兼具高强度和高弹性应变的TiHfFeNiNbx定向凝固高熵合金及其制备

文档序号:252369 发布日期:2021-11-16 浏览:31次 >En<

阅读说明:本技术 兼具高强度和高弹性应变的TiHfFeNiNbx定向凝固高熵合金及其制备 (TiHfFeNiNb with high strength and high elastic strainxDirectional solidification high-entropy alloy and preparation thereof ) 是由 朱正旺 李欢 张海峰 张宏伟 付华萌 李宏 王爱民 张龙 李正坤 李松涛 于 2021-07-22 设计创作,主要内容包括:一种兼具高强度和高弹性应变的TiHfFeNiNb-(x)定向凝固高熵合金及其制备方法,属于金属材料技术领域。该定向凝固高熵合金的组成元素为Ti、Hf、Fe、Ni、Nb,各组分原子百分比为:30:10:10:30:x。定向凝固生长速度范围为0~180mm/h,定向凝固旋转速度范围为0~60rpm。该类合金在定向凝固后,合金横截面由烟花状的团簇组成,而纵截面却呈现出了不同的形貌特征,即呈现出了不同程度的方向性。合金的晶体结构为BCC+B2。合金的拉伸过程中,展现了高的弹性应变。(TiHfFeNiNb with high strength and high elastic strain x A directional solidification high-entropy alloy and a preparation method thereof belong to the technical field of metal materials. The directional solidification high-entropy alloy comprises the following components in percentage by atom: 30: 10: 10: 30: x. The range of the growth speed of the directional solidification is 0-180 mm/h, and the range of the rotation speed of the directional solidification is 0-60 rpm. After the alloy is directionally solidified, the cross section of the alloy consists of firework-shaped clusters, while the longitudinal section of the alloy shows different morphological characteristics, namely shows no appearanceWith the same degree of directionality. The crystal structure of the alloy is BCC &#43; B2. During the elongation of the alloy, a high elastic strain is exhibited.)

兼具高强度和高弹性应变的TiHfFeNiNbx定向凝固高熵合金及 其制备

技术领域

本发明属于设计金属材料及其制备领域,具体涉及一种兼具高强度和高弹性应变的TiHfFeNiNbx定向凝固高熵合金及其制备方法。

背景技术

定向凝固技术的要点在于材料的各种性能与显微组织的分布以及形貌有关,微观组织的形貌取决于凝固阶段中固液界面的温度梯度以及各元素之间的分配。因此,怎样调控凝固阶段中固液界面的传质和传热是定向凝固理论发展的重要研究方向。通过定向凝固技术调控凝固阶段热的传导方向从而调控微观组织的形貌及生长方式,从而达到微观组织朝着确定的方向排列,因此得到优异的物理性能和力学性能。而高熵合金是近些年提出的具有革命性的新概念。但将定向凝固制备技术应用于高熵合金的实例的研究却有限。

发明内容

本发明开发出了一种兼具高强度和高弹性应变的TiHfFeNiNbx定向凝固高熵合金及其制备方法,这种定向凝固高熵合金高熵合金在定向凝固后,合金横截面由烟花状的团簇组成,而纵截面却呈现出了不同的形貌特征,即呈现出了不同程度的方向性,该合金具有双相(BCC+B2)结构。

本发明技术方案如下:

一种兼具高强度和高弹性应变的TiHfFeNiNbx定向凝固高熵合金,其特征在于:该定向凝固高熵合金的原子百分比表达式为Ti30Hf10Fe10Ni30Nbx,其中定向凝固高熵合金的成分中Nb的含量x取值范围为15~30。

所述合金组成元素钛、铌、铪、铁和镍的纯度均≥99.9%,且纯金属原材料均为块状或颗粒状。

本发明的另一目的是提供所述的TiNbHfFeNi定向凝固高熵合金的方法,其特征在于,具体包括以下步骤:

步骤1).按照所述高熵合金成分,将原子百分比换算成质量百分比称取配料;

步骤2).将所称取的原料一一去除表面的氧化皮,并用工业乙醇超声清洗;

步骤3).将处理好的原料根据熔点由低至高的顺序放在真空非自耗电弧炉的铜坩埚中;并在剩余的铜坩埚中放入海绵钛;

步骤4).将熔炼炉内的真空室抽至真空度为1×10-3Pa~5×10-3Pa后,向炉内充入-0.05~-0.1MPa的氩气,重复多次熔炼均匀后得到纽扣状铸锭;

步骤5).将纽扣状铸锭放入Edmund Buehler电弧炉中,熔炼后将液体翻转进铜模具中,获得的母棒;

