一种高导热陶瓷通用覆铜基板及其制备方法

文档序号:297992 发布日期:2021-11-26 浏览:8次 >En<

阅读说明:本技术 一种高导热陶瓷通用覆铜基板及其制备方法 (High-thermal-conductivity general copper-clad ceramic substrate and preparation method thereof ) 是由 陈应峰 吴海兵 于 2021-08-24 设计创作,主要内容包括:本发明公开了一种高导热陶瓷通用覆铜基板,具体涉及陶瓷覆铜板技术领域,包括陶瓷基板、焊料片和铜箔层,所述陶瓷基板包括以下原料:氮化硅粉、氮化铝、氧化铍、烧结助剂、纳米炭黑、纳米硒、二乙基二硫代氨基甲酸锌、磷酸三乙酯和无水乙醇。本发明通过添加有纳米炭黑、二乙基二硫代氨基甲酸锌、磷酸三乙酯和纳米硒,在二乙基二硫代氨基甲酸锌和磷酸三乙酯的作用下纳米炭黑和纳米硒能够在氮化硅陶瓷基板中形成致密的点状交联结构或线网状交联结构,既能够提高陶瓷基板的导热效率,而且能够提高陶瓷基板的力学性能,纳米炭黑和纳米硒也能够填充陶瓷基板内部的缺陷,使得导热网路更好,能够有效提高陶瓷基板的导热效果。(The invention discloses a high-thermal-conductivity general copper-clad ceramic substrate, and particularly relates to the technical field of ceramic copper-clad plates, wherein the copper-clad plate comprises a ceramic substrate, a solder sheet and a copper foil layer, and the ceramic substrate comprises the following raw materials: silicon nitride powder, aluminum nitride, beryllium oxide, a sintering aid, nano carbon black, nano selenium, zinc diethyldithiocarbamate, triethyl phosphate and absolute ethyl alcohol. According to the invention, the nano carbon black, the zinc diethyldithiocarbamate, the triethyl phosphate and the nano selenium are added, and the nano carbon black and the nano selenium can form a compact dot-shaped cross-linked structure or a wire-mesh-shaped cross-linked structure in the silicon nitride ceramic substrate under the action of the zinc diethyldithiocarbamate and the triethyl phosphate, so that the heat conduction efficiency of the ceramic substrate can be improved, the mechanical property of the ceramic substrate can be improved, the defects in the ceramic substrate can be filled with the nano carbon black and the nano selenium, the heat conduction network is better, and the heat conduction effect of the ceramic substrate can be effectively improved.)

一种高导热陶瓷通用覆铜基板及其制备方法

技术领域

本发明涉及陶瓷覆铜板技术领域,更具体地说,本发明涉及一种高导热陶瓷通用覆铜基板及其制备方法。

背景技术

陶瓷覆铜基板是使用DBC(DirectBondCopper)技术将铜箔直接烧结在陶瓷表面而制成的一种电子基础材料。由于陶瓷覆铜基板既具有陶瓷的高导热系数、高耐热、高电绝缘性、高机械强度、与硅芯片相近的热膨胀系数以及低介质损耗等特点,又具有无氧铜的高导电性和优异焊接性能,是当今电力电子领域功率模块封装、连接芯片与散热衬底的关键材料,广泛应用于各类电气设备及电子产品。DBC是将Al2O3或AlN陶瓷基板的单面或双面覆上Cu板后,经由高温1065-1085℃的环境加热,使Cu板表面因高温氧化、扩散与Al2O3基板产生Cu-Cu2O共晶相,使铜板与陶瓷基板黏合,形成陶瓷基覆铜板。

现有的陶瓷覆铜基板封装材料主要有三种:氧化铝、氮化铝和氮化硅。对于新一代的大功率化和高集成化的功率电子器件来说,氧化铝因为机械强度和热导率都不高而不能胜任;氮化铝尽管热导率很高,但其机械性能不够高。而氮化硅的抗弯强度和断裂韧性等机械性能在各种结构陶瓷里非常出众,但其热导率还有待进一步提高。

发明内容

为了克服现有技术的上述缺陷,本发明的实施例提供一种高导热陶瓷通用覆铜基板及其制备方法,本发明所要解决的问题是:如何提高陶瓷覆铜基板的导热性能和力学性能。

为实现上述目的,本发明提供如下技术方案:一种高导热陶瓷通用覆铜基板,包括陶瓷基板、焊料片和铜箔层,所述陶瓷基板包括以下重量份的原料:氮化硅粉70-90份、氮化铝8-15份、氧化铍1-3份、烧结助剂4-6份、纳米炭黑2-8份、纳米硒3-8份、二乙基二硫代氨基甲酸锌0.5-2.5份、磷酸三乙酯0.2-1份和无水乙醇50-120份。

