一种与火星光谱匹配的三结砷化镓太阳电池

文档序号:243926 发布日期:2021-11-12 浏览:21次 >En<

阅读说明:本技术 一种与火星光谱匹配的三结砷化镓太阳电池 (Triple-junction gallium arsenide solar cell matched with Mars spectrum ) 是由 陈燕 石海平 杨洪东 王文强 刘治钢 张晓峰 汪静 穆浩 于 2021-06-25 设计创作,主要内容包括:本发明公开了一种与火星光谱匹配的三结砷化镓太阳电池,该太阳电池包括依次串联的GaInP顶电池、GaInAs中电池以及Ge底电池;所述GaInP顶电池的工作波长为300nm~670nm;所述GaInAs中电池的工作波长为500nm~900nm;所述Ge底电池的工作波长为900nm~1800nm;所述GaInP顶电池的带隙为1.85eV;所述GaInAs中电池的带隙为1.37eV;Ge底电池为0.67eV。上述太阳电池针对火星表面光谱,通过降低顶电池带隙、增加布拉格反射器和多层减反射膜三项技术优化,使电池结构与火星光谱相匹配其达到平衡,进而实现顶、中电池对300-950nm波段光能的均等利用,提升太阳电池在火星光谱下的能量输出效率。(The invention discloses a triple-junction gallium arsenide solar cell matched with a Mars spectrum, which comprises a GaInP top cell, a GaInAs middle cell and a Ge bottom cell which are sequentially connected in series; the working wavelength of the GaInP top battery is 300 nm-670 nm; the working wavelength of the battery in the GaInAs is 500 nm-900 nm; the working wavelength of the Ge-bottom battery is 900 nm-1800 nm; the band gap of the GaInP top cell is 1.85 eV; the band gap of the GaInAs medium cell is 1.37 eV; the Ge bottom cell was 0.67 eV. Aiming at the Mars surface spectrum, the solar cell is optimized by three technologies of reducing the band gap of the top cell, increasing the Bragg reflector and the multilayer antireflection film, so that the cell structure is matched with the Mars spectrum to achieve balance, further the top cell and the middle cell can equally utilize the light energy of the 300-doped 950nm waveband, and the energy output efficiency of the solar cell under the Mars spectrum is improved.)

一种与火星光谱匹配的三结砷化镓太阳电池

技术领域

本发明涉及电池技术领域,具体涉及一种与火星光谱匹配的三结砷化镓太阳电池。

背景技术

太阳电池阵利用光电转换原理,将太阳能转化为电能,在光照期为卫星供电,并对蓄电池组进行充电。目前太阳电池阵主要采用三结砷化镓太阳电池,但现有电池设计均是基于地球外层空间AM0(大气圈外太阳)光谱条件,确保电池在全寿命周期内整体上有着最佳的性能表现。但是火星表面的太阳光谱,由于在穿越火星大气的过程中,受到灰尘等微粒较高的散射作用,相对于地球轨道的AM0光谱,如图1所示,削弱了蓝光段,增强了红光和红外光段,导致顶电池电流更低、中电池电流更高,火星上的光谱与空间AM0光谱相匹配的常规三结砷化镓太阳电池结构不匹配,需要重新设计优化。

美国“MER”巡视器采用Spectrolab公司的ITJ三结砷化镓太阳电池,ITJ太阳电池在火星表面30°条件下的光电效率相比地球轨道的AM0条件降低了11.94%。而“凤凰号”着陆器采用的Spectrolab公司的UTJ太阳电池在火星表面60°条件下的光电效率相比地球轨道的AM0条件降低了16.25%。

发明内容

有鉴于此,本发明提供了一种与火星光谱匹配的三结砷化镓太阳电池,针对火星表面光谱,通过降低顶电池带隙、增加布拉格反射器和多层减反射膜三项技术优化,使电池结构与火星光谱相匹配,进而实现顶、中电池对300-950nm波段光能的均等利用,提升太阳电池在火星光谱下的能量输出效率。

本发明采用以下具体技术方案:

一种与火星光谱匹配的三结砷化镓太阳电池,该太阳电池包括依次串联的GaInP顶电池、GaInAs中电池以及Ge底电池;

所述GaInP顶电池的工作波长为300nm~670nm;

所述GaInAs中电池的工作波长为500nm~900nm;

所述Ge底电池的工作波长为900nm~1800nm;

所述顶电池的带隙为1.85eV;

所述中电池的带隙为1.37eV;

所述底电池的带隙为0.67eV;

更进一步地,所述GaInP顶电池的材料为Ga0.45In0.55P,所述GaInAs中电池的材料为Ga0.92In0.08As。

更进一步地,在所述GaInAs中电池与所述Ge底电池之间设置有布拉格反射器,所述布拉格反射器用于将透射的太阳光谱再次反射回所述GaInAs中电池进行二次吸收。

更进一步地,还包括位于所述电池表面的多层减反射膜;

