一种超薄式车载磁悬浮飞轮电池及其工作方法

文档序号:22469 发布日期:2021-09-21 浏览:24次 >En<

阅读说明:本技术 一种超薄式车载磁悬浮飞轮电池及其工作方法 (Ultrathin vehicle-mounted magnetic suspension flywheel battery and working method thereof ) 是由 张维煜 俞珏鑫 单龙 朱熀秋 李凯 张宵啸 王振 于 2021-05-13 设计创作,主要内容包括:本发明公开一种用于电动汽车的超薄式车载磁悬浮飞轮电池及其工作方法,外壳内自上而下同轴设置电机支架、轴向磁通电机、飞轮、五自由度磁轴承的内定子、线圈和永磁体,飞轮由连续的上、中、下三层组成,上层的飞轮上环形层的正中间是上环形凹槽,轴向磁通电机置放在上环形凹槽内,环形内槽、中层圆环腔和下环形凹槽相通且共同置放五自由度磁轴承的内定子、线圈和永磁体,五自由度磁轴承从内至外分别是轴向磁轴承、斥力磁轴承、扭转磁轴承和径向球面磁轴承;采用不同性质磁轴承复用的模式,实现其优势互补,不仅可提高磁轴承支承的承载力和控制精度,显著提高飞轮的稳定性,又可有效弥补复杂工况导致控制线圈损耗较大的问题。(The invention discloses an ultrathin vehicle-mounted magnetic suspension flywheel battery for an electric automobile and a working method thereof.A motor bracket, an axial flux motor, a flywheel, an inner stator of a five-degree-of-freedom magnetic bearing, a coil and a permanent magnet are coaxially arranged in a shell from top to bottom, the flywheel consists of an upper layer, a middle layer and a lower layer which are continuous, an upper annular groove is arranged in the middle of an upper annular layer of the flywheel, the axial flux motor is placed in the upper annular groove, an annular inner groove, a middle layer annular cavity and the lower annular groove are communicated and are used for placing the inner stator, the coil and the permanent magnet of the five-degree-of-freedom magnetic bearing together, and the five-degree-of-freedom magnetic bearing is respectively an axial magnetic bearing, a repulsive force, a torsional magnetic bearing and a radial spherical magnetic bearing from inside to outside; the method adopts a multiplexing mode of magnetic bearings with different properties to realize the advantage complementation, not only can improve the bearing capacity and the control precision of the magnetic bearing support and obviously improve the stability of the flywheel, but also can effectively solve the problem of larger loss of a control coil caused by complex working conditions.)

一种超薄式车载磁悬浮飞轮电池及其工作方法

技术领域

本发明涉及一种飞轮电池,也称飞轮储能装置,具体是用于电动汽车的五自由度磁悬浮飞轮电池。

背景技术

飞轮电池是一种新概念储能装置,它突破了化学电池的局限,通过飞轮高速旋转实现物理储能,具有无污染、能量转换效率和功率密度高、循环寿命长、对温度不敏感等特点,是新能源汽车领域极具发展潜力的动力电池。然而,目前车载磁悬浮飞轮电池在实际应用和普及上,存在的主要障碍系占用轴向空间大、面对复杂车辆行驶工况及路况时(即车辆行驶工况及路况变化等),存在安全稳定性不足,损耗过大等问题。

占用空间方面:目前大多数飞轮电池系统的拓扑结构是将飞轮转子、磁悬浮轴承和电机均围绕惯性主轴独立布置,由于惯性主轴的存在,整个拓扑将向轴向延伸。而车载的环境又限制飞轮电池整体拓扑在轴向空间上的延伸,轴向长度的限制又会影响飞轮临界转速,进而影响飞轮的储能特性。由此,传统的带有惯性主轴的飞轮电池拓扑结构的特性往往被其轴向空间利用率所限制。虽然,中国专利申请号为201910072060.7,名称为“电动汽车用虚拟轴式磁悬浮飞轮储能装置”提出了去掉“惯性主轴”的拓扑结构,其将飞轮与部分磁轴承内嵌,且与电机内嵌的“无轴”结构可很好解决这一问题,因此去掉“惯性主轴”的方式尤其适用于车载飞轮电池的应用,其可以较好的减小轴向占用空间大的问题。然而,目前的“无轴”类飞轮电池系统的轴向长度仍有进一步缩短的空间,因此如何进一步降低轴向空间利用率,甚至设计“超薄”式的拓扑结构,以便其更方便安装于汽车的任何位置,更有利于车载磁悬浮飞轮电池系统的推广应用,具有重要的研究意义。

稳定性方面:车载飞轮电池不可避免地会受飞轮高速运转、车辆行驶工况(上坡、下坡、启动、加速、减速、刹车、转弯)以及复杂路况的影响而导致严重的陀螺效应,因而影响了系统的稳定性。而目前大多飞轮电池系统均采用基于麦克斯韦力的磁轴承(磁阻力磁轴承)进行飞轮的稳定性控制,即或者是分别采用永磁轴承、混合磁轴承、主动磁轴承,或将几种形式的磁轴承组合,而无论怎么组合均是单一形式的磁轴承系统,而磁阻力磁轴承是通过控制气隙磁通的多少来改变电磁力。洛伦兹力磁轴承是一种区别于传统基于麦克斯韦力原理的磁轴承,其是基于安培定则,即通电线圈置于磁场可以产生安培力。洛伦兹力磁轴承的电磁力与电流成正比,磁阻力磁轴承的电磁力与控制电流的平方成正比,因此洛伦兹力磁轴承的控制精度更高,但是缺点是承载力且损耗大,而磁阻力磁轴承承载力大,但是精度略低。因此若将不同性质的磁轴承复用到车载飞轮电池的悬浮系统中,实现两类磁轴承的优势互补,不仅可以提高悬浮支承系统的承载力,又可提高其控制精度,显著提高飞轮的稳定性。

