷、控制装备、储能装备结合而成,构成一个可控的单元向用户提供电能或热能。相比于大电网,微电网更接近负荷,无需建设超高压、远距离电网输电,极大的减少了线路损耗,且微电网具有发电供热制冷等多项功能,可实现更高的综合能源利用率;微电网可在大电网出现扰动的情况下,能孤岛运行,向负载供电,提到了用户供电的可靠性;微电网能以非集中程度更高的方式协调分布式电源,不仅可减轻大电网控制的负担,且能更好的发挥分布式电源的优势。

由于微电网目前仍处于初期阶段,相关标准要求也较为宽松,因此目前市面上的储能变流器工作在电压源模式时需要同步信号,由于同步信号的存在限制了储能变流器安装位置与装机容量。

发明内容

本发明提供了一种高压直挂式储能变流器,解决了背景技术中披露的问题。

为了解决上述技术问题,本发明所采用的技术方案是:

一种高压直挂式储能变流器,包括交流断路器、控制系统、变流单元、多个直流断路器和多个电池模组;

变流单元包括多个变流子模块,变流子模块的交流侧串联后连接交流断路器,交流断路器外接电网,变流子模块的直流侧通过直流断路器连接电池模组,变流子模块控制侧连接控制系统;

变流子模块根据自身输出功率和预设的下垂方程,进行一次调频和一次调压,使输出电压具备下垂特性。

变流子模块包括IGBT构成的H桥功率拓扑和控制器,H桥功率拓扑的输入端设置有电流传感器和电压传感器,H桥功率拓扑的输出端设置有电流传感器和电压传感器,IGBT的控制端、电流传感器和电压传感器均连接控制器,控制器连接控制系统。

下垂方程为,

其中,ω为下垂控制后变流子模块输出的角频率,U为下垂控制后变流子模块输出的电压,ω0为空载时变流子模块输出的角频率,U0为空载时变流子模块输出的电压,m为有功下垂系数,n为无功下垂系数,P为变流子模块输出的有功功率,Q为变流子模块输出的无功功率。

控制系统检测变流单元交流侧电压和频率,若检测到电压或频率与期望值存在偏差,下发电压和频率设定值;

变流子模块根据电压和频率设定值,调节下垂方程的下垂曲线,进行二次调频和二次调压,使交流侧电压和频率正常。

变流子模块根据控制系统给定的电池模组设定电压,计算均压调制电流,变流子模块运行双闭环控制策略时,将均压调制电流叠加至内环电流环中,进而调节变流子模块交流侧与直流侧的有功功率交换,动态调节变流子模块直流侧电压,使电池模组之间电压均衡。

计算均压调制电流的过程为,

计算所连电压失衡电池模组设定电压和实际电压之间的差值;

对差值进行PI控制,获得调节量;

将调节量乘以该相电网的相角正弦值,得到均压调制电流。

本发明所达到的有益效果:本发明的变流子模块根据自身输出功率和预设的下垂方程,进行一次调频和一次调压,使输出电压具备下垂特性,储能变流器可以实现电压源模式并机,无需同步信号。

附图说明

图1为本发明的结构示意图;

图2为p-f曲线示意图;

图3为Q-V曲线示意图;

图4为二次调频曲线示意图;

图5为二次调压曲线示意图;

图6为变流单元交流侧电流矢量分解图;

图7为均压控制原理图。

具体实施方式

下面结合附图对本发明作进一步描述。以下实施例仅用于更加清楚地说明本发明的技术方案,而不能以此来限制本发明的保护范围。

如图1所示,一种高压直挂式储能变流器,包括交流断路器、控制系统、变流单元、多个直流断路器和多个电池模组。

变流单元包括多个变流子模块,变流子模块的交流侧串联后连接交流断路器,交流断路器为交流塑壳断路器,交流断路器外接电网,变流子模块的直流侧通过直流断路器连接电池模组,变流子模块、直流断路器和电池模组一一对应,直流断路器为直流塑壳断路器,变流子模块控制侧连接控制系统,控制系统通过光纤(支持61850通讯协议)外接后台。

变流子模块包括IGBT构成的H桥功率拓扑和控制器,H桥功率拓扑的输入端设置有电流传感器和电压传感器,用以采集输入端的电流和电压,H桥功率拓扑的输出端设置有电流传感器和电压传感器,用以采集输出端的电流和电压,IGBT的控制端、电流传感器和电压传感器均连接控制器,控制器通过CAN总线连接控制系统。