步骤6).使用光学浮区炉,将母棒底部融化,凝固在同样成分的底座上,并将光聚焦点逐步上移,通过控制光聚焦点上移速度从而控制定向凝固的生长速度,生长速度范围为1~180mm/h,定向凝固过程中旋转速度范围为0~60rpm,通过定向凝固技术制备得到的高熵合金的弹性应变和强度得到大幅度的提高,且显微组织更加复杂。

作为优选的技术方案:

步骤1)中,原料Ti为海绵钛,Nb为铌颗粒,Hf为结晶铪,Fe为铁块,Ni为镍颗粒。

步骤4)中,重复多次熔炼均匀的过程中需开启磁搅拌,熔炼次数为4次。

本发明与现有技术相比,其优点在于:

1.本发明所设计的TiHfFeNiNbx定向凝固高熵合金制备方法新颖,将定向凝固技术应用于高熵合金概念之上,各取其优势。

2.本发明所提供的TiHfFeNiNbx定向凝固高熵合金微观组织从未在报导中提出,为首次发现,为由富Nb的BCC相与贫Nb的B2相组成不规则共晶组织。该组织会提升合金的弹性应变以及合金的强度。通过定向凝固技术制备后的纤维组织会呈现出方向性,而具有方向性的组织的力学性能会得到提升。

3.本发明所提供的TiHfFeNiNbx定向凝固高熵合金,在室温拉伸实验具有高的抗拉强度,高弹性应变。在室温压缩实验中具有高的屈服强度以及高弹性应变。其中压缩屈服强度范围为1600MPa~2174MPa,弹性应变范围为2.52%~3.73%。

附图说明

图1为实施例1~6中制备的定向凝固高熵合金的X射线衍射仪(XRD)图谱的对比图;

图2为实施例1~6中制备的定向凝固高熵合金的准静态拉伸工程应力-应变曲线的对比图;

图3为实施例1~6中制备的定向凝固高熵合金的准静态压缩工程应力-应变曲线的对比图;

图4为实施例1中制备的定向凝固高熵合金的准静态高温压缩真应力-应变曲线的对比图;

图5为实施例1中制备的定向凝固高熵合金的扫描电镜图片(A图与B图为横截面扫描图片,C图与D图为纵截面扫描图片);

图6为实施例2中制备的定向凝固高熵合金的扫描电镜图片(A图为横截面扫描图片,B图为纵截面扫描图片);

图7为实施例3中制备的定向凝固高熵合金的扫描电镜图片(A图为横截面扫描图片,B图为纵截面扫描图片);

图8为实施例4中制备的定向凝固高熵合金的扫描电镜图片(A图为横截面扫描图片,B图为纵截面扫描图片);

图9为实施例5中制备的定向凝固高熵合金的扫描电镜图片(A图为横截面扫描图片,B图为纵截面扫描图片);

图10为实施例6中制备的定向凝固高熵合金的扫描电镜图片(A图为横截面扫描图片,B图为纵截面扫描图片)。

具体实施方式

下面结合附图和具体的实施例对本发明的技术方案进行清楚完整的描述。

实施例1

一种兼具高强度和高弹性应变的Ti30Hf10Fe10Ni30Nb20定向凝固高熵合金,其定向凝固生长速度60mm/h。其定向凝固旋转速度15rpm。具体步骤如下:

(1)原料准备:所使用的金属原料为高纯的(≥99.9%)。其中原料Ti为海绵钛,Nb为铌颗粒,Hf为结晶铪,Fe为铁块,Ni为镍颗粒。按照质量比进行称量配比,比去除原料表面的氧化皮,在酒精中用超声波振荡清洗干净并烘干。

(2)合金制备:采用真空电弧炉熔炼合金。将原料Fe、Ni单独放置于一个铜坩埚中,将原料Nb、Hf、Ti放置另一铜坩埚中,首先制备中间合金。在空余的铜坩埚中加入海绵钛。抽真空至3.5×10-3Pa,然后充入高纯氩气至-0.08MPa。熔炼过程中开磁搅拌,使化学成分均匀。熔炼好的中间合金放在一起,熔炼最终合金。反复熔炼4次。

合金熔炼完成,待炉体冷却后充入空气,打开炉门,取出合金锭,得到铸态合金。将纽扣状铸锭放入Edmund Buehler电弧炉中,熔炼后将液体翻转进铜模具中,获得的母棒。使用光学浮区炉,将母棒底部融化,凝固在同样成分的底座上,并将光聚焦点逐步上移,通过控制光聚焦点上移速度从而控制定向凝固的生长速度,生长速度为60mm/h,转动速度为15rpm,进行组织结构表征和力学性能测试。