系统损耗及控制方面:目前普遍采用的车载飞轮电池系统控制策略使系统在同一时刻内,几乎所有磁轴承均参与控制,而洛伦兹力磁轴承虽然控制精度高,但是控制线圈导致的损耗较高,在面对简单车辆行驶工况及路况(汽车静止、汽车匀速运动、路面平整、或飞轮待机状态)时,若一味为了更高的控制精度,使洛伦兹力磁轴承始终处于工作状态中,则会产生过多的损耗,而过多的损耗还不能换来更高的控制精度,传统磁阻力磁轴承在简单的工况下足以保证飞轮的控制精度。反之,如若在面对复杂车辆行驶工况及路况下(即上坡、下坡、启动、加速、减速、刹车、转弯及路况变化等),若适时在某些自由度的控制上加入洛伦兹力磁轴承,则可以在不大幅度增加损耗的基础上,可以明显提高整个系统的控制精度,确保飞轮的高稳定性运行。

飞轮电池的传统电机普遍采用硅钢片叠压,且普遍飞轮电机也大多采用径向磁通电机,因而铁耗仍较多。而采用适当的新材料代替传统硅钢片或轴向磁通电机代替传统径向电机,则可以从本质上减小铁耗,尤其适用于车载飞轮电池系统中。

飞轮承重方式方面:目前普遍采用与飞轮重力相反方向的电磁吸力平衡重力,但是存在以下问题:例如当飞轮受到扰动向下偏移时,气隙增大,气隙磁通减小,电磁力减小,将加重飞轮的偏移,如果在整个飞轮电池系统中加入“斥力”的元素,从而利用永磁体的巧妙摆放实现飞轮的抗微小工况扰动,则可利用斥力使得磁轴承实现自平衡,减小了控制线圈导致的损耗。另外斥力的自平衡优势还可以有效削减飞轮发生故障时飞出去的冲击力,提高飞轮电池系统的安全性。

安全性方面:飞轮电池系统的安全罩通常有密封和安全防范的作用,而目前飞轮电池通常使用刚性板状及网状防护壳,往往抵抗高速复合材料飞轮或大质量金属飞轮,造成安全性不足,且该类外壳质量大,安全性不足且隔音效果不佳,限制了其应用推广。而泡沫金属是一种含有泡沫气孔的特种金属材料,由于其独特的结构特点,拥有密度小、隔热性能好、隔音性能好、耐冲击性强以及能够吸收电磁波等一系列良好优点。如若将其用到飞轮电池系统中,则可明显改善飞轮电池系统的安全性,实现飞轮电池的降音降噪的效果。

因此综上所述,为弥补现有车载飞轮电池系统的不足或填充空白,设计一种高安全稳定、低损耗的超薄式车载磁悬浮飞轮电池具有重要意义。

发明内容

本发明的目的是为了最大限度地解决上述现有的技术问题,设计一种集成度高,稳定性高、安全性强,损耗低,储能性能好的电动汽车用磁悬浮飞轮电池,并提供一种新型控制方法,从而实现对嵌套式盘状飞轮的安全稳定低能耗悬浮及旋转。

本发明一种超薄式车载磁悬浮飞轮电池采用的技术方案是:包括一个外壳,外壳内自上而下同轴设置电机支架、轴向磁通电机、飞轮、五自由度磁轴承的内定子、线圈和永磁体,所述的飞轮由连续的上、中、下三层组成,上层是圆环形的飞轮上环形层,飞轮上环形层的正中间是上环形凹槽,轴向磁通电机置放在上环形凹槽内;中层是飞轮中层,由上方的飞轮盘状层和下方的飞轮双环层组成,飞轮盘状层为实心圆盘状,飞轮双环层由中心轴同轴分布的环形飞轮转子极和飞轮环形外层组成,飞轮转子极是由飞轮盘状层的下表面正中间沿轴向下同轴心凸出的圆环状,飞轮转子极的正中间是环形内槽,飞轮环形外层的外圆周为球形包络面且内壁与飞轮转子极外壁之间形成中层圆环腔;下层是圆环状的飞轮下环形层,飞轮下环形层的正中间是下环形凹槽,环形内槽、中层圆环腔和下环形凹槽相通且共同置放五自由度磁轴承的内定子、线圈和永磁体。

进一步地,五自由度磁轴承从内至外分别是轴向磁轴承、斥力磁轴承、扭转磁轴承和径向球面磁轴承,各个磁轴承的定子部分组成五自由度磁轴承的内定子且固定连接在外壳的下端盖上。

