卫生设备部件

文档序号:1957558 发布日期:2021-12-10 浏览:3次 >En<

阅读说明:本技术 卫生设备部件 (Sanitary fitting part ) 是由 铃木优也 浮贝沙织 鸠野广典 寺本笃史 高松裕一 石井花 于 2021-03-01 设计创作,主要内容包括:本发明提供一种在维持着色层的外观(色调)的同时还可获得拒水层所产生的拒水功能的部件。该部件具备基材、着色层、中间层以及表面层,其中,着色层在通过XPS深度剖析得到的曲线中包含大于35at%且99at%以下的C、0at%以上且小于40at%的Cr、0at%以上且小于15at%的N、以及大于0at%且小于15at%的O,中间层包含选自Cr、Zr以及Si的至少1种金属原子和氧原子,进一步检出氧化状态的所述金属元素,从检出所述金属元素的时间点到所述氧元素的检出量多于所述着色层中所含的氧元素(O)的检出量的时间点的溅射时间为0.5分钟以上且9分钟以内,表面层呈拒水性,包含疏水基,并且,在通过XPS深度剖析得到的曲线中,从溅射开始到开始检出所述中间层中所含的金属原子的时间点的溅射时间为大于0.5分钟且5分钟以下。(The invention provides a member which can maintain the appearance (color tone) of a coloring layer and can obtain the water repellent function generated by a water repellent layer. The member is provided with a base material, a colored layer, an intermediate layer and a surface layer, wherein the colored layer contains more than 35 at% and 99 at% or less of C, 0 at% or more and less than 40 at% of Cr, 0 at% or more and less than 15 at% of N, and more than 0 at% and less than 15 at% of O in a curve obtained by XPS depth profile, the intermediate layer contains at least 1 metal atom selected from Cr, Zr and Si and an oxygen atom, the metal element in an oxidized state is detected, a sputtering time from a time point when the metal element is detected to a time point when a detected amount of the oxygen element (O) is more than a detected amount of the oxygen element (O) contained in the colored layer is 0.5 minutes or more and 9 minutes or less, the surface layer is water repellent and contains a hydrophobic group, and, in the curve obtained by XPS depth profiling, the sputtering time from the start of sputtering to the time point at which the metal atoms contained in the intermediate layer started to be detected was more than 0.5 minute and 5 minutes or less.)

卫生设备部件

技术领域

本发明涉及一种具备深色的外观的部件。进一步详细而言,涉及一种具备深色的、适合的是黑色的外观,并且设于表面的拒水性的层的密合性良好的部件。

背景技术

为了提高水栓零件等卫生设备部件的设计性,提出了在基材上设置着色层以制作具有所期望的配色的外观。特别是,为了实现黑色的外观,已知有使用特定的金属元素对基材进行镀覆的技术、或者在基材上设置以碳(C)作为主要成分的着色层的技术。

例如,日本专利特开平08-232081号公报(专利文献1)公开了:通过用3价的Cr溶液而不是一般的6价的Cr溶液来镀覆水栓零件的表面,实现暗色调的水栓零件。另外,日本专利特开2017-25382号公报(专利文献2)公开了:通过用含有特定的含硫化合物的锡-镍合金电镀浴进行镀覆,从而形成优异的黑色色调的锡-镍合金镀覆被膜。

另外,设有以C作为主要成分的着色层的水栓(商品名:FAUCET Z系列、G系列、L系列、TOTO株式会社)(https://www.toto.com/en/gb_faucet/、非专利文献1)、或实施了黑色涂饰的水栓(商品名:New Vega彩色水栓、株式会社Sanwa Company)(https://www.sanwacompany.cc.jp/shop/series/S0884/、非专利文献2)已经在市场上销售。

在设有着色层的卫生设备部件中,优选无论从怎样的角度观察立体物,其颜色都不会改变。担心立体物中的颜色不均、着色层的颜色的不稳定性、或着色层的损伤等会损及部件的外观,损害商品价值。例如,本发明人确认到,在通过以C作为主要成分的着色层对立体物着色的情况下,着色层的颜色稳定性和强度存在问题。另外,若着色层的膜厚较薄,则产生干涉色,常常难以实现目标的黑色。

另一方面,为了防止在部件表面附着水垢等污垢、或者提高污垢的去除性,已知用保护层覆盖部件表面等的改良技术。已知有使用与基材直接进行化学键合的拒水层作为这样的保护层的防污技术。例如,日本专利特开2004-217950号公报(专利文献3)中记载了:通过在水栓零件上设置薄的拒水层,从而获得水垢易去除性。由于拒水层是无法目视识别的薄层,因此因设置拒水层的本身而导致部件的外观受损的可能性低,可赋予拒水性。

现有技术文献

专利文献

专利文献1:日本专利特开平08-232081号公报;

专利文献2:日本专利特开2017-25382号公报;

专利文献3:日本专利特开2004-217950号公报;

非专利文献

非专利文献1:https://www.toto.com/en/gb_faucet/;

非专利文献2:https://www.sanwacompany.cc.jp/shop/series/S0884/。

发明内容

发明所要解决的问题

此番,本发明人得到了如下的见解:特定组成的着色层的稳定性和强度(特别是表面附近的硬度)均优异。而且,进一步在该着色层上设置拒水层时,实现了对着色层的显色的影响少、并且可对拒水层赋予稳定性、耐久性的中间层。本发明基于这样的见解而成。

因此,本发明的目的在于提供一种部件,所述部件具备颜色的稳定性和强度(特别是表面附近的硬度)均提高的着色层、尤其是黑色的着色层,并进一步于着色层上设有稳定且具耐久性的拒水层。

用于解决课题的方法

并且,本发明的部件为至少具备基材、位于该基材上的着色层、位于该着色层上的中间层、以及位于该中间层上的表面层而构成的部件,其特征在于:

所述着色层:

在通过XPS深度剖析得到的曲线中,从Cr或Zr或Si超过C的原子比率的时间点起8分钟后的深度区域中,

以C、Cr、N和O的总计为100at%,包含:

大于35at%且99at%以下的C、

0at%以上且小于40at%的Cr、

0at%以上且小于15at%的N、以及

大于0at%且小于15at%的O,

所述中间层:

包含选自Cr、Zr以及Si的至少1种金属原子和氧原子,而且,

通过XPS检出氧化状态的所述金属元素,并且,

通过XPS深度剖析,从检出所述金属元素的时间点到所述氧元素的检出量多于所述着色层中所含的氧元素(O)的检出量的时间点的溅射时间为0.5分钟以上且9分钟以下,

所述表面层呈拒水性,包含疏水基,并且,

在通过XPS深度剖析得到的曲线中,从溅射开始到开始检出所述中间层中所含的金属原子的时间点的溅射时间为大于0.5分钟且5分钟以下。

附图说明

图1是表示本发明的部件之一例的示意图。

具体实施方式

本发明的部件和基本结构

1部件

本发明优选应用于的部件是在其表面实施了着色的部件,并且是长期使用并在此期间进行清扫、即通过定期擦拭来清洁表面的部件。作为部件的例子,可列举“卫生设备部件”,具体而言,是指建筑物的给排水设备或室内用的备件,可列举在可能淋水(例如,生活用水(可以是工业用水))的环境中使用的部件。在本发明中,作为可能淋水的环境,例如为住宅或公园、商业设施、办公室等公共设施等的用水场所,具体而言,是指浴室、厕所、化妆间、盥洗室、厨房等。

在本发明中,作为卫生设备部件的具体例子,是指浴室、厕所、化妆间、盥洗室、或厨房等中使用的备件,可列举包含实施了镀覆或PVD涂层的物品的产品,例如,可列举:水栓、排水零件、止水零件、洗面台、门、淋浴喷头、淋浴杆、淋浴挂钩、淋浴软管、扶手、毛巾架、厨房吧台、厨房水槽、排水篮、油烟机、排风扇、排水口、大便器、小便器、温水清洁便座、温水清洁便座的便盖、温水清洁便座的喷嘴、操作面板、操作开关、操作杆、手柄、门球型柄等。特别是,本发明可优选应用于水栓。

用于本发明的部件的基材是指卫生设备部件的基材。而且,本发明的部件在其表面具备着色层。如图1所示,部件1具备基材10和位于基材10上的着色层20而构成。如后所述,本发明的部件1在着色层20上进一步包含表面层40。另外,在着色层20与表面层40之间进一步包含中间层30。

2基材

在本发明中,对基材10的材质没有特别限定,例如,可使用通常用作卫生设备部件的基材的材质。

基材10的支撑材10a

在本发明中,基材10包含支撑材10a而构成。即,基材10为以下的任一种情况:由支撑材10a构成、或者具备支撑材10a和其他要素而构成、或者在支撑材10a的表面层40侧包含后述的区域10b而构成。作为支撑材10a的材质,可使用金属、树脂、陶瓷、陶器、玻璃等。

基材10的区域10b

如图1所示,基材10可以包含区域10b。可在支撑材10a的表面层侧的面上具备区域10b。区域10b优选为包含金属的层或者为由主要包含碳的无机化合物构成的层。区域10b例如可通过金属镀覆或物理蒸镀法(PVD)形成。区域10b可以仅由金属元素构成,也可以包含金属氮化物(例如,TiN、TiAlN等)、金属碳化物(例如,CrC等)、金属碳氮化物(例如,TiCN、CrCN、ZrCN、ZrGaCN等)等。区域10b可以直接形成于支撑材10a上,也可以在区域10b与支撑材10a之间包含不同的层。作为设置有区域10b的基材10,例如,可列举:通过金属镀覆处理而在由黄铜或树脂形成的支撑材10a上设置区域10b而得到的金属镀覆产品。另一方面,作为未设置区域10b的基材10,例如,可列举:如不锈钢(SUS)这样的金属成型品。对基材10的形状没有特别限定,可以是单纯的平板这样的形状,也可以是立体形状。根据本发明,由于形成为颜色随观察方向、角度变化小的部件,因此本发明可优选应用于立体形状的基材10。

3着色层

着色层的构成

在本发明中,着色层20是包含碳原子(C)、铬原子(Cr)、氮原子(N)、氧原子(O)的层,

在通过XPS深度剖析得到的曲线中,从Cr或Zr或Si超过C的原子比率的时间点起8分钟后的深度区域中,

以C、Cr、N和O的总计为100at%,包含:

大于35at%且99at%以下的C、

0at%以上且小于40at%的Cr、

0at%以上且小于15at%的N、以及

大于0at%且小于15at%的O,

优选包含:

大于50at%且99at%以下的C、

0at%以上且小于35at%的Cr、

0at%以上且小于15at%的N、以及

大于1at%且小于15at%的O。

虽然该着色层20的颜色基本上是黑色,但作为其色调,可实现称为“漆黑”的黑色。例如,这样的色调的卫生设备部件的附加值高,特别是在为水栓的情况下,可体现高级感,可大幅提高其商品价值。而且,上述组成的着色层具有颜色不随观察方向、角度而变化的优点,即使是形状不单调的立体形状的部件,也具备可观察到黑色的外观的优点。而且,该着色层除颜色稳定性优异以外,其强度(特别是表面附近的硬度)也优异。卫生设备部件大多长期使用,在此期间要进行清扫、即通过定期擦拭来清洁表面。本发明的着色层20对这样的清扫操作的耐久性优异。

本发明中的着色层20通过上述组成的组合,可得到除了良好的黑色的显色和颜色稳定性以外,其强度(特别是表面附近的硬度)也优异的效果,但在应用于部件时,在进一步最优化时,Cr量往往变得重要,优选考虑其量来进行最优化操作。

根据本发明的优选方式,着色层20优选包含Cr、C、N以及O。这里,所谓“包含”是指,通过后述的着色层20的组成分析法求得的上述原子的浓度的总计为90at%以上且100at%以下。换言之,着色层20除包含C、Cr、N以及O以外,还可以在其总计浓度小于10at%的范围内包含1种或2种以上的其他元素。认为即使着色层20在上述范围内包含其他元素,通过着色层20包含Cr、C、N以及O,也可维持本发明中的所期望的黑色。

着色层的确定

在本发明中,关于着色层20的组成,具体而言,着色层20中所含的Cr、C、N以及O的各比例(%)通过如下方式求出:在通过XPS深度剖析得到的曲线中,将从Cr或Zr或Si超过C的原子比率的时间点起8分钟后的深度区域作为测定点,求出当其测定点中的C、Cr、N以及O的总计为100at%时的各原子的比例。其中,“通过XPS深度剖析得到的曲线”是指通过利用了后述的“溅射条件1”的XPS测定得到的曲线。

在本说明书所记载的所有的XPS测定中,均采用以下的“XPS测定条件”。

XPS测定条件

X射线条件:单色化AlKα射线(功率25W);

光电子出射角:45°;

分析区域:100μmφ;

分析元素(能量范围):Zr3d(177-187eV)、C1s(281-296eV)、N1s(394-406eV)、O1s(524-540eV)、Cr2p3(572-582eV)、Si2p(98-108eV)

