Refining method of hexamethylene diisocyanate photochemical liquid

文档序号:251498 发布日期:2021-11-16 浏览:23次 中文

阅读说明:本技术 一种六亚甲基二异氰酸酯光化液的精制方法 (Refining method of hexamethylene diisocyanate photochemical liquid ) 是由 雍晨阳 石苏洋 林洋 侯嘉 赵芙蓉 李梅 于 2021-09-16 设计创作,主要内容包括:本发明公开了一种六亚甲基二异氰酸酯光化液的精制方法,通过将光气化得到的六亚甲基二异氰酸酯光化液通过本方法进行处理,能够在相当程度上防止热敏性物质HDI在后处理过程中发生聚合,从而有效提高HDI单体的精制收率,提高产品质量。该方法包括以下步骤:通过1,6-己二胺(HDA)与光气在设备中混合反应,得到的光化液包括HDI、氯化氢、光气、溶剂与可能有微量的聚合产物,将上述光化液通过赶光塔、脱溶塔进行连续化处理,得到含少量溶剂及微量重组分的粗HDI。通过多级分子蒸馏器进行后续精制,最终得到高含量HDI单体产品。(The invention discloses a refining method of hexamethylene diisocyanate photochemical liquid, which can prevent polymerization of a heat-sensitive substance HDI in the post-treatment process to a certain extent by treating the hexamethylene diisocyanate photochemical liquid obtained by phosgenation, thereby effectively improving the refining yield of HDI monomers and improving the product quality. The method comprises the following steps: 1, 6-Hexamethylene Diamine (HDA) and phosgene are mixed and reacted in equipment to obtain photochemical liquid comprising HDI, hydrogen chloride, phosgene, a solvent and a possible trace amount of polymerization products, and the photochemical liquid is continuously treated by a light-dispelling tower and a desolventizing tower to obtain crude HDI containing a small amount of the solvent and a trace amount of heavy components. And performing subsequent refining by a multistage molecular distiller to finally obtain a high-content HDI monomer product.)

1. A refining method of hexamethylene diisocyanate photochemical liquid is characterized by comprising the following steps: the device comprises a phosgene removing tower (1), a condenser reboiler (2) of the phosgene removing tower, a light component condenser (3), a desolventizing tower (4), a reboiler (5) of the desolventizing tower, a first solvent condenser (6), a solvent buffer tank (7), a primary molecular distiller (8), a second solvent condenser (9), a feeding heat exchanger (10) and a secondary molecular distiller (11), wherein HDI photochemical liquid after phosgenation is conveyed into the phosgene removing tower (1), the light component enters the light component condenser (3) through the top of the tower, a condensed substance is extracted through the top of the phosgene removing tower (1), the photochemical liquid after being subjected to light-dispelling is conveyed into the desolventizing tower (4), the treated light component enters the first solvent condenser (6) through the top of the tower and is condensed and then conveyed into the solvent tank (7), the treated crude HDI enters the feeding heat exchanger (10) through the bottom of the tower and then passes through the inner wall of the primary molecular distiller (8) to scrape a film, Evaporating and condensing to remove the residual solvent, feeding the obtained light component into a second solvent condenser (9), pumping the obtained heavy component into a secondary molecular distiller (11), and separating HDI from the heavy component after film scraping, evaporating and condensing treatment to obtain the qualified light component, wherein a stripper tower reboiler (2) is arranged on the outer side of the bottom of the phosgene removing tower (1), and a stripper tower reboiler (5) is arranged on the outer side of the bottom of the stripper tower (4).

2. The method for refining hexamethylene diisocyanate photochemical liquid according to claim 1, wherein the mass fraction of the solvent in the HDI crude product to be fed into the primary molecular still (8) is 15% -25%, and the mass fraction of the heavy components contained in the HDI crude product is less than 5%.