上述储能变流器的变流单元由子模块级联组成,便于扩容与维护。

变流子模块内置下垂控制算法,即控制器内置下垂控制算法,可根据自身输出功率和预设的下垂方程,进行一次调频和一次调压,使输出电压具备下垂特性,从而使得储能变流器可以实现电压源模式并机,无需同步信号;电压源模式并机不会消纳电网阻抗,不易与电网发生谐振,具备稳定电网电压与频率的优点,可提高电网的鲁棒性;孤岛时,无需模式切换,为电网提供频率电压支撑。

具体通过下垂方程,计算角频率和电压,通过控制IGBT主拓扑,实现电压频率输出,实现一次调频和调压,输使出电压具备下垂特性;具体的下垂特性曲线如图2和3所示,图2中横坐标为功率P,纵坐标为频率f,(Pn,fn)和(Pmax,fmin)为频率有功曲线中的两个点,图3中横坐标为无功功率Q,纵坐标为电网电压U,(Qmax,Umin)为电压无功曲线中的一个点;

下垂方程为:

其中,ω为下垂控制后变流子模块输出的角频率,U为下垂控制后变流子模块输出的电压,ω0为空载时变流子模块输出的角频率,U0为空载时变流子模块输出的电压,m为有功下垂系数,n为无功下垂系数,P为变流子模块输出的有功功率,Q为变流子模块输出的无功功率。

变流子模块还具备二次调频和二次调压功能,即变流子模块中的控制器具备二次调频和二次调压功能;控制系统检测变流单元交流侧电压和频率,若检测到电压或频率与期望值存在偏差,下发电压和频率设定值;变流子模块根据电压和频率设定值,调节下垂方程的下垂曲线,进行二次调频和二次调压,使交流侧电压和频率正常。

如图4和图5所示,系统稳定运行在(P0,f01)点和(0,V01)点,当负荷突然增加时,若变流器仅仅有一次调频、调压参与动作,则最终频率和电压会沿着当前下垂曲线下降到A点,频率fA和电压VA可能超过允许范围;此时通过二次调频,修改变流器的下垂曲线,把下垂曲线向上移动,变流器一次调频、调压动作,进行调整,最终频率和电压稳定在fB与VB

变流子模块还具备直流侧电池模组电压均衡的功能,具体为变流子模块中的控制器具备直流侧电池模组电压均衡的功能,与常规无功补偿装置SVG电容均压算法不同,这里设计了一种在控制系统的内环电流环中增加均压调制电流的电池均衡算法。将变流器输出单相电流与电压作矢量分析,如图6所示,图中变流单元交流侧电流矢量记为Is,变流单元交流侧输出电压矢量记为Ucon,前n-1个变流子模块输出电流矢量记为Isr1,第n个变流子模块输出电流矢量记为Isr2,Isr1与Isr2交汇于P点,变流单元运行时电池模组与电网存在功率交换,不同于SVG在调试脉冲上叠加电压调节量,这里通过在变流子模块电流调制信号上叠加与Ucon同相的电流矢量△x1,控制变流子模块直流侧的电池模组吸收或者释放有功功率的大小,实现各电池模组的均压调节;具体如下:

系统运行时,变流子模块控制器根据控制系统给定的电池模组设定电压,计算均压调制电流,变流子模块控制器运行双闭环控制策略时,将均压调制电流叠加至内环电流环中,进而调节变流子模块交流侧与直流侧的有功功率交换,动态调节变流子模块直流侧电压,使电池模组之间电压均衡。

计算均压调制电流的过程为:

1)计算所连电压失衡电池模组设定电压和实际电压之间的差值;

2)对差值进行PI控制,获得调节量;

3)将调节量乘以该相电网的相角正弦值,得到均压调制电流。

以A相为例,如图7所示:

图中sinA为A相电网的相角正弦值,Uba_ref与Ubati分别为A相第i个变流子模块电池模组的设定电压与实际电压,两者差值△U经过PI控制得到调节量△x,再将△x乘以sinA,得到均压调制电流,最后将该均压调制电流叠加到电流内环的指令中,即可通过调节有功电流实现电池模组电压均衡。

使用上述方法可以在电池模组均衡的同时不影响变流器的动态电流响应能力。

本发明的变流子模块根据自身输出功率和预设的下垂方程,进行一次调频和一次调压,使输出电压具备下垂特性,储能变流器可以实现电压源模式并机,无需同步信号。

以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和变形,这些改进和变形也应视为本发明的保护范围。

10页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种带下垂特性的储能变流器

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!