一种陶瓷-玻璃复合结构荧光色轮及其制备方法和在激光显示源中的应用

文档序号:203241 发布日期:2021-11-05 浏览:18次 >En<

阅读说明:本技术 一种陶瓷-玻璃复合结构荧光色轮及其制备方法和在激光显示源中的应用 (Ceramic-glass composite structure fluorescent color wheel, preparation method thereof and application thereof in laser display source ) 是由 邾强强 殷召敏 王乐 翟玥 张宏 于 2021-07-20 设计创作,主要内容包括:本发明提供一种陶瓷-玻璃复合结构荧光色轮及其制备方法和在激光显示源中的应用。该陶瓷-玻璃复合结构荧光色轮由连续相多孔绿色发光荧光陶瓷基质及分布于其气孔中的红色发光荧光玻璃组成。在蓝色激光光源的激发下,连续相高导热荧光陶瓷会产生绿色发光,并保证荧光色轮优良的散热性能,而分布于气孔中的红色荧光玻璃则不仅可以提供红光波段的发光,还可以在保证红色氮化物荧光粉发光性能的前提下将其分散到陶瓷基质中。通过蓝色激光激发该陶瓷-玻璃复合结构荧光色轮,可实现高亮度红、绿、蓝三基色发光,满足激光显示对广色域、高亮度光源的应用需求。(The invention provides a ceramic-glass composite structure fluorescent color wheel, a preparation method thereof and application thereof in a laser display source. The ceramic-glass composite structure fluorescent color wheel consists of a continuous phase porous green luminous fluorescent ceramic matrix and red luminous fluorescent glass distributed in pores of the matrix. Under the excitation of a blue laser light source, the continuous phase high-heat-conductivity fluorescent ceramic can generate green luminescence and ensure the excellent heat dissipation performance of the fluorescent color wheel, and the red fluorescent glass distributed in the air holes can not only provide luminescence of a red light wave band, but also disperse the red nitride fluorescent powder into a ceramic substrate on the premise of ensuring the luminescence performance of the red nitride fluorescent powder. The ceramic-glass composite structure fluorescent color wheel is excited by blue laser, so that high-brightness red, green and blue three-primary-color luminescence can be realized, and the application requirements of laser display on a wide-color-gamut and high-brightness light source are met.)

一种陶瓷-玻璃复合结构荧光色轮及其制备方法和在激光显 示源中的应用

技术领域

本发明涉及新型显示光源材料领域,具体涉及一种激光显示应用陶瓷-玻璃复合结构荧光色轮及其制备方法。

背景技术

与传统的LCD液晶显示相比,激光显示在一系列性能指标上均表现出了显著的潜在优势。在激光显示系统中,除成像系统外,最重要的核心部件便是光源部分。现阶段主要通过组合三基色激光(即红、绿、蓝三束激光)来实现激光显示光源,但此方式面临成本过高、散斑消除困难以及不同颜色激光器性能匹配困难等问题(T.T.K.Tran,et al.,App.Optics,2016,55(6):1267-1274),严重阻碍了激光显示技术的市场化进程。为了避开三基色激光带来的瓶颈问题,另外一种采用蓝色激光激发荧光材料(“蓝光激光+荧光材料”)的技术方案被提了出来,即荧光激光显示,由于该方案中仅使用蓝色激光而显著降低了成本,规避了不同颜色激光器之间的匹配问题,而且无需消相干,成为了目前实现激光显示光源的最佳替代方案。

在上述荧光激光显示技术中,激光显示光源的核心技术是荧光色轮,它是决定激光显示终端的亮度、色域和寿命等关键性能的核心因素。由于高能量激光激发时会产生强烈的热效应,为了保证激光显示光源的发光效率及工作的稳定性,需要荧光色轮具有优异的散热性能及高温稳定性。而传统的固态照明封装材料(如有机树脂等)不但导热系数较低,而且在长时间、高功率激发光照射下也会出现变黄的现象,从而导致整个照明器件性能的劣化。荧光陶瓷材料具有优异的热导性能及高温稳定性,在激光显示及照明领域展现出了良好的应用优势。迄今为止,应用于激光显示(基于荧光色轮)的白光光源,同白光LED光源一样,主要通过采用蓝光激发黄色YAG:Ce3+荧光陶瓷而实现,但由于光源中红、绿光成分的缺少,导致最终激光光源存在着显色/色域偏低的问题(C.Cozzan,et al.,ACSAppl.Mater.Inter.,2018(10):5673-5681)。