在一种优选的实施方式中,所述陶瓷基板包括以下重量份的原料:氮化硅粉75-85份、氮化铝10-13份、氧化铍1.5-2.5份、烧结助剂4.5-5.5份、纳米炭黑4-6份、纳米硒5-6份、二乙基二硫代氨基甲酸锌1-2份、磷酸三乙酯0.5-0.7份和无水乙醇70-100份。

在一种优选的实施方式中,所述陶瓷基板包括以下重量份的原料:氮化硅粉80份、氮化铝12份、氧化铍2份、烧结助剂5份、纳米炭黑5份、纳米硒5.5份、二乙基二硫代氨基甲酸锌2份、磷酸三乙酯0.6份和无水乙醇90份。

在一种优选的实施方式中,所述纳米硒为点状纳米硒或线状纳米硒的一种或两种混合,所述点状纳米硒的粒径为60-100nm,所述线状纳米硒的直径为50-90nm,长度为4-8um,所述焊料片为用Ag-Cu-Ti系焊料片,厚度为0.01-0.15mm,所述铜箔层为无氧铜,且所述无氧铜的纯度为99.99%,厚度为0.01-0.2mm。

在一种优选的实施方式中,所述烧结助剂为氧化镁和氧化铈的混合物,所述氧化镁与氧化铈的重量比为1:(1-3)。

本发明还提供一种高导热陶瓷通用覆铜基板的制备方法,具体制备步骤如下:

步骤一:陶瓷基板坯体的制备,按照陶瓷基板的原料配比称取氮化硅粉、氮化铝、氧化铍、烧结助剂、纳米炭黑、纳米硒、二乙基二硫代氨基甲酸锌、磷酸三乙酯和无水乙醇,将称取的氮化硅粉、氮化铝、氧化铍、烧结助剂、纳米炭黑、磷酸三乙酯和无水乙醇置于球磨机中进行初次混合,混合完成后向球磨机中加入纳米硒和二乙基二硫代氨基甲酸锌进行二次球磨混合,混合完成后将得到的浆料倒入容器中进行脱泡处理,脱泡处理完成后采用流延成型的方法制备出陶瓷基板坯体;

步骤二:陶瓷基板的制备,将步骤一中得到的陶瓷基板坯体置于排胶炉中进行排胶处理,排胶处理完成后经气氛压力烧结制备出陶瓷基板;

步骤三:将焊料片、铜箔层和步骤二中得到的陶瓷基板进行预处理,预处理完成后将陶瓷基板、焊料片和铜箔层按顺序排列,利用工装夹具夹紧固定;

步骤四:将步骤三中夹紧固定的陶瓷基板、焊料片和铜箔层送入真空钎焊炉中高温焊接,焊接完成后得到高导热陶瓷通用覆铜基板。

在一种优选的实施方式中,所述步骤一中初次球磨混合时间14-18h,所述二次球磨混合时间为8-12h,所述步骤一中脱泡处理采用脱泡机处理。

在一种优选的实施方式中,所述步骤二中排胶处理时排胶炉中温度为400-600℃,在真空条件下处理时间为4-8h,所述步骤二中压力烧结时在0.1-10MPa的氮气压力下加热至1800-1980℃,保温烧结3-5h。

在一种优选的实施方式中,所述步骤三中预处理步骤为:在超声辅助作用下依次利用乙醇、去离子水、酸性溶液、碱性溶液、去离子水进行冲洗,冲洗完成后进行烘干处理,超声辅助时功率为360-480W。

在一种优选的实施方式中,所述步骤四中真空高温焊接的焊接温度为850-950℃,真空度为1×10-4-9×10-4Pa。

本发明的技术效果和优点:

1、采用本发明的原料配方所制备出的高导热陶瓷通用覆铜基板,采用氮化硅陶瓷板,使得陶瓷基板具有较高的硬度和耐磨性能,并在氮化硅基板中添加有氮化铝、氧化铍、烧结助剂、纳米炭黑、纳米硒、二乙基二硫代氨基甲酸锌、磷酸三乙酯,氧化铍在提高氮化硅陶瓷基板导热性的同时能够提高材料的热稳定性;通过添加有纳米炭黑、二乙基二硫代氨基甲酸锌、磷酸三乙酯和纳米硒,在二乙基二硫代氨基甲酸锌和磷酸三乙酯的作用下纳米炭黑和纳米硒能够在氮化硅陶瓷基板中形成致密的点状交联结构或线网状交联结构,既能够提高陶瓷基板的导热效率,而且能够提高陶瓷基板的力学性能,纳米炭黑和纳米硒也能够填充陶瓷基板内部的缺陷,使得导热网路更好,能够有效提高陶瓷基板的导热效果;