在本发明中,通过进行基于并用XPS测定和使用了氩离子的溅射的深度剖析,来确定各层的深度方向的元素组成等。此外,在本发明中,将基于并用XPS测定和使用了氩离子的溅射的深度剖析表示为“XPS深度剖析”。在XPS深度剖析中,交替地反复进行使用了氩离子的溅射和XPS测定。XPS测定的条件可采用上述的“XPS测定条件”。溅射时的条件(以下,也称为“溅射条件”)可采用下述的各条件。XPS测定按照各溅射条件的每个“溅射循环”进行。通过XPS深度剖析,得到能谱信息。由该能谱信息获得关于元素组成的深度方向曲线(曲线)。可由该曲线确定深度方向的元素组成。

溅射条件1

(XPS深度剖析时的溅射条件1,以下称为“溅射条件1”)

惰性气体种类:Ar;

溅射电压:4KV;

溅射范围:2mm×2mm;

溅射循环:10秒。

溅射条件2

(XPS深度剖析时的溅射条件2,以下称为“溅射条件2”)

惰性气体种类:Ar;

溅射电压:500V;

溅射范围:2mm×2mm;

溅射循环:1分钟。

需要说明的是,溅射电压是指对氩离子枪施加的电压,溅射范围是指通过溅射削去的表面的范围。另外,溅射循环是指在深度方向的每一次测定中连续照射氩气的时间,将溅射循环的总和作为溅射时间。

着色层的膜厚

在本发明中,着色层20的膜厚可通过下述方法求得。首先,将包含着色层20的部件1中的、设计面(指作为产品而设置时目视可看到的部分,成为阴影而看不见的部分除外)上的任意的点沿着与着色层20垂直的方向(图1的Z方向)切断,从粗糙的号数开始进行研磨,直至细腻的号数,来得到平滑的截面。在因研磨痕迹而无法观察的情况下,使用离子铣削装置等进行截面铣削,来得到平滑的截面。通过使用扫描型电子显微镜/能量分散型X射线光谱法(SEM/EDX)对该截面进行观察,从而可进行着色层20和基材10的识别。在着色层的膜厚为0.5μm~4.0μm的情况下,在观察倍率10000倍~30000倍下进行观察,以收纳着色层20与基材10的界面且界面呈水平的方式获得SEM图像。若倍率过低,则在着色层20的膜厚较小时,因无法观察着色层20而无法确定膜厚,另外,若倍率过高,则在着色层20的膜厚较大时,在观察区域内无法捕捉基材与着色层的界面、以及基材的相反侧的着色层的界面,无法确定着色层的膜厚。通过对上述SEM图像进行基于EDX的映射分析,从而可在视觉上确认着色层20和基材10的元素分布。例如,若使用作为着色层的构成元素的C进行映射,则在基材为树脂基材以外的情况下,可明确地定义边界面。在为树脂基材的情况下,可使用C以外的元素O、N进行映射,或者可通过组织观察确认边界面。以该元素分布不同的边界面作为着色层20和基材10的边界面。以将获取的SEM图像在纵向上一分为二的线作为中心,以与该线平行的方式在左右等间隔地分别绘制2条线。对于在SEM图像绘制的总计5条垂线,求出分别与着色层和基材的边界面、以及与着色层的与基材相反侧的表面交叉的点。对SEM图像中的5条垂线分别被上述2个交点划分而成的5条线段中的每条线段的长度进行测定,并将5条线段的长度的平均值作为着色层20的膜厚。

4中间层

中间层的构成

在本发明中,部件1在着色层20与表面层40之间具有中间层30。作为中间层30的优选例子,可列举包含金属原子和氧原子的层。在中间层30中,所述金属原子与氧原子键合。即,中间层30中包含氧化状态的所述金属元素。在本发明中,所述金属元素优选为选自Cr、Zr、Si的至少1种。

关于中间层30,通过XPS深度剖析,从检出所述金属元素的时间点到中间层30中所含的氧元素的检出量多于着色层20中所含的氧元素的检出量的时间点的溅射时间为0.5分钟以上且9分钟以下,从维持外观的观点来看,如果是所述金属元素为Cr或Zr的情况,则优选具有溅射时间大于0.5分钟且2分钟以下的厚度,如果是所述金属元素为Si的情况,则优选具有溅射时间为0.5分钟以上且7分钟以下、更优选具有大于0.5分钟且4分钟以下、更优选具有大于0.5分钟且2分钟以下的厚度。其中,“XPS深度剖析”是指采用了“XPS测定条件”和“溅射条件1”的XPS深度剖析。

在以C作为主要成分的着色层20难以与拒水性的表面层40结合的情况下,通过在着色层20与表面层40之间设置上述包含金属原子的中间层30,从而表面层40中所含的对中间层30中所含的金属原子具有配位性的官能团X、与中间层30中所含的金属原子形成化学键。表面层40经由该官能团X与中间层30结合。另外,上述包含金属原子的中间层30可在着色层20的表面形成稳定的钝化层。其中,稳定的钝化层是指包含金属氧化物并且具有足够的耐水性或耐摩耗性等耐久性的层。

在本发明中,首先,该中间层30对着色层20的显色基本没有影响,可将表面层40以足以发挥其拒水性功能的厚度设于着色层20之上。另外,还可获得以下优点,不会发生因物品的表面形状的部位而导致的表面层40的厚度不均。

在使用折射率为2.4-5的Cr或Zr的氧化物的情况下、和使用折射率为1.4-5的Si的氧化物的情况下,因光路长度不同,产生干涉的膜厚发生变化。具体而言,在使用Si的氧化物的情况下,与使用Cr或Zr的氧化物的情况相比,开始对着色层20的显色产生影响的膜厚变厚。另一方面,与Zr或Cr的氧化物相比,Si的氧化物的溅射效率高,如果是相同的膜厚,则Si的氧化物可快速溅射。包含Si的中间层的溅射时间与包含Cr或Zr的中间层的溅射时间等同就是基于上述理由。

具备三维形状的表面的部件容易产生厚度不均。通过抑制中间层30的厚度不均,并成为形成有较中间层薄的表面层40的层叠结构,从而可提供不会损及深色的着色层20的质感(色调)的部件。

中间层的确定

(中间层的构成元素的认定)

关于中间层30中的金属原子的存在、以及金属原子与氧原子的键合,可在“溅射条件1”的XPS测定中进行确认。锆可根据Zr3d(177-187eV)的峰的有无进行存在确认,氧可根据O1s(524-540eV)的峰的有无进行存在确认,铬可根据Cr2p3(572-582eV)、Si(98-108eV)的峰的有无进行存在确认。