在传统LED白光光源技术中,通常采用添加氮化物红色荧光粉(CaAlSiN3:Eu2+)的方法来实现光源红光成分的提升。但氮化物荧光材料由于使用Si3N4作为原料,而Si3N4的扩散系数较低,因此难以利用原料直接制备出性能良好的氮化物荧光陶瓷材料。同时,由于氮化物荧光材料的高温稳定性较差,因此也难以利用复相陶瓷合成技术在保证氮化物荧光粉发光性能的前提下将其分散到相应的陶瓷基质中[Li S,et al.,J.Mater.Chem.C,2016,4(35):8197-8205.]。当前,为了实现红色发光氮化物荧光材料在激光显示及照明领域的应用,通常将其与玻璃基质进行复合制备出荧光玻璃材料[Zhu Q Q,et al.,J.Alloy.Compd.,2017,702:193-198],或在陶瓷基板上将其制备成荧光玻璃薄膜[JianXu,etal.J.Eur.Ceram.Soc.,2020,40(13):4704-4708]。但由于玻璃基质的热导率较低(~1Wm-1K-1),难以快速耗散掉高功率激光激发时所产生的热量,导致红色发光氮化物荧光玻璃的光效较低,这使得当前红色氮化物荧光材料难以满足激光显示对高亮度光源的应用需求。

发明内容

为解决上述问题,本发明提供一种陶瓷-玻璃复合结构荧光色轮及其制备方法和在激光显示源中的应用。

一种陶瓷-玻璃复合结构荧光色轮,所述陶瓷-玻璃复合结构荧光色轮包括连续相多孔绿色发光荧光陶瓷基质及分布于其气孔中的红色发光荧光玻璃。

本发明提供的陶瓷-玻璃复合结构荧光色轮中荧光陶瓷基质的气孔率为5~40%,优选为10~20%,气孔直径范围为5~30微米,优选为10~20微米;荧光陶瓷基质为Y3- xCexAl5-yGayO12(0<x≤0.5,优选为0.05≤x≤0.14,0<y<5,优选为1≤y≤3)或Lu3-xCexAl5O12(0<x≤0.5,优选为0.05≤x≤0.14)单一相结构或相应荧光粉与Al2O3组成的复相结构,优选为荧光粉与Al2O3组成的复相结构,荧光粉质量百分比在10~50%之间,优选为20~40%。

本发明提供的陶瓷-玻璃复合结构荧光色轮中红色发光荧光玻璃为CaAlSiN3:Eu(Ca1-xEuxAlSiN3,0<x≤0.5,优选为0.05≤x≤0.14)荧光粉与玻璃粉的混合相,荧光粉质量百分比在30~70%之间,优选为40~60%。

本发明还提供一种陶瓷-玻璃复合结构荧光色轮的制备方法,包括以下步骤:

a)将绿色发光荧光粉和Al2O3粉体混合后通过干压成型获得陶瓷坯体,将陶瓷坯体通在高温条件下进行烧结获得多孔绿色发光荧光陶瓷基质;

b)将红色发光荧光粉与玻璃粉在无水乙醇中通过球磨混合获得荧光玻璃浆料,然后将上述荧光陶瓷基质放入荧光玻璃浆料中进行浸泡,待无水乙醇挥发完全后,将吸附有红色发光荧光粉与玻璃粉的荧光陶瓷基质经低温烧结获得具有陶瓷-玻璃复合结构荧光色轮。

所述步骤a)中,陶瓷坯体的烧结为还原气氛常压烧结,烧结温度为1200~1600℃,优选为1300~1400℃,保温时间为1~5小时,优选为2~3小时,烧结气氛为氮气或氮/氢混合气,优选为氮/氢混合气。进一步优选,烧结温度为1300~1400℃,保温时间为3~4小时,烧结气氛为氮气或氮/氢混合气。