2、本发明对陶瓷基板、焊料片和铜箔层预处理后利用真空钎焊炉进行高温钎焊加工,加工工艺简单,成品率较高。

具体实施方式

下面将结合本发明中的实施例,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。

实施例1:

本发明提供了一种高导热陶瓷通用覆铜基板,包括陶瓷基板、焊料片和铜箔层,所述陶瓷基板包括以下重量份的原料:氮化硅粉70份、氮化铝8份、氧化铍1份、烧结助剂4份、纳米炭黑2份、纳米硒3份、二乙基二硫代氨基甲酸锌0.5份、磷酸三乙酯0.2份和无水乙醇80份。

在一种优选的实施方式中,所述纳米硒为点状纳米硒,所述点状纳米硒的粒径为60-100nm,所述焊料片为用Ag-Cu-Ti系焊料片,厚度为0.08mm,所述铜箔层为无氧铜,且所述无氧铜的纯度为99.99%,厚度为0.1mm。

在一种优选的实施方式中,所述烧结助剂为氧化镁和氧化铈的混合物,所述氧化镁与氧化铈的重量比为1:2.5。

本发明还提供一种高导热陶瓷通用覆铜基板的制备方法,具体制备步骤如下:

步骤一:陶瓷基板坯体的制备,按照陶瓷基板的原料配比称取氮化硅粉、氮化铝、氧化铍、烧结助剂、纳米炭黑、纳米硒、二乙基二硫代氨基甲酸锌、磷酸三乙酯和无水乙醇,将称取的氮化硅粉、氮化铝、氧化铍、烧结助剂、纳米炭黑、磷酸三乙酯和无水乙醇置于球磨机中进行初次混合,混合完成后向球磨机中加入纳米硒和二乙基二硫代氨基甲酸锌进行二次球磨混合,混合完成后将得到的浆料倒入容器中进行脱泡处理,脱泡处理完成后采用流延成型的方法制备出陶瓷基板坯体;

步骤二:陶瓷基板的制备,将步骤一中得到的陶瓷基板坯体置于排胶炉中进行排胶处理,排胶处理完成后经气氛压力烧结制备出陶瓷基板;

步骤三:将焊料片、铜箔层和步骤二中得到的陶瓷基板进行预处理,预处理完成后将陶瓷基板、焊料片和铜箔层按顺序排列,利用工装夹具夹紧固定;

步骤四:将步骤三中夹紧固定的陶瓷基板、焊料片和铜箔层送入真空钎焊炉中高温焊接,焊接完成后得到高导热陶瓷通用覆铜基板。

在一种优选的实施方式中,所述步骤一中初次球磨混合时间16h,所述二次球磨混合时间为10h,所述步骤一中脱泡处理采用脱泡机处理。

在一种优选的实施方式中,所述步骤二中排胶处理时排胶炉中温度为550℃,在真空条件下处理时间为6h,所述步骤二中压力烧结时在5.5MPa的氮气压力下加热至1930℃,保温烧结4h。

在一种优选的实施方式中,所述步骤三中预处理步骤为:在超声辅助作用下依次利用乙醇、去离子水、酸性溶液、碱性溶液、去离子水进行冲洗,冲洗完成后进行烘干处理,超声辅助时功率为420W。

在一种优选的实施方式中,所述步骤四中真空高温焊接的焊接温度为900℃,真空度为5×10-4Pa。

实施例2:

本发明提供了一种高导热陶瓷通用覆铜基板,所述陶瓷基板包括以下重量份的原料:氮化硅粉80份、氮化铝12份、氧化铍2份、烧结助剂5份、纳米炭黑5份、纳米硒5.5份、二乙基二硫代氨基甲酸锌2份、磷酸三乙酯0.6份和无水乙醇95份。

实施例3:

与实施例1和2不同的是,本发明提供了一种高导热陶瓷通用覆铜基板,所述陶瓷基板包括以下重量份的原料:氮化硅粉90份、氮化铝15份、氧化铍3份、烧结助剂6份、纳米炭黑8份、纳米硒8份、二乙基二硫代氨基甲酸锌2份、磷酸三乙酯1.8份和无水乙醇110份。

实施例4:

与实施例1不同的是,所述纳米硒为线状纳米硒,所述线状纳米硒的直径为50-90nm,长度为4-8um。

实施例5:

本发明提供了一种高导热陶瓷通用覆铜基板,包括陶瓷基板、焊料片和铜箔层,所述陶瓷基板包括以下重量份的原料:氮化硅粉70份、氮化铝8份、氧化铍1份、烧结助剂4份、纳米炭黑2份、磷酸三乙酯0.2份和无水乙醇80份。