更进一步地,所述的轴向磁轴承包括轴向磁轴承定子、轴向永磁体和轴向线圈,轴向永磁体的内部同轴套有轴向磁轴承定子,轴向永磁体沿径向充磁,其内侧为N极,外侧为S极,轴向磁轴承定子的上段是为轴向定子极,轴向定子极上绕制圆环形的轴向线圈,轴向定子极和轴向磁轴承定子装配后形成完整的圆柱形;轴向永磁体为环形,紧密套在所述的环形内槽内;所述的斥力磁轴承包括同轴心分布的一个斥力磁轴承定子和两个斥力永磁体,斥力磁轴承定子为环形且固定套在轴向磁轴承定子外,斥力磁轴承定子上表面上设有环形凹槽,装配下方的斥力永磁体,上方的斥力永磁体在下方的斥力永磁体的正上方且不接触。上方的斥力永磁体和下方的斥力永磁体均为轴向充磁且二者N极相对;上方的斥力永磁体的上端面与所述的飞轮转子极的下端面紧密贴合;所述的扭转磁轴承包括一个扭转磁轴承定子,三个扭转控制线圈和六个扭转永磁体,六个扭转永磁体均沿径向充磁,外侧的三个永磁体的充磁方向一致,均是内侧为N极,外侧为S极;内侧的三个永磁体的充磁方向一致,均是内侧为S极,外侧为N极,扭转磁轴承定子为圆环形,固定套在斥力磁轴承定子外部,扭转磁轴承定子上表面沿圆周方向均匀设有三个相同的扇形的扭转定子极,其上绕制扭转控制线圈,在每一个内侧的扭转永磁体和径向正对的每一个外侧的扭转永磁体之间设置一个扭转定子极;外侧的三个永磁体紧密贴合在所述的中层圆环腔的外侧壁上,内侧的三个扭转永磁体内环与所述的飞轮转子极的外环紧密贴合;所述的径向球面磁轴承包括一个径向磁轴承定子和径向控制线圈,环形的径向磁轴承定子固定套在磁轴承定子外,径向磁轴承定子的外侧壁沿圆周方向均匀地沿径向向外延伸有三个相同的径向定子极,径向定子极外侧壁为部分球面,径向控制线圈串联连接并分别一一对应绕制在径向定子极上。

进一步地,所述的轴向磁通电机由上下侧的电机转子,正中间的电机定子、上下侧的电机永磁体及上下侧的电机线圈组成,轴向磁通电机的轴向上的正中间是电机定子且整体关于电机定子中截面上下对称,电机定子通过所述的电机支架固定连接于壳体的上端盖正中间。

所述的一种超薄式车载磁悬浮飞轮电池的工作方法是具有以下步骤:

步骤A:在加减速工况时和转弯工况时,由控制器驱动三个径向控制线圈,实现飞轮电池的稳定;

步骤B:在上下坡工况时,由控制器驱动三个径向控制线圈和扭转控制线圈,实现飞轮电池的稳定;

步骤C:在颠簸路况时,由控制器驱动轴向线圈和扭转控制线圈,实现飞轮电池的稳定。

所述的一种超薄式车载磁悬浮飞轮电池的工作方法是:以飞轮为转子完成机械能与电能的相互转换,分为充电、能量保持、放电这三个阶段:充电阶段,轴向磁通电机工作,带动飞轮旋转,飞轮以动能形式储存电能,从电能到机械能的转换;能量保持阶段,飞轮维持恒定转速;放电阶段,飞轮输出能量,带动轴向磁通电机发电,从机械能转换到电能。

本发明与现有技术相比的有益效果在于:

1、本发明为尽可能降低轴向占用空间,提出超薄式飞轮电池拓扑结构,该结构属于超高集成度式“无轴”类飞轮电池系统,集成度高,更方便安装于汽车的任何位置,更有利于车载磁悬浮飞轮电池系统的推广应用。

2、中国专利申请号为201910072060.7提出的“电动汽车用虚拟轴式磁悬浮飞轮储能装置”的无轴盘式飞轮电池径高比为3.5,而本发明的径高比达5.2,相比之下,甚至是与径高比更低的传统长柱型飞轮相比,本发明有更高的集成度及临界转速,储能量更高。且由于无惯性主轴,因此实心结构的飞轮的形状系数较空心结构更高,从而具有更高的储能密度。

3、本发明飞轮外部为光滑纯球形包络面,从结构上有效削弱陀螺效应,并且提高转速,进一步提高储能量。此外,该飞轮为纯金属飞轮,成本较低,使得本发明有较高的性价比。

4、比起传统结构的车载飞轮电池,为进一步适应复杂的车载工况及路况,本发明中磁轴承支承采用不同性质磁轴承复用的模式,涉及轴向磁轴承、斥力磁轴承、扭转磁轴承、径向球面磁轴承几类磁轴承,充分发挥各自磁轴承的优势,实现在复杂工况下,飞轮性能与控制线圈导致的损耗之间的平衡。径向球面磁轴承定子极表面被做成球面状,从结构上有效抑制飞轮电池的陀螺效应,可以有效提高飞轮电池稳定性。轴向磁轴承和扭转磁轴承产生洛伦兹力,具有更高的控制精度,能够实现线性控制,提高系统的稳定性。并且,本发明利用同性磁极相斥原理平衡飞轮重力,将飞轮悬浮起来,这种设计不仅减少了控制线圈导致的损耗,而且可以有效削减飞轮发生故障时飞出去的冲击力,提高了飞轮电池的安全性。

5、区别于传统飞轮电池用电机采用的径向磁通电机和采用硅钢片叠压形式,本发明中的电机采用轴向磁通电机,并且其定子材料采用非晶合金材料,能够显著降低电机的铁耗、提高电机效率。由于飞轮电机通常工作在高速高频情况下,因此,整个飞轮电池的损耗大大降低,节能效果更好。

6、本发明外壳使用泡沫铝材料,具有很强的隔音降噪效果,且具有质量小,吸能性强,耐冲击性强等特点,能有效对飞轮电池实现安全保护作用。此外,高密封状态形成的真空环境能够大幅度减小将空气摩擦导致的损耗,能够进一步提升更飞轮的转速,进而提高储能量,提高了系统效率。