所述步骤b)中荧光玻璃浆料的固含量在5~50vol%之间,优选为20~30vol%之间。

所述步骤b)中低温烧结为还原气氛常压烧结,烧结温度为400~800℃,烧结温度根据玻璃粉软化温度进行优化,保温时间为5~30分钟,优选为10~15分钟,烧结气氛为氮气或氮/氢混合气,优选为氮/氢混合气。进一步优选,烧结温度为650~700℃,保温时间为5~10分钟,烧结气氛为氮气或氮/氢混合气。

所述的陶瓷-玻璃复合结构荧光色轮在蓝色激光激发下可以实现高亮度红、绿、蓝三基色发光,提高获得白光的显色指数和色域。

与现有技术相比,本发明具有如下优点:

本发明获得的陶瓷-玻璃复合结构荧光色轮,采用连续相绿色发光荧光陶瓷结构作为基质可以有效提高荧光色轮的散热性能;采用分布于上述陶瓷基质中的红色发光荧光玻璃结构不仅可以提供红光波段的发光,还可以在保证红色氮化物荧光粉发光性能的前提下将其分散到陶瓷基质中,使得该陶瓷-玻璃复合结构非常适合用于激光显示光源。在蓝色激光光源的激发下,连续相高导热荧光陶瓷会产生绿色发光,并保证荧光色轮优良的散热性能,而分布于气孔中的红色荧光玻璃则可以提供红光波段的发光。通过蓝色激光激发该玻璃-陶瓷复合结构荧光色轮,可实现高亮度红、绿、蓝三基色发光,满足激光显示对广色域、高亮度光源的应用需求。

附图说明

图1为本发明中陶瓷-玻璃复合结构荧光色轮结构示意图,其中,图1中,1为多孔绿色发光荧光陶瓷基质,2为玻璃基质,3为红色发光荧光粉,4为内部气孔;

图2为本发明中实施例1多孔绿色发光荧光陶瓷基质微观结构;

图3为本发明中实施例1中激光白光光源的发光光谱;

图4为本发明中实施例2中激光白光光源的发光光谱。

具体实施方式

下面对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。

本发明提供的陶瓷-玻璃复合结构荧光色轮中荧光陶瓷基质为YAGG:Ce(Y3- xCexAl5-yGayO12,0<x≤0.5,0<y<5)或LuAG:Ce(Lu3-xCexAl5O12,0<x≤0.5)单一相结构或相应荧光粉与Al2O3组成的复相结构,优先选择将荧光粉与Al2O3混合组成复相结构,荧光粉质量百分比在20~40%之间;陶瓷-玻璃复合结构荧光色轮中红色发光荧光玻璃为CaAlSiN3:Eu(Ca1-xEuxAlSiN3,0<x≤0.5)荧光粉与玻璃粉的混合相,荧光粉质量百分比在40~60%之间。绿色、红色发光荧光粉、Al2O3粉体及玻璃粉原料可以是自行制备的,也可以是从商业途径购买的产品,其中玻璃粉原料优选低熔点玻璃粉。

本发明还提供一种透明复相荧光陶瓷的制备方法,包括以下步骤:

a)将绿色发光荧光粉YAGG:Ce或LuAG:Ce和Al2O3粉体混合后通过干压成型获得陶瓷坯体,将陶瓷坯体通在高温条件下进行烧结获得多孔绿色发光荧光陶瓷基质;荧光粉和Al2O3粉体混合可采用研钵进行混合,也可以放入氧化铝球磨罐中使用氧化铝磨球进行球磨混合;混合粉体干压成型压力为10~40Mpa,保压时间为10~60秒;陶瓷坯体的烧结为还原气氛常压烧结,烧结温度为1200~1600℃,保温时间为1~5小时,烧结气氛为氮气或氮/氢混合气。

b)将红色发光荧光粉与玻璃粉在无水乙醇中通过球磨混合获得荧光玻璃浆料,然后将上述荧光陶瓷基质放入荧光玻璃浆料中进行浸泡,利用多孔陶瓷吸附特性对荧光玻璃浆料进行吸附,待无水乙醇挥发完全后,将吸附有红色发光荧光粉与玻璃粉的荧光陶瓷基质经低温烧结获得具有陶瓷-玻璃复合结构荧光色轮;红色发光荧光粉与玻璃粉优先选择氮化硅球磨罐和磨球在无水乙醇中进行球磨混合,球磨时间为1~10小时;荧光玻璃浆料的固含量在5~50vol%之间;低温烧结选择还原气氛常压烧结,烧结温度为400~800℃,烧结温度根据玻璃粉软化温度进行优化,保温时间为5~30分钟,烧结气氛为氮气或氮/氢混合气。