参见图1可以看出合金的晶体结构为BCC+B2。参见图1与图4中的A图,可以看出本发明实施例的定向凝固高熵合金在室温下横截面上,由富Nb的白色BCC相与贫Nb的黑色B2相组成了不规则共晶组织。参见图5中的B图,可以看出横截面上布满了不规则共晶组织。参见图5中的C图与D图可以看出纵截面上布满了同一方向的团簇带,团簇带的方向平行于合金的生长方向,说明定向凝固技术使合金的纤维组织生长具有特定的方向。团簇带的平均宽度为200um。参见图2可以看出该合金抗拉强度为1410MPa,弹性应变为3.1%。参见图3可以看出合金室温压缩屈服强度2174MPa,抗压强度为2300MPa,弹性段高达3.73%。参见图4可以看出实施例1具有优异的高温力学性能,在500℃的环境下具有1510MPa的屈服强度,弹性应变高达5%,在应变达到41%时,应力达到最大值2737MPa,并且表现出加工硬化现象。在600℃的环境下具有1230MPa的屈服强度,弹性应变高达4.3%。在应变达到50%时,应力达到最高值2121MPa,且样品未发生断裂,同时表现出了轻微的加工硬化现象。在700℃、800℃、900℃和1000℃的不同温度下,实施例1表现出了较大的弹性应变以及极高的强度,且应变达到50%时未发生断裂。综上所述实施例1中制备的合金微观组织新颖复杂,室温力学性能及高温力学性能优异,具有高强度高弹性应变等特点。

实施例2

一种兼具高强度和高弹性应变的Ti30Hf10Fe10Ni30Nb20定向凝固高熵合金,其定向凝固生长速度180mm/h。其定向凝固旋转速度15rpm。具体步骤如下:

(1)原料准备:所使用的金属原料为高纯的(≥99.9%)。其中原料Ti为海绵钛,Nb为铌颗粒,Hf为结晶铪,Fe为铁块,Ni为镍颗粒。按照质量比进行称量配比,比去除原料表面的氧化皮,在酒精中用超声波振荡清洗干净并烘干。

(2)合金制备:采用真空电弧炉熔炼合金。将原料Fe、Ni单独放置于一个铜坩埚中,将原料Nb、Hf、Ti放置另一铜坩埚中,首先制备中间合金。在空余的铜坩埚中加入吸氧海绵钛。抽真空至3.5×10-3Pa,然后充入高纯氩气至-0.08MPa。熔炼过程中开磁搅拌,使化学成分均匀。熔炼好的中间合金放在一起,熔炼最终合金。反复熔炼4次。

合金熔炼完成,待炉体冷却后充入空气,打开炉门,取出合金锭,得到铸态合金。将纽扣状铸锭放入Edmund Buehler电弧炉中,熔炼后将液体翻转进铜模具中,获得的母棒。使用光学浮区炉,将母棒底部融化,凝固在同样成分的底座上,并将光聚焦点逐步上移,通过控制光聚焦点上移速度从而控制定向凝固的生长速度,生长速度为180mm/h,转动速度为15rpm,进行组织结构表征和力学性能测试。

参见图1可以看出合金的晶体结构为BCC+B2。参见图1与图6中的A图,可以看出本发明实施例的定向凝固高熵合金在室温下横截面上,由富Nb的白色BCC相与贫Nb的黑色B2相组成了不规则共晶组织。可以看出横截面上布满了不规则共晶组织的团簇。参见图6中的B图可以看出纵截面上成蜂窝状,说明该定向凝固生长速度下的合金纵截面具有最低的方向性。参见图2可以看出该合金抗拉强度为1151MPa,弹性应变为2.05%。参见图3可以看出合金室温压缩屈服强度1858MPa,抗压强度为2122MPa,弹性段高达3.5%。综上所述实施例2中制备的合金微观组织新颖复杂,室温力学性能优异,具有高强度高弹性应变等特点。

实施例3

一种兼具高强度和高弹性应变的Ti30Hf10Fe10Ni30Nb20定向凝固高熵合金,其定向凝固生长速度180mm/h。其定向凝固旋转速度0rpm。具体步骤如下:

(1)原料准备:所使用的金属原料为高纯的(≥99.9%)。其中原料Ti为海绵钛,Nb为铌颗粒,Hf为结晶铪,Fe为铁块,Ni为镍颗粒。按照质量比进行称量配比,比去除原料表面的氧化皮,在酒精中用超声波振荡清洗干净并烘干。