3. The method for refining hexamethylene diisocyanate photochemical liquid according to claim 1, wherein the primary molecular still (8) and the secondary molecular still (11) are scraper type molecular stills adopting a double-end-face mechanical sealing structure or a magnetic fluid sealing structure.

4. The method for refining the hexamethylene diisocyanate photochemical liquid according to claim 1, wherein the solvent is one or more of toluene, chlorobenzene, o-dichlorobenzene, xylene and trimethylbenzene.

5. The method for refining hexamethylene diisocyanate photochemical liquid according to claim 1, wherein the primary molecular still (8) has the process control points of: the feeding temperature is 40-70 ℃, the system pressure is 5 mmHg-30 mmHg, the heating temperature is 50-90 ℃, the condenser temperature is-5 ℃ to 5 ℃, and the rotating speed of the film scraper is 300-400 rpm.

6. The method for refining hexamethylene diisocyanate photochemical liquid according to claim 1, wherein the process control points of the secondary molecular still (11) are as follows: the feeding temperature is 70-100 ℃, the system pressure is 0.5-3 mmHg, the heating temperature is 90-130 ℃, the condenser temperature is-5 ℃, and the rotating speed of the film scraper is 400-500 rpm.

7. The method for refining hexamethylene diisocyanate photochemical liquid according to claim 1, characterized in that the solvent content is reduced to below 1000ppm by the primary molecular still (8).

8. The method for refining hexamethylene diisocyanate photochemical liquid according to claim 1, wherein the NCO value of the light component outlet material is more than 49.7 percent through the treatment of the secondary molecular distiller (11).

Technical Field

The application relates to a refining method of hexamethylene diisocyanate photochemical liquid, in particular to a process for purifying high-content hexamethylene diisocyanate by molecular distillation.

Background

Hexamethylene Diisocyanate (HDI) is aliphatic isocyanate (ADI) mainly used in the fields of coatings, adhesives and food packaging, has unique and excellent yellowing resistance, weather resistance and chemical resistance, and belongs to a high-end product category in an isocyanate family. It is widely used in the fields of high-end coatings, adhesives, elastomers and military industry. Especially has incomparable advantages in automobile paint, industrial protective paint and wood paint. The HDI is a main HDI production and consumption region in Europe and America at present, and with the rapid development of the automobile industry in China, China is expected to replace the HDI and other high-end isocyanates in Europe and America to become a main consumption country and a production country of global HDI and the like.

Most of the existing purification methods of isocyanate products in the industrial production process adopt the technological processes of gas removal, desolventization and rectification, but the isocyanate series products are heat-sensitive substances, for example, high-content hexamethylene diisocyanate is heated in a liquid state, and can generate a large amount of impurities (uretdione, carbodiimide and the like) by self polymerization in a short time, so that the product yield is reduced, production equipment is blocked and coked, and the treatment cost is increased. In conclusion, how to provide an efficient and green purification method is a problem to be urgently solved in the field.

Disclosure of Invention

Aiming at the problems in the prior art, the invention provides a refining method of hexamethylene diisocyanate photochemical liquid, which can effectively avoid the polymerization phenomenon caused by long-time heating of isocyanate, reduce the loss of products in the purification process and meet the green and environment-friendly chemical concept.

The invention is realized by the following technical scheme:

a refining method of hexamethylene diisocyanate comprises the following steps: the method comprises the steps of conveying a phosgenation HDI photochemical liquid into a phosgene removing tower, a phosgene removing tower reboiler, a light component condenser, a desolventizing tower reboiler, a first solvent condenser, a solvent buffer tank, a primary molecular distiller, a second solvent condenser, a feeding heat exchanger and a secondary molecular distiller, introducing the light component into the light component condenser through the top of the tower, collecting a condensed substance through the top of the phosgene removing tower, driving the HDI photochemical liquid into the desolventizing tower after the light removal, introducing a treated light component into the first solvent condenser through the top of the tower, condensing the treated light component into the solvent buffer tank, introducing the treated crude HDI into the feeding heat exchanger through the bottom of the tower, scraping, evaporating and condensing the treated light component through the inner wall of the primary molecular distiller, removing the residual solvent, introducing the obtained light component into the second solvent condenser, introducing the obtained heavy component into the secondary molecular distiller through a pump, and removing the light component through a film, And after evaporation and condensation treatment, the HDI and the heavy component are separated, the obtained light component is a qualified product, a stripper tower reboiler is arranged outside the bottom of the phosgene tower, and a stripper tower reboiler is arranged outside the bottom of the stripper tower. The method comprises the following technical steps:

firstly, carrying out light-dispelling treatment on HDI photochemical liquid obtained by photochemical reaction through a light-dispelling tower;

secondly, desolventizing the polished material obtained in the first step by a desolventizing tower to remove most of the solvent to obtain a crude HDI material containing a small amount of solvent and heavy components;

preheating the crude HDI material obtained in the second step, then sending the preheated crude HDI material into a primary molecular distiller, and removing the residual solvent through film scraping, evaporation and condensation on the inner wall of the primary molecular distiller; the obtained heavy component is the HDI material without the light component;

and fourthly, feeding the HDI material without the light components obtained in the third step into a secondary molecular distiller, and separating HDI and heavy components through film scraping, evaporation and condensation on the inner wall of the secondary molecular distiller to obtain a fine HDI product which is extracted from a light component outlet.

In detail:

in the first step of the method, the HDI photochemical solution is obtained by reacting HDA and phosgene in a reactor.

In the second step of the method, the mass fraction of the solvent in the HDI crude product to be fed into the primary molecular distiller is 15-25%, and the mass fraction of the contained heavy components is less than 5%.

In the third step and the fourth step of the method, the molecular distiller is a scraper type molecular distiller adopting a double-end mechanical sealing structure or a magnetic fluid sealing structure.

In the first step, the second step and the third step of the method, the solvent is one or more of toluene, chlorobenzene, o-dichlorobenzene, xylene and trimethylbenzene.

In the third step of the method, the technological control points of the first-stage molecular distiller are as follows: the feeding temperature is 40-70 ℃, the system pressure is 5 mmHg-30 mmHg, the heating temperature is 50-90 ℃, the condenser temperature is-5 ℃ to 5 ℃, and the rotating speed of the film scraper is 300-400 rpm.

In the fourth step of the method, the technological control points of the secondary molecular distiller are as follows: the feeding temperature is 70-100 ℃, the system pressure is 0.5-3 mmHg, the heating temperature is 90-130 ℃, the condenser temperature is-5 ℃, and the rotating speed of the film scraper is 400-500 rpm.

According to the refining method of hexamethylene diisocyanate provided by the invention, the solvent content is reduced to below 1000ppm by a primary molecular distiller.

According to the refining method of hexamethylene diisocyanate provided by the invention, the light component outlet material is processed by the secondary molecular distiller, and the product is qualified when the NCO value of the light component outlet material is more than 49.7%.

In summary, the following beneficial effects of the invention are:

compared with the prior art, the molecular distillation is separated by the difference of the mean free path between different molecules, the substance does not need to be heated to boiling, the substance can be separated at a temperature far away from the boiling point under a high vacuum operation environment, and the heating time of the substance in the molecular distiller is far shorter than that of the ordinary rectification, so that the problem of HDI polymerization caused by long-time heating can be avoided. Because the molecular distillation production capacity is limited, the invention uses a mode of combining common rectification and molecular rectification, firstly uses a desolventizing tower to remove most of solvent, and then enters a molecular distiller for further treatment, thereby solving the problem of HDI post-treatment polymerization and simultaneously considering the production efficiency.

Drawings

The accompanying drawings, which are included to provide a further understanding of the embodiments of the invention and are incorporated in and constitute a part of this application, illustrate embodiment(s) of the invention and together with the description serve to explain the principles of the invention. In the drawings:

FIG. 1 is a schematic diagram of a system for purifying hexamethylene diisocyanate photochemical liquid.