7、为进一步适应飞轮电池的车载应用,本发明提出多维多时空控制方法,针对不同的车辆行驶工况和路况,实行不同的控制策略,通过不同性质磁轴承的合理复用,依据车辆行驶工况及路况复杂与否,分时错峰应用,实现其优势互补,不仅可以提高悬浮磁轴承支承的承载力,提高其控制精度,显著提高飞轮的稳定性,又可有效弥补复杂工况导致控制线圈损耗较大的问题,实现飞轮性能与控制线圈导致的损耗之间的平衡。

附图说明

下面结合附图和

具体实施方式

进一步阐明本发明:

图1是本发明的整体结构剖视图;

图2是图1中的外壳结构图;

图3是图1中的飞轮1的结构放大图;

图4是图3中飞轮1的仰视轴测图;

图5是图1中轴向磁通电机7的整体结构放大图;

图6是图5中去掉电机转子71后的结构图;

图7是图1中电机支架6的结构放大图;

图8是图1中五自由度磁轴承整体结构放大图;

图9是飞轮1与图8中五自由度磁轴承旋转部分的装配图;

图10是飞轮1与五自由度磁轴承的定子装配图;

图11是图8中五自由度磁轴承的轴向磁轴承部分结构放大示意图;

图12是图8中五自由度磁轴承中的斥力磁轴承部分结构放大示意图;

图13是图8中五自由度磁轴承中的扭转磁轴承部分结构放大示意图;

图14是图8中五自由度磁轴承中的径向球面磁轴承结构放大示意图;

图15是飞轮1在五自由度磁轴承作用下实现静态被动悬浮的原理图;

图16是图8中五自由度磁轴承中的轴向磁轴承的控制原理图;

图17是图8中五自由度磁轴承中的扭转磁轴承产生洛伦兹力的控制原理图;

图18是图8中五自由度磁轴承中的扭转磁轴承产生轴向力的控制原理图;

图19是图8中五自由度磁轴承中的径向球面磁轴承的控制原理图;

图中:1.飞轮;6.电机支架;7.轴向磁通电机;8.真空外壳;11.飞轮上环形层;12.飞轮中层;13.飞轮下环形层;14.飞轮上环形凹槽;15.飞轮转子极环形内槽;16.中层圆环腔;17.飞轮下环形槽;21.斥力磁轴承定子;22.斥力永磁体;23斥力永磁体;31.轴向磁轴承定子;32.轴向永磁体;33.轴向线圈;41.扭转磁轴承定子;42、43、44.扭转控制线圈;45、46、47、48、49、410.扭转永磁体;51.径向磁轴承定子;52、53、54.径向控制线圈;71、72.电机转子;73.电机定子;74、75.电机永磁体;76、77.电机线圈;81.壳身;82.上端盖;83.下端盖;121.飞轮盘状层;122.飞轮双环层;211.斥力磁轴承定子环形凹槽;311.轴向定子极;411、412、413.扭转定子极;511、512、513.径向定子极;731、732.电机定子极;733.电机定子中层;831.轴承支撑架;811.壳身散热片;812.散热槽;821.上端盖散热片;1221.飞轮转子极;1222.飞轮环形外层。

具体实施方式

参见图1并结合图2所示,本发明最外部是一个外壳,外壳是由一个壳身81,一个上端盖82和一个下端盖83密封连接组成,其材料选用泡沫铝。壳身81的上端紧密固定连接上端盖82,壳身81的下端紧密固定连接下端盖83,由壳身81、上端盖82和下端盖83围成密封真空腔室以减少空气摩擦损耗。壳身81为中空的部分球壳,外圆周面上设有散热片811和散热槽812,散热片811为长柱型,沿直径方向向外凸出于壳身81外圆周面,散热槽812为方形凹槽,沿直径方向向外开槽,方形阵列布置的每四个散热片811组成一组。沿圆周方向上,两个散热槽812有间隔地对称设置于四个散热片811两侧。上端盖82为实心盘状,其上表面沿圆周方向均匀设置八个长柱形散热片821,长柱形散热片821的走向沿直径方向。下端盖83为实心圆盘状,其上表面的正中心处向外壳内部同轴凸出圆盘状的轴承支撑架831,可用于磁轴承支撑,固定连接磁轴承的内定子部分。

在外壳的真空腔室内,自上而下同轴分布电机支架6、轴向磁通电机7、飞轮1、五自由度磁轴承的内定子、线圈和永磁体,飞轮1作为五自由度磁轴承的外转子。

参见图3和图4所示的飞轮1结构,飞轮1从外形上看总体为球体的中段部分,整体为无轴结构,外部侧壁为光滑球形包络面。飞轮1由连续的上、中、下三层组成,上层是飞轮上环形层11,中层是飞轮中层12,下层是飞轮下环形层13。飞轮上环形层11为圆环形,飞轮上环形层11的正中间是上环形凹槽14,上环形凹槽14是为轴向磁通电机7的安装留的空间,轴向磁通电机7置放在上环形凹槽14内。中层是飞轮中层12,分为自上而下的飞轮盘状层121和飞轮双环层122两部分,其中,飞轮盘状层121为实心圆盘状,飞轮双环层122由沿中心轴同轴分布的环形飞轮转子极1221和飞轮环形外层1222组成,两者下端面平齐;飞轮转子极1221是飞轮盘状层121的下表面正中间沿轴向下同轴心凸出的圆环状,飞轮转子极1221的正中间是环形内槽15,环形内槽15用于容纳和安装轴向磁轴承的永磁体、线圈及定子极部分。飞轮环形外层1222为外圆环,外圆周为光滑球形包络面,飞轮环形外层1222内径小于飞轮上环形层11的内径但大于飞轮转子极1221的外径,因此,飞轮环形外层1222内壁与飞轮转子极1221外壁之间形成了中层圆环腔16,用于容纳和安装扭转磁轴承的永磁体、线圈、定子极部分。飞轮下环形层13为圆环状,其内径大于飞轮上环形层11的内径,其正中间是下环形凹槽17,正中间是下环形凹槽17用于容纳斥力磁轴承的永磁体和定子部分、径向磁轴承的线圈和定子部分、轴向磁轴承的定子底部及扭转磁轴承的定子底部。飞轮下环形层13的下表面低于飞轮环形外层1222的下表面,使飞轮下环形层13和飞轮环形外层1222呈台阶状,使中层圆环腔16和下环形凹槽17是完全相通的两个呈台阶状空间,环形内槽15、中层圆环腔16和下环形凹槽17相通,共同置放五自由度磁轴承的内定子、线圈和永磁体。环形内槽15、中层圆环腔16、下环形凹槽17和上方的上环形凹槽14之间不相通,由实心圆盘状的飞轮盘状层121分隔开。飞轮1除了上环形凹槽14、环形内槽15、中层圆环腔16和下环形凹槽17的空间之外,其余部分均是一个整体。