为了进一步说明本发明的技术方案,下面结合实施例对本发明优选实施方案进行描述,但是应当理解,这些描述只是为进一步说明本发明的特征和优点,而不是对本发明权利要求的限制。

实施例1

称取2g YAGG:Ce绿色发光荧光粉(Y2.9Ce0.1Al4.0Ga1.0O12,苏州市兰博光电科技有限公司)和8gAl2O3粉体在玛瑙研钵中混合均匀;称取5g混合粉体原料在压片机上压成直径15毫米的圆片陶瓷坯体,压片机压力15Mpa,保压时间30s;将陶瓷坯体在箱式气氛炉(烧结气氛为氮气)中1400℃煅烧3小时获得多孔绿色发光荧光陶瓷基质。

称取4gCaAlSiN3:Eu红色发光荧光粉(Ca0.9Eu0.1AlSiN3,苏州市兰博光电科技有限公司)、6gZnO-B2O3-BaO-Al2O3玻璃粉和15g的无水乙醇放入氮化硅球磨罐中球磨5小时得到荧光玻璃浆料;将多孔绿色发光荧光陶瓷基质放入荧光玻璃浆料中浸泡10小时后取出,然后放入管式气氛炉(烧结气氛为氮气)中650℃煅烧10分钟获得最终的陶瓷-玻璃复合结构荧光色轮。

本发明中实施例1多孔绿色发光荧光陶瓷基质微观结构如图2所示,可以看出玻璃分布于陶瓷基质中的致密结构;本发明中实施例1中激光白光光源的发光光谱如图3所示,可以看出由该陶瓷-玻璃复合结构获得的白光中红光和绿光成分显著提高,从而提高了获取白光的显色指数和色域。

实施例2

称取3g LuAG:Ce绿色发光荧光粉(Lu2.9Ce0.1Al5O12,苏州市兰博光电科技有限公司)和7g Al2O3粉体在玛瑙研钵中混合均匀;称取5g混合粉体原料在压片机上压成直径15毫米的圆片陶瓷坯体,压片机压力10Mpa,保压时间10s;将陶瓷坯体在箱式气氛炉(烧结气氛为氮气)中1300℃煅烧3小时获得多孔绿色发光荧光陶瓷基质。

称取5gCaAlSiN3:Eu红色发光荧光粉(Ca0.9Eu0.1AlSiN3,苏州市兰博光电科技有限公司)、5gK2O-Na2O-Al2O3-SiO2玻璃粉和20g的无水乙醇放入氮化硅球磨罐中球磨5小时得到荧光玻璃浆料;将多孔绿色发光荧光陶瓷基质放入荧光玻璃浆料中浸泡10小时后取出,然后放入管式气氛炉(烧结气氛为氮气)中700℃煅烧5分钟获得最终的陶瓷-玻璃复合结构荧光色轮。本发明中实施例2中激光白光光源的发光光谱如图4所示,可以看出由该陶瓷-玻璃复合结构获得的白光中绿光成分虽不如实施例1中的高,但红光成分更高,整体上还是提高了白光的显色指数和色域。

实施例1~2制备的陶瓷-玻璃复合结构荧光色轮的显色指数CRI和流明效率(lm/W)如表1所示。

表1

实施例 显色指数CRI 流明效率(lm/W)
1 91 213
2 93 197

由表1中的数据可以看出,本发明提供的陶瓷-玻璃复合结构荧光色轮可以显著提高获取白光的显色指数,达到90以上,流明效率也显著提高,最高达到213lm/W。因此本发明提供的陶瓷-玻璃复合结构荧光色轮非常适合用于激光显示光源,满足激光显示对广色域、高显指、高亮度光源的应用需求。

8页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种低烧成收缩率氧化铝陶瓷及其制备方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!