FIG. 2 is a gas chromatogram of an HDI product purified by the method.

Reference numbers and corresponding part names in the drawings:

1-a light component removal tower, 2-a light component removal tower reboiler, 3-a light component removal condenser, 4-a desolventizing tower, 5-a desolventizing tower reboiler, 6-a first solvent condenser, 7-a solvent buffer tank, 8-a first-stage molecular distiller, 9-a second solvent condenser, 10-a feeding heat exchanger and 11-a second-stage molecular distiller.

Detailed Description

In order to make the objects, technical solutions and advantages of the present invention more apparent, the present invention is further described in detail below with reference to examples and accompanying drawings, and the exemplary embodiments and descriptions thereof are only used for explaining the present invention and are not meant to limit the present invention.

Example 1

As shown in fig. 1-2, a method for refining hexamethylene diisocyanate photochemical liquid comprises the following steps: a phosgene removing tower 1, a stripper tower reboiler 2, a light component condenser 3, a desolventizing tower 4, a stripper tower reboiler 5, a first solvent condenser 6, a solvent buffer tank 7, a primary molecular distiller 8, a second solvent condenser 9, a feeding heat exchanger 10 and a secondary molecular distiller 11, wherein the HDI photochemical liquid after phosgenation is conveyed into the stripper gas tower 1, the light component enters the light component condenser 3 through the top of the tower, the condensed substance is extracted through the top of the phosgene removing tower 1, the HDI photochemical liquid after being driven to light is conveyed into the stripper tower 4, the treated light component enters the first solvent condenser 6 through the top of the tower and is sent into the solvent buffer tank 7 after being condensed, the treated crude HDI enters the feeding heat exchanger 10 through the bottom of the tower and then passes through the inner wall of the primary molecular distiller 8 to scrape, evaporate and condense, the residual solvent is removed, the obtained light component enters the second solvent condenser 9, the obtained heavy component is sent into the secondary molecular distiller 11 through a pump, the HDI and the heavy component are separated after film scraping, evaporation and condensation treatment, the obtained light component is a qualified product, a stripper tower reboiler 2 is arranged on the outer side of the bottom of the phosgene tower 1, and a stripper tower reboiler 5 is arranged on the outer side of the bottom of the stripper tower 4. Discharging flow of 6t/h from a phosgenation reactor, wherein the discharging flow contains 22.3% of Hexamethylene Diisocyanate (HDI), 3.6% of phosgene, 0.5% of hydrogen chloride, 73% of chlorobenzene and 0.6% of heavy components, feeding the materials into a phosgene removing tower, extracting the materials at the tower bottom after the flashing operation to contain 800ppm of phosgene, feeding the materials after the flashing operation into a desolventizing tower, extracting crude HDI from the tower bottom after the desolventizing operation, wherein the chlorobenzene content in the extracted crude HDI is 12.5%, the heavy components are 2.29% and the HDI content is 85.21%, carrying out heat exchange on the crude HDI by a heat exchanger to 50 ℃, feeding the crude HDI into a primary molecular distiller, wherein the pressure of the molecular distiller is 20mmHg, the heating temperature is 60 ℃, the rotating speed of a scraper is 400rpm, the temperature of a condenser is-5 ℃, the free range of chlorobenzene molecules of the solvent is far greater than that of the HDI, extracting the escaped chlorobenzene along the light components, condensing and recycling the heavy components through a light components condenser, extracting the heavy components from a heavy components outlet, wherein the HDI contains 97.38% of HDI, 2.62% of heavy component, and the material is subjected to heat exchange through a heat exchanger to 80 ℃ and then enters a secondary molecular distiller, wherein the pressure of the secondary molecular distiller is 1.5mmHg, the heating temperature is 100 ℃, the scraper rotating speed is 500rpm, the condenser temperature is 5 ℃, the residence time of the HDI on a heated surface is very short at the temperature, the HDI is extracted through a light component extraction port, the NCO value in the extracted fine HDI is 49.8%, and the extraction flow is 1.3 t/h.