本发明为设计成超薄式车载飞轮电池,飞轮1的径高比为5.2,即飞轮中层12的最大直径与飞轮上环形层11上表面到飞轮下环形层13下表面之间的高度之比。

参见图1并结合图5、6所示的轴向磁通电机7,轴向磁通电机7设计为双转子单定子结构且同轴安装在飞轮1的上环形层11的上环形凹槽14内,其定子采用非晶合金材料。轴向磁通电机7由上下侧的电机转子71、72,正中间的电机定子73,上下侧的电机永磁体74、75及完全相同的上下侧的电机线圈76、77组成。轴向磁通电机7在轴向上的正中间是电机定子73,轴向磁通电机7的整体为关于电机定子73中截面的上下对称结构。

在轴向上,轴向磁通电机7自上而下分别是同轴分布的上侧的电机转子71、上侧的电机永磁体74、上侧的电机线圈76、电机定子73、下侧的电机线圈77、下侧的电机永磁体75及下侧的电机转子72。其中上下侧的电机转子71、72完全相同,为环形,两者关于电机定子73中截面的上下对称。电机定子73为连续的三层式结构,上层为沿圆周方向等间隔布置的十二个电机定子极731,用于绕制十二个上侧的电机线圈76。电机定子中层733为圆环状,下层为沿圆周方向等间隔布置的十二个电机定子极732,用于绕制十二个下侧的电机线圈77,上层的电机定子极731与下层的电机定子极732完全相同,均为扇形,两者在轴向上关于电机定子73(即电机定子中层733)中截面的上下对称。上、下侧的电机永磁体74、75完全相同,为扇形,且两者关于电机定子73(即电机定子中层733)中截面的上下对称。上侧的电机线圈76和下侧的电机线圈77结构完全相同。

上侧的电机转子71、下侧的电机转子72的外径大于电机定子中层733的外径。电机定子中层733的外径大于上、下侧的电机永磁体74、75的外径,上、下侧的电机永磁体74、75的外径大于电机定子极731的外径。内径从大至小分别为上、下侧的电机永磁体74、75、电机定子极731、上、下侧的电机转子71、72、电机定子中层733。

此外,八个扇形的上、下侧的电机永磁体74、75分别均沿圆周方向均匀布置,分别与上、下侧的电机转子71、72紧密贴合,其中,八个上侧的电机永磁体74与上侧的电机转子71的下底面紧密贴合固定在一起,八个下侧的电机永磁体75与下侧的电机转子72的上底面紧密贴合固定在一起,上、下侧的电机永磁体74、75两者在轴向上关于电机定子73中截面的上下对称。上、下侧的电机永磁体74、75和上、下侧的电机线圈76、77之间互相不接触。电机定子73与上、下侧的电机永磁体74、75在轴向上分别留有0.5mm的间隙。

上、下侧的电机转子71、72的外径等于飞轮1的上环形层11的内径,即等于上环形凹槽14的直径。与上环形凹槽14紧密贴合固定连接。上侧的电机转子71的上表面与上环形凹槽14的上表面平齐,下侧的电机转子72与上环形凹槽14的槽底面紧密贴合固定。

参见图1并结合图7,电机定子73同轴心套在电机支架6外,并且与电机支架6固定连接,电机支架6同时,固定连接于上端盖82的正中间。电机支架6是台阶轴结构,上段是外径较大的上层圆盘61,下段是外径较小的下层圆盘62。电机定子中层733内径与下层圆盘62外径相等,电机定子中层733同轴心地固定套在下层圆盘62外,通过电机定子中层733内环与电机支架6的下层圆盘62外环固定相连接,将电机定子73和电机支架6固定。上层圆盘61与上端盖82底部正中间固定连接,实现轴向磁通电机7的紧密固定,电机支架6与上、下侧的电机转子71、72,电机永磁体74、75,电机线圈76、77之间互相不接触。

参见图8并结合图1所示,五自由度磁轴承位于飞轮1和下端盖82之间,且共用一套偏置磁路。为叙述方便,按磁轴承功能将其分为同轴分布的四个部分,从内至外分别是轴向磁轴承、斥力磁轴承、扭转磁轴承、径向球面磁轴承,分别用于轴向单自由度高精度控制、飞轮的重力平衡、扭转二自由度高精度控制和径向二自由度控制。这四部分包括静止部分和旋转部分,静止部分包括斥力磁轴承定子21、斥力永磁体23、轴向磁轴承定子31、轴向线圈33、扭转磁轴承定子41、扭转控制线圈42、43、44、径向磁轴承定子51、径向控制线圈52、53、54等,静止部分通过装配与下端盖83连接;旋转部分包括斥力永磁体22、轴向永磁体32、扭转永磁体45、46、47、48、49、410等,均内嵌于飞轮1下部。此外,五自由度磁轴承的静止部分和旋转部分互相不接触。轴向磁轴承、斥力磁轴承、扭转磁轴承、径向球面磁轴承的定子部分固定连接在一起,共同组成五自由度磁轴承的内定子,内定子固定连接在下端盖83的轴承支撑架831上。