(中间层中所含的金属原子的氧化状态的认定)

关于中间层30中所含的各金属原子与氧原子的键合状态、即各金属原子的氧化状态,可根据因各金属原子与氧原子的键合能量的差异而产生的峰位移进行确认。具体而言,根据来自金属氧化物的O1s在530-532eV可发现峰,Cr2p3在576-580eV是否存在峰、Zr3d在182-183eV是否存在峰、Si2p在103-104eV是否存在峰,可确认各金属原子与氧原子的键合。

(中间层的厚度的认定)

在本发明中,关于中间层30的厚度,通过XPS深度剖析,采用如下溅射时间,具体而言,在采用了所述的“XPS测定条件”和“溅射条件1”的XPS深度剖析中,采用从检出金属元素的时间点到中间层30中所含的氧元素(O)的检出量多于着色层20中所含的氧元素(O)的检出量的时间点的溅射时间。

5表面层

本发明中的表面层40是包含有机分子的拒水性的层,其透明且薄,以至不会损及比表面层40的更下面的着色层20或基材10的配色的程度。由于表面层40为拒水层,因此在与包含硅、钙(水垢的起因物质)的自来水接触的卫生设备部件中可抑制水垢的附着,并可容易地去除所附着的水垢。

在本发明中,表面层40可以是高分子层、低分子层、或单分子层。

本发明中,高分子层是含有高分子化合物的层。另外,低分子层是指含有低分子化合物的层。高分子化合物和低分子化合物具有疏水基R。通过具有疏水基R,对表面层40赋予拒水性。

疏水基R的具体例子

在本发明中,疏水基R是包含烷基链的基团。疏水基R可以包含烷基链的一部分氢被氟取代而得的烷基链,也可以包含烷基链的一部分碳被其他原子取代而得的烷基链。例如,疏水基R可包含选自烃基、氟烷基、氟(聚)醚基、氟烷氧基、氟酰基、烷氧基、酰基、烷硫基、烷基氨基的1种以上。

疏水基R优选为由C和H构成的烃基。烃基可以是饱和烃基,也可以是不饱和烃基。另外,可以是链式烃基,也可以是芳环等环式烃基。疏水基R优选为链式饱和烃基,更优选为直链式饱和烃基。由于链式饱和烃基是柔软的分子链,因此可无间隙地覆盖底层,可提高耐水性。在烃基为链式烃基的情况下,优选碳数为6以上且25以下的烃基,更优选碳数为10以上且18以下的烃基。在碳数多的情况下,分子之间的相互作用大,可使后述的自组装单分子层(SAM)的分子间距变窄,可进一步提高耐水性。

在疏水基R为饱和烃基(即,烷基)的情况下,烷基的一部分氢可以被其他原子取代。其他原子例如为卤原子。卤原子例如为氟原子。烷基的一部分氢被氟原子取代而得的烷基例如为氟烷基。通过使疏水基R包含氟烷基,可得到高拒水性的表面。然而,为了得到高的水垢去除性,优选不含卤原子的表面层。另外,烷基的一部分碳可被其他原子取代。

高分子化合物和低分子化合物优选具有对金属元素具有键合性的官能团。作为该官能团,优选包含选自膦酸基、磷酸基、次膦酸基、羧基、硅烷醇基(或者,烷氧基甲硅烷基等甲硅烷醇的前体)、β二醇基、氨基、羟基、羟基酰胺基、α或β-羟基羧酸基的1种以上。更优选包含膦酸基或硅烷醇基(或者,烷氧基甲硅烷基等的甲硅烷醇的前体)作为官能团。这些官能团优选与着色层20或中间层30中所含的金属元素键合。换言之,表面层40优选经由该官能团与着色层20或中间层30结合。

表面层的优选构成

在本发明中,表面层40是包含疏水基R和对金属元素具有配位性的官能团X的层,表面层40优选为以单层形成的单分子层,更优选为由后述的非高分子的有机配体R-X构成的自组装单分子层(self assembled monolayers,SAM)。由于自组装单分子层是分子紧密集合而成的层,故拒水性优异。

SAM的厚度与构成分子1个分子的长度等同。其中,“厚度”是指沿着SAM的Z方向的长度。其中,在图1中以从基材10朝向表面层40的方向作为Z方向。SAM的厚度为10nm以下,优选为5nm以下,更优选为3nm以下。另外,SAM的厚度为0.5nm以上,优选为1nm以上。通过使用SAM的厚度达到这样的范围的构成分子,从而可有效地覆盖基材10,可得到水垢等污染物的易去除性优异的卫生设备部件。

SAM的构成

在本发明中,SAM是在有机分子吸附于固体表面的过程中形成于中间层30的表面上的分子集合体,通过分子之间的相互作用,集合体构成分子紧密地集合。在本发明中,SAM优选包含烷基。由此,在分子之间疏水性相互作用起作用,分子可紧密地集合,因此,可得到污垢的易去除性优异的卫生设备部件。

构成SAM的分子的定义

在本发明的优选方式中,非高分子的有机配体R-X具备疏水基R和对中间层30中所含的金属元素具有配位性的官能团X。非高分子的有机配体R-X经由官能团X与中间层30结合。其中,“非高分子”是指不符合国际纯粹与应用化学联合会(IUPAC)高分子命名法委员会的高分子科学的基本术语的用语集(日语翻译)的定义1.1(即,相对分子质量大、且具有由实质上或在概念上由相对分子质量小的分子得到的单元多次重复而构成的结构的分子。参照http://main.spsj.or.jp/c19/iupac/Recommendations/glossary36.html)的化合物。SAM是使用这样的非高分子的有机配体R-X而形成的层。

非高分子的有机配体R-X

在本发明的优选方式中,表面层40是使用非高分子的有机配体R-X而形成的层。疏水基R优选包含由C和H构成的烃基。在疏水基R所具有的烃基的骨架内的1或2处,除碳以外的原子可被取代。作为被取代的原子,可列举氧、氮、硫。优选疏水基R的单侧末端(并非为与X的键合端的一侧的端部)为甲基。由此,部件1的表面呈拒水性,可提高污垢的易去除性。

X的具体例子

官能团X优选为选自膦酸基、磷酸基、次膦酸基、羧基、硅烷醇基(或者,烷氧基甲硅烷基等甲硅烷醇的前体)、β二醇基、氨基、羟基、羟基酰胺基、α或β-羟基羧酸基的至少1种。