所述多层减反射膜以TiOx/Al2O3双层减反射膜系为基础,采用多层介质膜的导纳矩阵法,综合考虑镀膜后的玻璃盖片在内,以最终三结砷化镓太阳电池短路电流密度最大为优化目标进行优化设计。本次设计最终确定的TiOx/Al2O3膜层厚度为580nm/720nm,但依据具体设备情况,在其值附近左右的变化均在本发明保护之内。

有益效果:

1、本发明的三结砷化镓太阳电池中,调节GaInP顶电池中Ga、In的掺杂比例改变材料带隙,从而改变材料的吸收光谱范围。GaInP顶电池的带隙从1.90eV降低到1.85eV,使顶电池的光谱吸收限从653nm扩展到670nm,增加GaInP顶电池的光谱吸收波段,从而提高了顶电池的电流输出,使得顶电池与中电池之间的电流更匹配,提高电池的整体电流输出;

2、本发明的三结砷化镓太阳电池通过在GaInAs中电池与Ge底电池之间增设多对AlGaAs/GaAs布拉格反射结构,将透射的对应中电池吸收的800nm~900nm光谱段再次反射回中电池进行二次吸收,提高光能利用率和中电池电流,弥补为顶电池让出的部分光能损失,并提高电池抗辐照能力;

3、本发明的三结砷化镓太阳电池还包括位于电池表面的TiOx/Al2O3多层减反射膜。针对火星表面光谱,采用多层介质膜的导纳矩阵法,以短路电流密度最大为优化目标,设计了两层TiOx/Al2O3减反射膜,膜系厚度为580nm/720nm,将300nm~1000nm光谱段的平均反射率从现有8%降低到不超过5%,提高了电池对太阳光的利用率。

4、本发明的三结砷化镓太阳电池能够解决在火星表面输出功率不足的问题,针对火星表面光谱,对三结砷化镓太阳电池结构及表面减反膜进行优化设计,能够实现顶、中电池的电流匹配,在AM0光谱环境下经过改进后的顶电池与中电池的电流比由原来的0.98提高到1.05,在Mars30(火星表面30°)太阳光谱环境下经过改进后的顶电池与中电池的电流比由原来的0.91提高到0.986,电池电流较常规电池的提升15%以上。

附图说明

图1为AM0及为火星光谱曲线;

图2本发明的三结砷化镓太阳电池的结构示意图;

图3为三结砷化镓太阳电池的技术路线对比图;

图4为改进前后太阳电池量子效率对比图。

其中,1-顶电池,2-中电池,3-底电池,4-正面电极,5-背面电极,6-衬底,7-布拉格反射器,8-多层减反射膜

具体实施方式

下面结合附图并举实施例,对本发明进行详细描述。

参考图2和图3,本发明提供了一种与火星光谱匹配的三结砷化镓太阳电池,该三结砷化镓太阳电池包括依次串联的GaInP顶电池1、GaInAs中电池2以及Ge底电池3;如图2结构所示,在GaInP顶电池1的顶部设置有正面电极4,在Ge底电池3的底部设置有衬底6和背面电极5;其中:

GaInP顶电池1吸收300nm~670nm波段的太阳光;GaInAs中电池2吸收500nm~900nm波段的太阳光;Ge底电池3的吸收900nm~1800nm波段的太阳光;

GaInP顶电池1的带隙为1.85eV;GaInAs中电池2的带隙为1.37eV;Ge电池带隙为0.67eV。

由于上述三结砷化镓太阳电池由GaInP顶电池1、GaInAs中电池2以及Ge底电池3三个子电池串联而成,Ge底电池3的电流密度比GaInP顶电池1和GaInAs中电池2大;在性能上,表现为各子电池有选择性吸收和响应不同的太阳光谱段,整体电池则因各子电池串联存在结间“电流限制”效应,整体电池电流输出受限于内部的子电池光生电流最小者。

三结砷化镓太阳电池的短路电流密度计算公式为:

针对火星表面太阳光谱200nm~700nm范围内光谱较弱的特点,为了提升顶电池1电流输出,则需增加GaInP顶电池1的光谱吸收波段。而材料的吸收波长λ的计算公式为:

λ=1.24/Eg;

其中,Eg为材料带隙。

针对火星表面光谱,上述三结砷化镓太阳电池通过设置GaInP顶电池1和GaInAs中电池2的工作波长以及材料带隙,将顶电池1的工作波长设置为300nm~670nm、带隙设置为1.85eV,使顶电池1的带隙从常规的1.90eV降低到1.85eV,使顶电池1的光谱吸收限从653nm扩展到670nm,实现顶电池1和中电池2对300nm~950nm波段光能的均等利用,由于增加了GaInP顶电池1的光谱吸收波段,从而提高了顶电池1的电流输出,使两结的电流密度较为接近,进而降低顶电池1与中电池2之间的电流失配度,使电池获得在火星光谱下的最大化功率输出;使顶电池1与中电池2的电流比由原来的0.98(AM0)、0.91(Mars30)提高到1.05(AM0)、0.986(Mars30),电池输出电流较常规电池提升15%以上。