下面进一步说明五自由度磁轴承的各部分结构和装配情况,参见图9所示,为飞轮1与五自由度磁轴承旋转部分的装配情况。轴向永磁体32为环形,紧密套在飞轮转子极1221正中间的环形内槽15内,轴向永磁体32外径等于环形内槽15的直径,外环与环形内槽15紧密贴合固定,且轴向永磁体32的上下端面分别与飞轮转子极1221的上下端面平齐。斥力永磁体22为环形,其内外径分别等于飞轮转子极1221的内外径,上端面与飞轮转子极1221的下端面紧密贴合固定。三个扭转永磁体45、46、47完全相同,均为部分环形,设置于中层圆环腔16内,其外径等于中层圆环腔16的内径,三个外侧的扭转永磁体45、46、47沿圆周方向均匀布置,且紧密贴合在中层圆环腔16的外侧壁上,即三个外侧的扭转永磁体45、46、47的外环与飞轮环形外层1222的内环紧密贴合固定,且高度与中层圆环腔16的高度相等,上下表面面分别平齐。三个外侧的扭转永磁体45、46、47的内侧设有三个完全相同的扭转永磁体48、49、410,且外侧的扭转永磁体45、46、47在径向上与内侧的扭转永磁体48、49、410一一正对,构成径向上的三对永磁体,各扭转永磁体45、46、47、48、49、410互相不接触。三个内侧的扭转永磁体48、49、410均为部分环形,设置于中层圆环腔16内,其内径等于飞轮转子极1221的外径,即中层圆环腔16的内径,三个内侧的扭转永磁体48、49、410沿圆周方向均匀分布,其内环与飞轮转子极1221的外环紧密贴合固定,且与其上下端面分别平齐。

为了进一步叙述五自由度磁轴承的装配要求,将各磁轴承分别加以描述:

参见图8并结合图11所示,轴向磁轴承由一个轴向磁轴承定子31、一个轴向永磁体32、一个轴向线圈33。轴向永磁体32的内部同轴套有轴向磁轴承定子31,轴向永磁体32沿径向充磁,其内侧为N极,外侧为S极。轴向磁轴承定子31为实心的台阶轴结构,台阶轴的上段是外径较小的轴,上段台阶轴为轴向定子极311,用于绕制圆环形的轴向线圈33,轴向线圈33的外径等于轴向磁轴承定子31下段台阶轴,即轴向定子极311和轴向磁轴承定子31装配后形成一个完整的圆柱形。轴向线圈33与轴向定子极311的上端面平齐,轴向永磁体32、轴向线圈33与轴向定子极311的下端面均平齐。轴向永磁体32与轴向磁轴承定子31、轴向线圈33互相不接触。

参见图8并结合图12所示,斥力磁轴承包括一个斥力磁轴承定子21和两个斥力永磁体22、23,三者同轴心分布。斥力磁轴承定子21为环形,其内环内径等于轴向磁轴承定子31的外径,固定套在轴向磁轴承定子31外,两者固定连接在一起。斥力磁轴承定子21上表面上设有一个环形凹槽211,用于配合装配斥力永磁体23,斥力永磁体23置放在环形凹槽211,两者的大小尺寸相同。斥力永磁体23与斥力永磁体22的完全相同,其内外径分别等于环形凹槽211的内外径,斥力永磁体23的上下端面分别与环形凹槽211的上下端面平齐,因此正好内嵌于环形凹槽211内。斥力永磁体22在斥力永磁体23的正上方,与斥力磁轴承定子21、斥力永磁体23之间互相不接触。斥力永磁体22、23均为轴向充磁,充磁方向相反,且二者N极相对,即上方的斥力永磁体22的N极向下,下方的斥力永磁体23的N极向上。斥力磁轴承定子21位于轴承支撑架831的正上方,与轴承支撑架831固定连接在一起。

参见图8并结合图13所示,扭转磁轴承包括一个扭转磁轴承定子41,三个扭转控制线圈42、43、44和六个扭转永磁体45、46、47、48、49、410。六个扭转永磁体45、46、47、48、49、410均沿径向充磁,其中,外侧的三个永磁体45、46、47的充磁方向一致,均是内侧为N极,外侧为S极;内侧的三个永磁体48、49、410的充磁方向一致,均是内侧为S极,外侧为N极。其中,扭转磁轴承定子41为圆环形,其内径等于斥力磁轴承定子21的外径,固定套在斥力磁轴承定子21外部,与斥力磁轴承定子21固定连接在一起。在扭转磁轴承定子41上表面沿圆周方向均匀设有三个完全相同的扇形的扭转定子极411、412、413,分别用于绕制扭转控制线圈42、43、44。扭转定子极411、412、413上端面与轴向定子极311上端面平齐,且分别设置于对应的扭转永磁体45、48,46、49,47、410之间,也就是在每一个内侧的扭转永磁体48、49、410和径向正对的每一个外侧的扭转永磁体45、46、47之间设置一个扭转定子极411、412、413。此外,六个扭转永磁体45、46、47、48、49、410与扭转磁轴承定子41、扭转控制线圈42、43、44之间互相不接触,扭转磁轴承定子41位于外侧的三个永磁体45、46、47和内侧的三个永磁体48、49、410之间的正下方。