羧基、β二醇基、氨基、羟基、羟基酰胺基、α或β-羟基羧酸基未经官能团彼此聚合,即配位(吸附)于中间层30中所含的金属元素,因此形成致密的表面层。

根据本发明的优选方式,X为含有磷原子的官能团中的选自膦酸基、磷酸基、次膦酸基的至少1种,更优选为膦酸基。根据另一优选方式,X为硅烷醇基。由此,可有效地得到耐水性高且污染物的易去除性优异的部件。

R-X的构成

在本发明中,表面层40可由两种以上的R-X形成。由两种以上的R-X形成的表面层是指混合多种上述的化合物而构成的表面层。另外,在本发明中,表面层40在不损及水垢易去除性的范围内可包含微量的除R-X以外的有机分子。

R-X的具体例子

以通式R-X表示的有机膦酸化合物优选为正十八烷基膦酸、正十六烷基膦酸、正十二烷基膦酸、正癸基膦酸、正辛基膦酸、正己基膦酸、全氟正癸基膦酸、全氟正己基膦酸、全氟正辛基膦酸,更优选为正十八烷基膦酸、正十六烷基膦酸、正十二烷基膦酸、正癸基膦酸。更进一步优选为正十八烷基膦酸。

在R-X中,可使用膦酸作为具有膦酸基的分子,可使用(有机)磷酸作为具有磷酸基的分子,可使用次膦酸作为具有次膦酸基的分子,可使用羧酸作为具有羧基的分子,可使用原儿茶酸、没食子酸、多巴、邻苯二酚(邻羟基苯基)基作为具有β二醇基的分子,可使用氨基酸作为具有氨基的分子,可使用醇作为具有羟基的分子,可使用异羟肟酸作为具有羟基酰胺基的分子,可使用水杨酸、奎尼酸作为具有α或β-羟基羧酸基的分子。

在本发明中,表面层40的金属原子浓度优选为1.0at%以上且小于10at%。通过将金属原子浓度设于该范围内,表面层40显示为致密。由此,可得到具有足够的耐水性、且水垢易去除性优异的卫生设备部件。更优选金属原子浓度为1.5at%以上且小于10at%。由此,可进一步提高耐水性和水垢易去除性。

在本发明中,在表面层40包含烃基的情况下,表面层40的碳原子浓度优选为35at%以上,更优选为40at%以上,进一步优选为43at%以上,最优选为45at%以上。另外,碳原子浓度优选为小于70at%,更优选为65at%以下,进一步优选为60at%以下。碳原子浓度的合适范围可通过适当组合这些上限值与下限值来得到。通过将碳原子浓度设于这样的范围,可提高水垢易去除性。

表面层的厚度

在本发明中,关于表面层40,在通过XPS深度剖析得到的曲线中,从溅射开始到开始检出中间层30中所含的金属原子的时间点的溅射时间为大于0.5分钟且5分钟以下。其中,“通过XPS深度剖析得到的曲线”是指,通过利用了所述的“XPS测定条件”和“溅射条件2”的XPS深度剖析得到的曲线。在该曲线中,将规定的测定点的金属原子浓度与该测定点的前1个的测定点的金属原子浓度之差的绝对值为1.0at%以下的点作为表面层40的终点,从溅射开始到终点的溅射时间优选为5分钟以内,更优选为3分钟以内。另外,溅射时间的下限值优选为1分钟以上。合适的范围可通过适当组合这些上限值与下限值来得到。如上所述,表面层是无法目视识别的薄层,可维持基材的配色不变而对部件赋予功能。在XPS测定中,首先确认表面层的拒水性,再确认形成有拒水性的表面层。优选对该拒水性的表面层40随机选择3点进行测定,并将这3点的平均值认定为表面层40的厚度。

表面层的确定

在本发明中,在测定前洗净部件1的表面,充分去除附着于表面的污垢。例如,测定前,对于部件1的表面,在基于乙醇的擦拭清洁、和基于中性洗涤剂的海绵滑动清洁后,用超纯水进行充分的冲洗。另外,在部件1为对表面施行了拉丝加工或喷砂加工等的、表面粗糙度大的卫生设备部件的情况下,作为进行测定的部位,尽量选择平滑性高的平面部分进行测定。所谓平滑性高的部分是指,例如由于与粗糙部分相比扩散光而使用分光测色计等进行色差测定的情况下,不含正反射成分的基于SCE方式的L*小于5的点的部分。

在本发明中,在对部件1的表面进行分析的情况下,优选选择部件1的表面中曲率半径较大的部分。另外,优选以切断为可分析的尺寸的部件作为测定样本。在切断时,优选通过用薄膜等覆盖要进行分析或评价的部分,以使表面没有损伤。

在本发明中,表面层40可通过以下的步骤详细地进行确认。首先,评价表面层40的拒水性,确认形成有拒水性的表面层。作为拒水性的评价方法,可采用后述的水滴接触角的评价等。对于该拒水性的表面层,通过XPS分析进行表面元素分析,确认表面层40中所含的元素。

在本发明中,关于表面层40为包含烷基的层,可通过以下的步骤确认疏水基中所含的烷基链来判断。首先,在通过上述的XPS分析进行表面元素分析时,确认检出归属于疏水基中所含的烷基链的C-C键的284-285eV的峰。

接下来,采用红外光谱法或表面增强拉曼光谱法(Surface Enhanced RamanSpectroscopy:SERS),确认来自疏水基的峰位移(cm-1)。

在采用红外光谱法的情况下,可采用高灵敏度反射法(Reflection AbsorptionSpectroscopy)。作为基于高灵敏度反射法的测定装置,可使用具备可将红外线的入射角度变更为80°以上的、可进行高灵敏度反射测定的附件(例如,Harrick公司制造的Seagull)的红外分光装置(FT-IR)。红外分光装置例如可使用Cary 630IR(安捷伦)、Nicolet iS50(赛默飞世尔科技)。

采用了基于高灵敏度反射法的FT-IR的测定按照以下的条件进行测定。红外线入射角度:85°、检测器:MCT检测器、波数分辨率;2cm-1、累积次数:256。

首先,仅以测定对象的卫生设备部件中使用的基材(基材表面未形成表面层等的基材)为参照进行测定。需要说明的是,其中,作为卫生设备部件中使用的基材的替代品,可使用以与测定对象的基材相同的材料构成的板材等。之后,通过测定所切取的卫生设备部件1得到IR光谱。IR光谱的横轴为波数(cm-1),纵轴为透射率或吸光度。