(2)合金制备:采用真空电弧炉熔炼合金。将原料Fe、Ni单独放置于一个铜坩埚中,将原料Nb、Hf、Ti放置另一铜坩埚中,首先制备中间合金。在空余的铜坩埚中加入吸氧海绵钛。抽真空至3.5×10-3Pa,然后充入高纯氩气至-0.08MPa。熔炼过程中开磁搅拌,使化学成分均匀。熔炼好的中间合金放在一起,熔炼最终合金。反复熔炼4次。

合金熔炼完成,待炉体冷却后充入空气,打开炉门,取出合金锭,得到铸态合金。将纽扣状铸锭放入Edmund Buehler电弧炉中,熔炼后将液体翻转进铜模具中,获得的母棒。使用光学浮区炉,将母棒底部融化,凝固在同样成分的底座上,并将光聚焦点逐步上移,通过控制光聚焦点上移速度从而控制定向凝固的生长速度,生长速度为180mm/h,转动速度为0rpm,进行组织结构表征和力学性能测试。

参见图1可以看出合金的晶体结构为BCC+B2。参见图1与图7中的A图,可以看出本发明实施例的定向凝固高熵合金在室温下横截面上,由富Nb的白色BCC相与贫Nb的黑色B2相组成了不规则共晶组织。可以看出横截面上布满了不规则共晶组织。参见图7中的B图可以看出纵截面上成波纹状,说明该定向凝固生长速度下的合金纵截面具有较低的方向性。参见图2可以看出该合金抗拉强度为1188MPa,弹性应变为1%。参见图3可以看出合金室温压缩屈服强度1845MPa,抗压强度为2355MPa,弹性段高达1.5%。综上所述实施例3中制备的合金微观组织新颖复杂,室温力学性能优异,具有高强度高弹性应变等特点。

实施例4

一种兼具高强度和高弹性应变的Ti30Hf10Fe10Ni30Nb20定向凝固高熵合金,其定向凝固生长速度180mm/h。其定向凝固旋转速度60rpm。具体步骤如下:

(1)原料准备:所使用的金属原料为高纯的(≥99.9%)。其中原料Ti为海绵钛,Nb为铌颗粒,Hf为结晶铪,Fe为铁块,Ni为镍颗粒。按照质量比进行称量配比,比去除原料表面的氧化皮,在酒精中用超声波振荡清洗干净并烘干。

(2)合金制备:采用真空电弧炉熔炼合金。将原料Fe、Ni单独放置于一个铜坩埚中,将原料Nb、Hf、Ti放置另一铜坩埚中,首先制备中间合金。在空余的铜坩埚中加入吸氧海绵钛。抽真空至3.5×10-3Pa,然后充入高纯氩气至-0.08MPa。熔炼过程中开磁搅拌,使化学成分均匀。熔炼好的中间合金放在一起,熔炼最终合金。反复熔炼4次。

合金熔炼完成,待炉体冷却后充入空气,打开炉门,取出合金锭,得到铸态合金。将纽扣状铸锭放入Edmund Buehler电弧炉中,熔炼后将液体翻转进铜模具中,获得的母棒。使用光学浮区炉,将母棒底部融化,凝固在同样成分的底座上,并将光聚焦点逐步上移,通过控制光聚焦点上移速度从而控制定向凝固的生长速度,生长速度为180mm/h,转动速度为60rpm,进行组织结构表征和力学性能测试。

参见图1可以看出合金的晶体结构为BCC+B2。参见图1与图8中的A图,可以看出本发明实施例的定向凝固高熵合金在室温下横截面上,由富Nb的白色BCC相与贫Nb的黑色B2相组成了不规则共晶组织。可以看出横截面上布满了不规则共晶组织。参见图8中的B图可以看出纵截面上成树枝状,说明该定向凝固生长速度下的合金纵截面具有最强的方向性。参见图2可以看出该合金抗拉强度为1359MPa,弹性应变为1.4%。参见图3可以看出合金室温压缩屈服强度1556MPa,抗压强度为2391MPa,弹性段高达2%。综上所述实施例4中制备的合金微观组织新颖复杂,室温力学性能优异,具有高强度高弹性应变等特点。

实施例5

一种兼具高强度和高弹性应变的Ti30Hf10Fe10Ni30Nb15定向凝固高熵合金,其定向凝固生长速度180mm/h。其定向凝固旋转速度15rpm。具体步骤如下:

(1)原料准备:所使用的金属原料为高纯的(≥99.9%)。其中原料Ti为海绵钛,Nb为铌颗粒,Hf为结晶铪,Fe为铁块,Ni为镍颗粒。按照质量比进行称量配比,比去除原料表面的氧化皮,在酒精中用超声波振荡清洗干净并烘干。