参见图8并结合图14所示,径向球面磁轴承包括一个径向磁轴承定子51和径向控制线圈52、53、54。其中,径向磁轴承定子51为环形,其内径等于扭转磁轴承定子41的外径,并且固定套在磁轴承定子41外。径向磁轴承定子51上端面与斥力磁轴承定子21上端面平齐。径向磁轴承定子51的外侧壁沿圆周方向均匀设有三个完全相同的径向定子极511、512、513,径向定子极511、512、513可由径向磁轴承定子51沿径向向外延伸而成,径向定子极511、512、513外侧壁为部分球面。径向定子极511、512、513的上下端面分别与径向磁轴承定子51轭部的上下端面平齐。径向控制线圈52、53、54串联连接,并分别一一对应绕制在径向定子极511、512、513上。由于轴承支撑架831向外壳内部向上凸出,因此,为径向线圈52、53、54留有绕制空间,使径向线圈52、53、54与下端盖83不接触。

本发明的飞轮电池工作时,以高速旋转的飞轮1为转子完成机械能与电能的相互转换,共分为充电、能量保持、放电这三个阶段,具体如下:

(1)充电阶段,轴向磁通电机7处于电动机的工作状态。轴向磁通电机7带动飞轮1加速旋转,飞轮1以动能形式储存电能,完成从电能到机械能的转换过程,实现电能的输入和储能。

(2)能量保持阶段,即飞轮电池在充足状态。飞轮1几乎维持在一个恒定的转速。这个阶段一直持续到飞轮电池接收到一个能量释放的控制信号为止,此过程中不进行能量转换,既不充电也不放电。

(3)放电阶段,轴向磁通电机7处于发电机状态。高速旋转的飞轮1输出能量。拖动轴向磁通电机7发电,经过电力电子变换器输出合适的电能,完成从机械能到电能的转换过程。当整个装置运行时,无论飞轮1的工作状态如何,本发明都具有良好的稳定性能。

本发明将不同性质的电磁力磁轴承和洛伦兹力磁轴承复用到车载飞轮电池中,通过不同性质的磁轴承的合理复用,充分发挥各自磁轴承的优势,能够实现飞轮1的静态被动悬浮、径向二自由度控制、扭转二自由度高精度控制及轴向单自由度高精度控制,以满足车载飞轮电池对于稳定性、低损耗及控制精度的要求。具体实现方式如下:

静态被动悬浮的实现:如图15所示,飞轮1的中心轴方向为Z轴,飞轮1的径向为X、Y轴方向。轴向永磁体32产生的偏置磁通从其N极出发,经过轴向线圈33、轴向磁轴承定子31,最终到达内嵌在斥力磁轴承定子21上的斥力永磁体23的S极;扭转永磁体对45、48,46、49,47、410产生的偏置磁通分别从其N极出发,穿过对应的扭转线圈42、43、44,在扭转磁轴承定子41中汇合,并均分两路,一路到达斥力永磁体23的S极,另一路经过径向磁轴承定子51,均分三路,经过径向定子极511、512、513,分别通过径向球形气隙,到达飞轮1,再分多路,分别到达斥力永磁体22、轴向永磁体32、扭转永磁体45、46、47、48、49、410的S极,形成完整的偏置磁路。

斥力磁轴承的斥力永磁体22、23均为轴向充磁,且极性相反,当飞轮1处于中心平衡位置时,其产生的电磁斥力正好抵消飞轮1的重力;传统的飞轮电池利用与飞轮重力相反方向的电磁吸力平衡重力,存在以下问题:当飞轮受到扰动向上偏移时,气隙减小,气隙磁通增大,电磁力增大,将加重飞轮的偏移。本发明使用磁斥力平衡重力,由于斥力磁轴承的自平衡机制,将减小扰动带来的影响,可大幅减小控制线圈导致的损耗,并且,飞轮1与径向定子极511、512、513间的气隙磁通完全相等,从而保持飞轮1的受力平衡,使得飞轮1处于径向平衡位置,实现飞轮1旋转时的静态被动悬浮。此外,径向磁轴承为球面的向心力式磁轴承,三个径向球形定子极511、512、513与飞轮1内壁之间均留有0.5mm的径向球形气隙,从结构上有效抑制飞轮电池的陀螺效应,可以有效提高飞轮电池稳定性。

根据洛伦兹力公式F=BIL,其中B为磁感应强度,I为控制电流的强度,L为控制线圈在磁场中的长度,可对洛伦兹力磁轴承的控制线圈施加控制电流,在外加磁场的作用下,飞轮受到与偏移方向相反的洛伦兹力,从而调整飞轮1的位置,使之始终处于平衡位置。

轴向单自由度悬浮的实现:如图16所示,假设某一时刻飞轮1向Z轴正方向偏移,轴向永磁体32产生的外加磁场已在上述提及,对轴向控制线圈33施加控制电流,在外加磁场的作用下,产生洛伦兹力F,使飞轮1受到沿Z轴负方向的力Fz,飞轮1恢复至轴向平衡位置。

扭转二自由度悬浮的实现:如图17和图18所示,为叙述方便,分别将各扭转磁极命名为A1、B1、C1,其中,磁极A1沿X轴左右对称。假设某一时刻飞轮1沿如图17所示的θy方向发生扭转,扭转永磁体45、46、47、48、49、410产生的外加磁场已在上述提及,对扭转控制线圈42、43、44施加如图所示的控制电流,在外加磁场的作用下,产生洛伦兹力F1、F2、F3,因此飞轮1在磁极B1和磁极C1处方向上分别受到沿Z轴正方向的FB、FC,在磁极A1方向上受到沿Z轴负方向的FA,从而产生与偏转方向相反的扭转力矩,飞轮1回到平衡位置。