在所得的IR光谱中,通过确认以下内容,可确认表面层40包含疏水基。通过检出来自甲基的波数:2960cm-1、2930cm-1附近、来自烷基链(-(CH2)n-)的波数:2850cm-1附近、2920cm-1附近,可确认烷基链的存在。在疏水基包含一部分氢被氟取代而得的烷基链的情况下,通过检出波数:1295cm-1附近、1200cm-1附近、1150cm-1附近,可确认一部分氢被氟取代而得的烷基链的存在。另外,在为其他疏水基的情况下,确认与它们相当的波数。由于是测定范围内吸光度最低的范围的100cm-1的吸光度的平均值的3倍以上,故视为被检出,并确认存在。

在采用表面增强拉曼光谱法的情况下,使用具备透射型表面增强传感器(透射型SERS传感器)和共聚焦显微拉曼分光装置的表面增强拉曼光谱分析装置。透射型表面增强传感器例如可使用日本专利第6179905号的实施例1中记载的传感器。共聚焦显微拉曼分光装置例如可使用NanoFinder30(东京Instruments)。

以下,对采用了表面增强拉曼光谱法的测定方法进行说明。在切取的卫生设备部件1的表面配置透射型表面增强传感器进行测定。测定条件如下。Nd:YAG激光(532nm、1.2mW)扫描时间(10秒)、光栅(800Grooves/mm)、针孔尺寸(100μm)。作为测定结果,得到拉曼光谱。拉曼光谱中,横轴为拉曼位移(cm-1),纵轴为信号强度。

在得到的拉曼光谱中,通过检出来自甲基的拉曼位移:2930cm-1附近、来自烷基链(-(CH2)n-)的拉曼位移:2850cm-1附近、2920cm-1附近,可确认疏水基的存在。在疏水基包含一部分氢被氟取代而得的烷基链的情况下,通过检出来自-(CF2)n-的拉曼位移:735cm-1附近、1295cm-1附近,可确认一部分氢被氟取代而得的烷基链。另外,在为其他烷基的情况下,确认与它们相当的拉曼位移。由于拉曼位移的信号为测定范围内信号强度最低的范围的100cm-1的信号强度的平均值的3倍以上,故视为被检出,并确认存在。

表面层为单分子层的情况下的疏水基(R)和X的确定

在本发明中,在表面层40为包含疏水基R和对金属元素具有键合性的官能团X的层,并且是以单层形成的单分子层的情况下,表面层40为包含R和X的层可通过下述方法进行确定。

首先,通过XPS分析进行表面元素分析,确认表面层40中所含的元素。

接下来,通过质谱分析根据来自存在于表面的成分的分子的质荷比(m/z)来确定分子结构。质谱分析可采用飞行时间二次离子质谱法(TOF-SIMS)或高分辨率质谱法(HR-MS)。其中,高分辨率质谱法是指,可由能够以质量分辨率为0.0001u(u:Unified atomicmass units)或小于0.0001Da的精度进行测定的精密质量推测元素组成。作为HR-MS,可列举双聚焦质谱法、飞行时间串联质谱法(Q-TOF-MS)、傅立叶变换离子回旋共振质谱法(FT-ICR-MS)、轨道离子阱(Orbitrap)质谱法等,本发明中采用飞行时间串联质谱法(Q-TOF-MS)。在可从部件1回收足够量的R和X的情况下,质谱分析期望使用HR-MS。另一方面,在因部件1的尺寸小等理由而无法从部件回收足够量的R和X的情况下,期望使用TOF-SIMS。采用质谱分析时,可通过检出与离子化后的R和X相当的m/z的离子强度,确认R和X的存在。其中,将下述情况视作检出离子强度,所述离子强度在测定范围内具有以被计算的离子强度的范围中的最低值的m/z为中心的前后50Da的平均值的信号的3倍以上。

认定表面层的R和X时的TOF-SIMS测定条件

就飞行时间二次离子质谱法(TOF-SIMS)装置而言,例如使用TOF-SIMS5(ION-TOF公司制造)。测定条件设置如下,用于照射的一次离子:209Bi3++,一次离子加速电压25kV,脉宽10.5或7.8ns,有聚束,无带电中和,后段加速9.5kV,测定范围(面积):约500×500μm2,用于检测的二次离子:正、负,循环时间:100μs,扫描次数:16。作为测定结果,得到来自R和X的二次离子质谱(m/z)。二次离子质谱以横轴为质荷比(m/z),纵轴为检出的离子强度(count)进行表示。

认定表面层的R和X时的HR/MS测定条件

作为高分辨率质谱分析装置,使用飞行时间串联质谱分析装置(Q-TOF-MS),例如Triple TOF 4600(SCIEX公司制造)。测定中,例如将所切取的基材浸渍于乙醇,萃取为了形成表面层40而使用的成分(R和X),对不需要的成分进行过滤器过滤后,移至小瓶(1mL左右)后进行测定。进行测定条件为下述条件的MS/MS测定,例如,离子源:ESI/Duo Spray IonSource,离子模式(正/负),IS电压(-4500V),离子源温度(600℃),DP(100V),CE(40V)。作为测定结果,获得MS/MS质谱。MS/MS质谱以横轴为质荷比(m/z),纵轴为检出的离子强度(count)进行表示。

各层的原子浓度的测定

在本发明中,表面层40、中间层30和着色层20的组成通过X射线光电子能谱法(XPS)求得。测定前,使用中性洗涤剂对部件1进行海绵滑动后,用超纯水充分地进行冲洗。XPS装置可使用PHI QanteraII(Ulvac-Phi制造)。对于表面层40、中间层30和着色层20中所含的各元素,通过利用了所述的“XPS测定条件”和“溅射条件1”的XPS深度剖析得到能谱。

接下来,使用数据分析软件PHI MultiPak(Ulvac-Phi制造)对得到的能谱进行分析,算出所测定的各原子浓度。关于得到的能谱,以Shirely法对测定的基于各原子的电子轨道的谱峰进行背景去除后,计算峰面积强度,并以数据分析软件中预设的装置固有的灵敏度系数进行除法运算,从而进行修正处理。在该修正处理后,由某种元素的峰面积相对于所测定的所有元素种类的峰面积强度的总计的比例求出各元素的浓度,以单位at.%进行计算。