一种具体的实施方式中,GaInP顶电池1的材料为Ga(1-y)InyP,GaInAs中电池2的材料为Ga(1-x)InxAs,其中:

0.01<x<0.50,x可以为0.01和0.50之间的任意值;

0.50<y<0.99,y可以为0.50和0.99之间的任意值;

并且当y=0.55时,GaInP顶电池1的材料为Ga0.45In0.55P。

上述三结砷化镓太阳电池通过调节顶电池1和中电池2中Ga、In的掺杂比例改变材料带隙,从而改变材料的吸收光谱范围;并且顶电池1材料由Ga0.51In0.49P调整为Ga0.45In0.55P,并减少外延材料Al元素的掺入,将顶电池1带隙从1.90eV降低到1.85eV,使顶电池1光谱吸收限从653nm扩展到约670nm,提高了顶电池1电流。

具体地,上述三结砷化镓太阳电池还包括位于GaInP顶电池1顶部的多层减反射膜8;多层减反射膜8以TiOx/Al2O3双层减反射膜系为基础,采用多层介质膜的导纳矩阵法,综合考虑镀膜后的玻璃盖片在内,以最终三结砷化镓太阳电池短路电流密度最大为优化目标进行优化设计。已知m层减反射膜系的各层材料的折射率为nk、厚度为dk,入射介质和电池基底材料的折射率分别为n0,nm+1,其中,k=1、2、3……m,则m层的干涉矩阵为:

其中,Mk为第k层的干涉矩阵:

式中,为第k层的光程;

nk为第k层的折射率;

i为虚数单位;

dk为第k层的厚度;

λ为入射波长;

则:

则等效光学导纳Y=C/B,对整个波长范围内的膜系反射率:

从火星的光透过率可知,在200nm~700nm范围内透过率呈明显降低,特别在350nm~500nm之间,限制了GaInP顶电池1的电流输出。

故针对火星光谱,以顶、中电池2内的量子效率、入射光光谱、子电池材料折射率、厚度等为基础设计优化减反射膜,采用多层介质膜的导纳矩阵法,利用TFC(光学薄膜设计)软件进行了多层减反射膜8仿真分析,优化TiO2/Al2O3膜层的厚度,由常规的500nm/700nm调整为580nm/720nm,将300nm-1000nm光谱段的平均反射率从现有约8%降到5%以下,尤其是降低顶电池1波段的反射率,提高了火星光谱的利用率,从而达到顶中电池2电流匹配。

上述三结砷化镓太阳电池可应用于火星探测器,能够解决在火星表面输出功率不足的问题,在AM0环境下经过改进后的顶电池1与中电池2的电流比JscTC/JscMC由原来的0.98提高到1.05,在Mars30(火星表面30°)太阳光谱环境下经过改进后的顶电池1与中电池2的电流比JscTC/JscMC由原来的0.91提高到0.986,并且电池短路电流较常规AM0太阳电池的提升15%以上。现有的三结砷化镓太阳电池与本发明的三结砷化镓太阳电池在各光谱条件下的电流密度测试结果见下表1。

表1

更进一步地,火星太阳电池由于结构的更改,导致电池抗空间粒子辐照能力发生改变。由于GaInAs材料的抗辐照性能比GaInP材料差,现有AM0光谱电池的GaInAs中电池电流设计时都低于GaInP顶电池,从而保证寿命末期电池的最大输出。而火星光谱由于在200nm~700nm范围内透过率呈明显降低,电池设计时降低了GaInP顶电池带隙,提升了其电流输出,导致寿命末期电池电流不匹配。

针对火星电池辐照末期电流不匹配问题,在GaInAs中电池2与Ge底电池3之间设置有布拉格反射器7,布拉格反射器结构为AlGaAs/GaAs,设计对数为8对~16对,布拉格反射器7用于将透射的光谱段再次反射回GaInAs中电池2进行二次吸收。

通过在GaInAs中电池2与Ge底电池3之间增设布拉格反射器7,能够将透射的对应中电池2吸收的800nm~900nm光谱段再次反射回中电池2进行二次吸收,提高光能利用率和中电池2电流,弥补为顶电池1让出的部分光能损失,并提高电池抗辐照能力。图4示出了电池结构改进前后量子效率测试结果对比图。

综上所述,以上仅为本发明的较佳实施例而已,并非用于限定本发明的保护范围。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

9页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种透明导电结构的紫外波段可调光电探测器及其制备方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!

技术分类