根据电磁力公式其中,Φ为气隙合成磁通,S为径向磁轴承的球面径向定子极511、512、513的截面面积,μ0为空气磁导率,可对径向磁轴承的径向控制线圈52、53、54施加控制电流,所产生的控制磁通和永磁体产生的偏置磁通在径向球形气隙中叠加,使得飞轮1与径向定子极511、512、513间的气隙合成磁通增加或减小,飞轮1所受的电磁力一侧增加、另一侧减小,从而调整飞轮的位置,使之始终处于平衡位置。

径向二自由度悬浮的实现:如图19所示,为叙述方便,分别将各径向磁极命名为A2、B2、C2,其中,磁极B2沿Y轴左右对称。假设某一时刻飞轮1沿Y轴负方向偏移,对径向控制线圈52、53、54施加控制电流,产生如图19所示的控制磁通,与永磁体产生的偏置磁通在飞轮1与径向定子极511、512、513间的各径向球形气隙中矢量叠加(虚线大箭头表示控制磁通,虚线小箭头表示偏置磁通,相同方向表示磁通叠加,相反方向表示磁通抵消),使得在磁极A2和磁极C2处的气隙合成磁通减小,在磁极B2处的气隙合成磁通增加,使飞轮1受到沿Y轴正方向的合成磁拉力F,从而调整飞轮1的位置,使之恢复到径向平衡位置。

在超薄式飞轮电池工作过程中,为了实现飞轮的稳定悬浮,应对飞轮1的五自由度进行精准控制,有必要对飞轮1的偏心位移进行实时监控。通过电位移传感器非接触采集飞轮1的位移信息,进而通过外部控制电路的调控实现对飞轮的闭环控制。

为进一步适应复杂的车载工况及路况,本发明采用多维多时空控制思想,即针对不同的车辆行驶工况和路况(多维),包括汽车静止、汽车匀速运动、路面平整、飞轮待机状态、车辆行驶工况及路况变化等,实行不同的控制策略,依据车辆行驶工况及路况复杂与否,对不同性质的磁轴承分时错峰应用(多时空),实现其优势互补。

为了进一步叙述本发明的工作方式,将超薄式飞轮电池的多维多时空控制方法加以分析如下:

为本发明设置识别模块,并将其集成于控制器中。根据车载飞轮电池在适用工况或路况下,五自由度的偏差情况为△X、△Y、△Z、△θx、△θY,即分别为飞轮沿X轴方向的位移偏差△X、飞轮沿Y轴方向的位移偏差△Y、飞轮沿Z轴方向的位移偏差△Z、飞轮沿X轴的旋转偏差△θx、飞轮沿Y轴的旋转偏差△θY。以某一工况或路况下飞轮电池发生较大偏差自由度的偏差范围做为设定的阈值定义该工况或路况,具体阈值根据所适用工况或路况而定,并以此设置一个多维工况及路况数据库。具体控制情况为:当△X超过其相应的阈值,且其余自由度偏差均小于相应的阈值时,定义其为加减速工况,将使控制器对应驱动径向控制线圈52、53、54。当△X、△Y超过设定的相应阈值,且其余自由度偏差均小于设定的相应阈值时,定义其为转弯工况,将使控制器对应驱动径向控制线圈52、53、54。当△X、△θx、△θY分别都超过各自相应的阈值,且其余自由度偏差小于设定的相应阈值时,定义其为上下坡工况,将使控制器对应驱动径向控制线圈52、53、54和扭转控制线圈42、43、44。当△Z、△θx、△θY分别都超过各自相应的阈值,且其余自由度偏差均小于设定的相应阈值时,定义其为颠簸路况,将使控制器对应驱动轴向线圈33和扭转控制线圈42、43、44。

在超薄式飞轮电池的工作过程中,通过传感器不断检测飞轮1的实时位置数据,与平衡位置飞轮1的位置数据做比较,计算出飞轮1偏离球心的偏离值和方位,导入识别模块,识别出飞轮电池的车辆行驶工况及路况,进而选择分时错峰的控制形式,通过控制器驱动磁轴承线圈工作,实现对飞轮1的闭环控制。例如,当识别出飞轮电池为加减速工况时,由于本发明飞轮电池的高稳定性,可仅对径向控制线圈52、53、54进行控制,即可实现飞轮电池的稳定,具体控制方式参见上述径向二自由度悬浮并结合图19所示;当识别出飞轮电池为颠簸路况时,由于本发明飞轮电池的高稳定性,若路面等级较低,如A级路面,可仅对轴向线圈33进行控制,具体控制方式参见上述轴向单自由度悬浮并结合图16所示。若路面等级较高,则可继续在对轴向线圈33进行控制的基础上,对扭转控制承线圈42、43、44进行控制,即可实现飞轮电池的稳定,具体控制方式参见上述扭转二自由度悬浮并结合图17所示。同理,当识别出飞轮电池为其他工况或路况,或者是复杂工况与路况的叠加形式时,可根据多维工况及路况数据库的设置情况,在保证系统稳定性的同时,尽可能少的驱动磁轴承线圈工作,有效减小因控制线圈导致的损耗,以达到本发明低损耗的控制目的。

根据以上所述,便可以实现本发明。对本领域的技术人员在不背离本发明的精神和保护范围的情况下做出的其它的变化和修改,仍包括在本发明保护范围之内。

22页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:用于输送纸片及杯桶的伺服电机推片

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!