6本发明的部件的特性

根据本发明的优选方式,利用分光测色计针对部件1的表面求得的明度L*小于55,进一步优选为小于50,更进一步优选为小于45。通过将明度设于该范围,从而颜色变暗,可实现黑色度高的部件。另外,根据本发明的优选方式,利用分光测色计针对部件1的表面求得的色度a*的绝对值小于5,进一步优选为小于4。另外,根据本发明的优选方式,利用分光测色计针对部件1的表面求得的b*的绝对值小于5,进一步优选为小于4。其中,a*和b*是表示配色的指标。a*若正向增大则带红色,若负向增大则带绿色。b*若正向增大则带黄色,若负向增大则带蓝色。通过将a*和b*设为该范围,从而可实现黑色度高的部件。另外,在具有着色层20的部件1中,若部件表面的颜色相差一定程度以上,则会感觉到存在颜色不均。因此,根据本发明的一个优选方式,以任意的测定点为原点,以通过原点的任意的线为X、以与X垂直且通过原点的线为Y时,如果原点、在X方向距原点为10±5mm的点、在Y方向距原点为10±5mm的点、以及在X方向距原点为10±5mm且在Y方向距原点为10±5mm的点的上述这4点的L*、a*以及b*的各最大值与最小值之差ΔL、Δa、Δb的和为2.0以内,则认为其表面“颜色稳定性高”,如果为2.0以上,则认为“颜色稳定性低”。

着色层20的色调、即着色层20(部件1)的表面的明度和色度通过分光测色计(例如CM-2600d、Konica Minolta制造)来求得。例如,设定观察光源D65、平均化次数3次、视角10°、测定直径6mm,按压平坦的面,并通过包含正反射光的SCI方式,来测定L*、a*、b*。

着色层20的配色利用分光测色计(CM-2600D、Konica Minolta)来求得。例如,设定观察光源D65、平均化次数3次、视角10°、测定直径6mm,按压平坦的面,并通过包含正反射光的SCI方式,来测定L*、a*、b*。

需要说明的是,分光测色计可使用以下的装置,但并不限于此。

装置:分光测色计CM-2600D(Konica Minolta制造);

版本:1.42;

测定参数:SCI/SCE;

表色系:L*a*b*、ΔE*;

UV设定:UV0%;

光源:D65;

观察视角:10°;

测定直径:φ3mm;

测定波长间距:10nm;

测定次数:3次;

测定前等待时间:0秒;

校正:零点校正后,进行白色校正(零点校正:利用远方的空间进行校正;白色校正:使用校正用的白色板进行校正)。

根据本发明的卫生设备部件的一个优选方式,表面层40的表面的水滴接触角优选为90°以上,更优选为100°以上。水滴接触角是指静态接触角。静态接触角可通过向表面层40滴加2μl的水滴,1秒后从基材侧面拍摄水滴而求得。作为测定装置,例如,可使用接触角计(型号:SDMs-401、协和界面科学株式会社制造)。

部件的制造方法

在本发明中,部件1可通过准备基材10,在该基材上形成着色层20,根据情况形成中间层30,进一步形成表面层40而制得。着色层20的形成例如可采用物理蒸镀法(PVD)。另外,在形成表面层40之前,优选对着色层20的表面进行预处理。作为用于去除表面的污垢的预处理,可列举中性洗涤剂清洁、UV臭氧处理、碱处理等。

(实施例)

通过以下的实施例,进一步详细地说明本发明。此外,本发明并不限于这些实施例。

1部件的制作

(基材)

作为基材,制作了对黄铜进行镍铬镀覆而得到的平板和立体物(TOTO制造、产品编号:TLG02302J)。

(着色层的形成)

在预先进行了表面清洁的基材上,通过物理蒸镀法(PVD)形成具备黑色表面的着色层。

利用PVD法将黑色的着色层成膜。成膜中,以基材达到100℃以上且250℃以下的方式控制成膜条件,同时使基材进行自转和/或公转进行制造。虽然采用PVD法,但通过自转和公转,即使是立体物也可将成分均匀地进行成膜。需要说明的是,关于基材的自转及公转,虽然可以仅为自转和公转的任一种,但优选同时进行自转和公转。

作为溅射种,使用金属靶,通过调节溅射的功率和氩/氮/乙炔的气体流量,制作组成不同的多种着色层。

(中间层的形成)

与着色层的成膜方法相同,通过调节溅射的功率和氩/氧的气体流量,制作组成不同的多种中间层。

(表面层的形成)

将形成有中间层和着色层的基材在氢氧化钠水溶液中浸渍规定的时间后,使用离子交换水充分地进行冲洗。

作为用于形成表面层的处理剂,使用将正十八烷基膦酸(东京化成工业制造、产品编码O0371)溶解于乙醇(富士胶片和光纯药制造、和光一级)而得的溶液。将基材在处理剂中浸渍规定时间,用乙醇进行冲洗清洁。浸渍时间设为1分钟以上。之后,使用干燥机在120℃下干燥10分钟,在基材表面形成表面层。

作为高分子系的用于形成表面层的中间层处理剂,使将硅酮系底涂剂(产品名:KBM403、信越化学制造)溶解于异丙醇(富士胶片和光纯药制造)而得到的溶液渗入到无纺布(产品名:Bemcot M3-II、旭化成制造)中,在整个基材涂布扩展,之后使其自然干燥10分钟,形成中间层。

作为用于形成表面层的处理剂,使用含氟化烷基的涂覆剂(产品名:SURECO2101S、AGC制造)。使该处理剂渗入到无纺布(产品名:Bemcot M3-II、旭化成制造)中,在中间层的整个表面涂布扩展。之后,利用干燥机使其在120℃下干燥30分钟,形成表面层。

作为高分子系的用于形成表面层的中间层处理剂,使将硅酮系底涂剂(产品名:KBM403、信越化学制造)溶解于异丙醇(富士胶片和光纯药制造)而得到的溶液渗入到无纺布(产品名:Bemcot M3-II、旭化成制造)中,在整个基材涂布扩展,之后使其自然干燥10分钟,形成中间层。

作为用于形成表面层的处理剂,使用末端具有硅烷醇基,并且分子链的一部分具有全氟聚醚的高分子化合物(含全氟聚醚基的硅烷化合物)。使该处理剂渗入到无纺布(产品名:Bemcot M3-II、旭化成制造)中,在中间层的整个表面涂布扩展。之后,利用干燥机使其在120℃下干燥30分钟,形成表面层。

2分析、评价

对如上制作的部件进行以下的分析、评价。

(取样)

在平板部件的分析、评价中,以平板的中央部分的边长3cm的正方形的范围作为评价面。另外,在上述立体物(TOTO制造、产品编号:TLG02302J)的分析、评价中,以设置时引人注目的部分且尽可能平滑的面作为评价面。具体而言,从安装时与地面平行的喷口部的上面切断中央附近的边长3cm的正方形,作为下述评价的评价面。

(着色层的组成)

关于着色层的组成,在通过利用了上述的“XPS测定条件”和“溅射条件1”的XPS深度剖析得到的曲线中,将从Cr或Zr或Si超过C的原子比率的时间点起8分钟后的深度区域的组成作为着色层的组成。测定前,对于各部件,使用中性洗涤剂,利用聚氨酯海绵擦拭后,用超纯水充分地进行冲洗。