Example 2

As shown in fig. 1-2, a method for refining hexamethylene diisocyanate photochemical liquid comprises the following steps: a phosgene removing tower 1, a stripper tower reboiler 2, a light component condenser 3, a desolventizing tower 4, a stripper tower reboiler 5, a first solvent condenser 6, a solvent buffer tank 7, a primary molecular distiller 8, a second solvent condenser 9, a feeding heat exchanger 10 and a secondary molecular distiller 11, wherein the HDI photochemical liquid after phosgenation is conveyed into the stripper gas tower 1, the light component enters the light component condenser 3 through the top of the tower, the condensed substance is extracted through the top of the phosgene removing tower 1, the HDI photochemical liquid after being driven to light is conveyed into the stripper tower 4, the treated light component enters the first solvent condenser 6 through the top of the tower and is sent into the solvent buffer tank 7 after being condensed, the treated crude HDI enters the feeding heat exchanger 10 through the bottom of the tower and then passes through the inner wall of the primary molecular distiller 8 to scrape, evaporate and condense, the residual solvent is removed, the obtained light component enters the second solvent condenser 9, the obtained heavy component is sent into the secondary molecular distiller 11 through a pump, the HDI and the heavy component are separated after film scraping, evaporation and condensation treatment, the obtained light component is a qualified product, a stripper tower reboiler 2 is arranged on the outer side of the bottom of the phosgene tower 1, and a stripper tower reboiler 5 is arranged on the outer side of the bottom of the stripper tower 4. Discharging flow of a phosgenation reactor is 12.3t/h, wherein the discharge flow contains 29.3 percent of Hexamethylene Diisocyanate (HDI), 2.8 percent of phosgene, 0.55 percent of hydrogen chloride, 66.55 percent of methylbenzene and 0.8 percent of heavy component, feeding the materials into a degassing tower, discharging the materials containing phosgene at 800ppm from a tower bottom after a degassing operation, discharging the materials into a desolventizing tower after the degassing operation, discharging crude HDI from the tower bottom after the desolventizing operation, wherein the methylbenzene content in the discharged crude HDI is 14.5 percent, the heavy component content is 2.25 percent, the HDI content is 83.25 percent, exchanging heat of the crude HDI to 40 ℃ through a heat exchanger, feeding the crude HDI into a primary molecular distiller, wherein the pressure of the molecular distiller is 30mmHg, the heating temperature is 55 ℃, the rotating speed of a scraper is 350rpm, the temperature of a condenser is-5 ℃, the molecular free range of the methylbenzene solvent is far greater than that of the HDI, discharging the escaped methylbenzene along a light component discharging port, condensing and recycling the light component, discharging the heavy component from a heavy component discharging port, wherein the HDI content is 97.34 percent, 2.66% of heavy component, exchanging heat of the material to 80 ℃ through a heat exchanger, feeding the material into a secondary molecular distiller, wherein the pressure of the secondary molecular distiller is 1.5mmHg, the heating temperature is 100 ℃, the scraper rotating speed is 550rpm, the condenser temperature is 5 ℃, the residence time of the HDI on a heated surface is very short at the temperature, the HDI is extracted through a light component extraction port, the NCO value in the extracted fine HDI is 49.8%, and the extraction flow is 3.48 t/h. .

The above-mentioned embodiments are intended to illustrate the objects, technical solutions and advantages of the present invention in further detail, and it should be understood that the above-mentioned embodiments are merely exemplary embodiments of the present invention, and are not intended to limit the scope of the present invention, and any modifications, equivalent substitutions, improvements and the like made within the spirit and principle of the present invention should be included in the scope of the present invention.

7页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种取代烯基硫氰酸酯类化合物及其制备方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!