(2)合金制备:采用真空电弧炉熔炼合金。将原料Fe、Ni单独放置于一个铜坩埚中,将原料Nb、Hf、Ti放置另一铜坩埚中,首先制备中间合金。在空余的铜坩埚中加入吸氧海绵钛。抽真空至3.5×10-3Pa,然后充入高纯氩气至-0.08MPa。熔炼过程中开磁搅拌,使化学成分均匀。熔炼好的中间合金放在一起,熔炼最终合金。反复熔炼4次。

合金熔炼完成,待炉体冷却后充入空气,打开炉门,取出合金锭,得到铸态合金。将纽扣状铸锭放入Edmund Buehler电弧炉中,熔炼后将液体翻转进铜模具中,获得的母棒。使用光学浮区炉,将母棒底部融化,凝固在同样成分的底座上,并将光聚焦点逐步上移,通过控制光聚焦点上移速度从而控制定向凝固的生长速度,生长速度为180mm/h,转动速度为15rpm,进行组织结构表征和力学性能测试。

参见图1可以看出合金的晶体结构为BCC+B2。参见图1与图9中的A图,可以看出本发明实施例的定向凝固高熵合金在室温下横截面上,由富Nb的白色BCC相与贫Nb的黑色B2相组成了亚共晶组织。参见图9中的B图可以看出纵截面上成短树枝状,说明该定向凝固生长速度下的合金纵截面具有一定的方向性。参见图2可以看出该合金抗拉强度为1123MPa,弹性应变为1.5%。参见图3可以看出合金室温压缩屈服强度1545MPa,抗压强度为2415MPa,弹性段高达1%。综上所述实施例5中制备的合金微观组织新颖复杂,室温力学性能优异,具有高强度高弹性应变等特点。

实施例6

一种兼具高强度和高弹性应变的Ti30Hf10Fe10Ni30Nb30定向凝固高熵合金,其定向凝固生长速度180mm/h。其定向凝固旋转速度15rpm。具体步骤如下:

(1)原料准备:所使用的金属原料为高纯的(≥99.9%)。其中原料Ti为海绵钛,Nb为铌颗粒,Hf为结晶铪,Fe为铁块,Ni为镍颗粒。按照质量比进行称量配比,比去除原料表面的氧化皮,在酒精中用超声波振荡清洗干净并烘干。

(2)合金制备:采用真空电弧炉熔炼合金。将原料Fe、Ni单独放置于一个铜坩埚中,将原料Nb、Hf、Ti放置另一铜坩埚中,首先制备中间合金。在空余的铜坩埚中加入吸氧海绵钛。抽真空至3.5×10-3Pa,然后充入高纯氩气至-0.08MPa。熔炼过程中开磁搅拌,使化学成分均匀。熔炼好的中间合金放在一起,熔炼最终合金。反复熔炼4次。

合金熔炼完成,待炉体冷却后充入空气,打开炉门,取出合金锭,得到铸态合金。将纽扣状铸锭放入Edmund Buehler电弧炉中,熔炼后将液体翻转进铜模具中,获得的母棒。使用光学浮区炉,将母棒底部融化,凝固在同样成分的底座上,并将光聚焦点逐步上移,通过控制光聚焦点上移速度从而控制定向凝固的生长速度,生长速度为180mm/h,转动速度为15rpm,进行组织结构表征和力学性能测试。

参见图1可以看出合金的晶体结构为BCC+B2。参见图1与图10中的A图,可以看出本发明实施例的定向凝固高熵合金在室温下横截面上,由富Nb的白色BCC相与贫Nb的黑色B2相组成了过共晶组织。参见图10中的B图可以看出纵截面上成波纹状状,说明该定向凝固生长速度下的合金纵截面具有一定的方向性。参见图2可以看出该合金抗拉强度为1202MPa,弹性应变为0.9%。参见图3可以看出合金室温压缩屈服强度1574MPa,抗压强度为2402MPa,弹性段高达1.7%。综上所述实施例6中制备的合金微观组织新颖复杂,室温力学性能优异,具有高强度高弹性应变等特点。

本发明未尽事宜为公知技术。

上述实施例只为说明本发明的技术构思及特点,其目的在于让熟悉此项技术的人士能够了解本发明的内容并据以实施,并不能以此限制本发明的保护范围。凡根据本发明精神实质所作的等效变化或修饰,都应涵盖在本发明的保护范围之内。

13页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:兼具高比强度、高塑性和高韧性的富Ti高熵合金及其制备

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!