在立体物的XPS测定中,为了避免检测器与样本发生碰撞而无法测定,通过抛光等调整测定面的相反面,使测定点成为测定面内的较高的位置(距样品最大高度为1mm以内)。

(中间层中的氧化物的存在确认)

关于中间层中的氧化物的存在,通过利用了所述的“XPS测定条件”和“溅射条件1”的XPS深度剖析进行确认。在通过XPS深度剖析得到的曲线中,根据来自金属氧化物的O1s在530-532eV发现峰,Cr2p3在576-580eV是否存在峰、Zr3d在182-183eV是否存在峰、Si2p在103-104eV是否存在峰,确认金属原子与氧原子的键合。

(中间层溅射时间的确认)

中间层的溅射时间在利用了所述的“XPS测定条件”和“溅射条件1”的XPS深度剖析中采用如下时间:从检出金属元素的时间点到中间层中所含的氧元素的检出量多于着色层中所含的氧元素(0)的检出量的时间点的溅射时间。

(表面层溅射时间的确认)

表面层的溅射时间在通过利用了所述的“XPS测定条件”和“溅射条件2”的XPS深度剖析求得的曲线中采用如下时间:将开始检出中间层中所含的金属原子的点作为表面层的终点,从溅射开始到其终点的溅射时间。

(色调的测定)

使用分光测色计(CM-2600D、Konica Minolta)测定各部件的配色。测定前使用校正板进行白色校正。之后,对于各部件,避开目视也很明显的损伤或污垢,对各3处进行配色测定,算出测定参数L*、a*、b*的平均值。

需要说明的是,所使用的分光测色计的构成如下。

装置:分光测色计CM-2600D(Konica Minolta制造);

版本:1.42;

测定参数:SCI/SCE;

表色系:L*a*b*、ΔE*;

UV设定:UV0%;

光源:D65;

观察视角:10°;

测定直径:φ3mm;

测定波长间距:10nm;

测定次数:3次;

测定前等待时间:0秒;

校正:零点校正后,进行白色校正(零点校正:利用远方的空间进行校正;白色校正:使用校正用的白色板进行校正)。

(黑色度)

将上述的L*小于55的部件视为“○”,其表面评价为“黑色度高”。将上述的L*小于50的部件视为“◎”,其表面评价为“黑色度更高”。另一方面,将上述以外视为“×”,其表面评价为“黑色度低”。

(色度)

将上述的a*的绝对值小于5且b*的绝对值小于5的部件视为“〇”,其表面评价为“配色良好”。将上述的a*的绝对值小于4且b*的绝对值小于4的部件视为“◎”,其表面评价为“配色更好”。另一方面,将上述以外视为“×”,其表面评价为“配色不好”。

(颜色稳定性)

以任意的测定点为原点,以通过原点的任意的线为X,以与X垂直且通过原点的线为Y。此时,取原点、在X方向距原点为10±5mm的点、在Y方向距原点为10±5mm的点、在X方向距原点为10±5mm且在Y方向距原点为10±5mm的点。如果上述4点的L*、a*和b*的各最大值与最小值之差ΔL、Δa、Δb的和为2.0以内,则其表面的“颜色稳定性高”,视为“〇”,如果为2.0以上,则其表面的“颜色稳定性低”,视为“×”。

(水滴接触角)

测定前,使用碱性洗涤剂,用聚氨酯海绵擦拭各部件,用超纯水充分地进行冲洗。在各部件的水滴接触角测定中,使用接触角计(型号:SDMs-401、协和界面科学株式会社制造)。测定用的水使用超纯水,滴加的水滴体积为2μl。接触角为所谓的静态接触角,是指滴加水后1秒后的值,测定不同的5处,求出平均值。然而,在5处中出现异常值的情况下,排除异常值,算出平均值。其中,5处中有4处偏离平均值±20°以上的值视为异常值,在5处中出现显示异常值的测定点的情况下,排除异常值,算出平均值。

(着色层的膜厚)

各部件的着色层的膜厚利用下述的方法来求得。首先,将包含着色层的部件中的、设计面(指作为产品而设置时眼睛可看到的部分,成为阴影而看不见的部分除外)上的任意的点沿着与着色层20垂直的方向(图1中的Z方向)切断,用#400的研磨纸进行研磨后,用#1500的研磨纸进行研磨。进一步地,使用离子铣削装置进行横截面铣削,得到平滑的横截面。通过使用扫描型电子显微镜/能量分散型X射线光谱法(SEM/EDX)对该横截面进行观察,识别着色层和基材。以观察倍率从低倍率开始到25000倍下进行观察,以收纳着色层与基材的界面且界面呈水平的方式获得SEM图像。通过对上述SEM图像进行基于EDX的映射分析,从而根据着色层中所含的元素C和基材中所含的Cr确认元素分布不同的边界面。将该边界面认定为着色层和基材的界面。以将获取的SEM图像在纵向上一分为二的线作为中心,以与该线平行的方式在左右等间隔地分别绘制2条线。对于在SEM图像绘制的总计5条垂线,求出分别与着色层和基材的边界面、以及与着色层的与基材相反侧的表面交叉的点。对SEM图像中的5条垂线分别被上述2个交点划分而成的5条线段中的每条线段的长度进行测定,并将5条线段的长度的平均值作为着色层20的膜厚。

上述的测定、评价结果如表1和表2所示。

(表面层中所含的疏水基的确认)

利用下述方法确认表面层包含疏水基。采用表面增强拉曼光谱法进行确认。作为表面增强拉曼分光分析装置,使用以下的装置。作为表面增强拉曼传感器,使用日本专利第6179905号的实施例1中记载的透射型表面增强传感器。作为共聚焦显微拉曼分光装置,使用NanoFinder30(东京Instruments)。测定时,在所切取的样品表面配置透射型表面增强拉曼传感器,进行测定。测定条件采用Nd:YAG激光(532nm、1.2mW)、扫描时间(10秒)、光栅(800Grooves/mm)、针孔尺寸(100μm)。

实施例1~3、5~15中,在来自烷基链中所含的-(CH2)n-的拉曼位移2850cm-1、2920cm-1检出信号峰。实施例4、16~20中,在来自一部分氢被氟取代而得到的烷基链中所含的-(CF2)n-的拉曼位移735cm-1、1295cm-1检出信号峰。

符号说明:

1 部件

10 基材

10a 基材10的支撑材;

10b 基材10的一个区域;

20 着色层

30 中间层

40 表面层。

22页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:振动模块

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!