在一种优选的实施方式中,所述焊料片为用Ag-Cu-Ti系焊料片,厚度为0.08mm,所述铜箔层为无氧铜,且所述无氧铜的纯度为99.99%,厚度为0.1mm。

在一种优选的实施方式中,所述烧结助剂为氧化镁和氧化铈的混合物,所述氧化镁与氧化铈的重量比为1:2.5。

本发明还提供一种高导热陶瓷通用覆铜基板的制备方法,具体制备步骤如下:

步骤一:陶瓷基板坯体的制备,按照陶瓷基板的原料配比称取氮化硅粉、氮化铝、氧化铍、烧结助剂、纳米炭黑、磷酸三乙酯和无水乙醇,将称取的氮化硅粉、氮化铝、氧化铍、烧结助剂、纳米炭黑、磷酸三乙酯和无水乙醇置于球磨机中进行混合,混合完成后将得到的浆料倒入容器中进行脱泡处理,脱泡处理完成后采用流延成型的方法制备出陶瓷基板坯体;

步骤二:陶瓷基板的制备,将步骤一中得到的陶瓷基板坯体置于排胶炉中进行排胶处理,排胶处理完成后经气氛压力烧结制备出陶瓷基板;

步骤三:将焊料片、铜箔层和步骤二中得到的陶瓷基板进行预处理,预处理完成后将陶瓷基板、焊料片和铜箔层按顺序排列,利用工装夹具夹紧固定;

步骤四:将步骤三中夹紧固定的陶瓷基板、焊料片和铜箔层送入真空钎焊炉中高温焊接,焊接完成后得到高导热陶瓷通用覆铜基板。

在一种优选的实施方式中,所述步骤一中球磨混合时间为10h,所述步骤一中脱泡处理采用脱泡机处理。

在一种优选的实施方式中,所述步骤二中排胶处理时排胶炉中温度为550℃,在真空条件下处理时间为6h,所述步骤二中压力烧结时在5.5MPa的氮气压力下加热至1930℃,保温烧结4h。

在一种优选的实施方式中,所述步骤三中预处理步骤为:在超声辅助作用下依次利用乙醇、去离子水、酸性溶液、碱性溶液、去离子水进行冲洗,冲洗完成后进行烘干处理,超声辅助时功率为420W。

在一种优选的实施方式中,所述步骤四中真空高温焊接的焊接温度为900℃,真空度为5×10-4Pa。

实施例6:

本发明提供了一种高导热陶瓷通用覆铜基板,包括陶瓷基板、焊料片和铜箔层,所述陶瓷基板包括以下重量份的原料:氮化硅粉70份、氮化铝8份、氧化铍1份、烧结助剂4份、纳米硒3份、二乙基二硫代氨基甲酸锌0.5份、磷酸三乙酯0.2份和无水乙醇80份。

在一种优选的实施方式中,所述纳米硒为点状纳米硒,所述点状纳米硒的粒径为60-100nm,所述焊料片为用Ag-Cu-Ti系焊料片,厚度为0.08mm,所述铜箔层为无氧铜,且所述无氧铜的纯度为99.99%,厚度为0.1mm。

在一种优选的实施方式中,所述烧结助剂为氧化镁和氧化铈的混合物,所述氧化镁与氧化铈的重量比为1:2.5。

本发明还提供一种高导热陶瓷通用覆铜基板的制备方法,具体制备步骤如下:

步骤一:陶瓷基板坯体的制备,按照陶瓷基板的原料配比称取氮化硅粉、氮化铝、氧化铍、烧结助剂、纳米硒、二乙基二硫代氨基甲酸锌、磷酸三乙酯和无水乙醇,将称取的氮化硅粉、氮化铝、氧化铍、烧结助剂、磷酸三乙酯和无水乙醇置于球磨机中进行初次混合,混合完成后向球磨机中加入纳米硒和二乙基二硫代氨基甲酸锌进行二次球磨混合,混合完成后将得到的浆料倒入容器中进行脱泡处理,脱泡处理完成后采用流延成型的方法制备出陶瓷基板坯体;

步骤二:陶瓷基板的制备,将步骤一中得到的陶瓷基板坯体置于排胶炉中进行排胶处理,排胶处理完成后经气氛压力烧结制备出陶瓷基板;

步骤三:将焊料片、铜箔层和步骤二中得到的陶瓷基板进行预处理,预处理完成后将陶瓷基板、焊料片和铜箔层按顺序排列,利用工装夹具夹紧固定;

步骤四:将步骤三中夹紧固定的陶瓷基板、焊料片和铜箔层送入真空钎焊炉中高温焊接,焊接完成后得到高导热陶瓷通用覆铜基板。

在一种优选的实施方式中,所述步骤一中初次球磨混合时间16h,所述二次球磨混合时间为10h,所述步骤一中脱泡处理采用脱泡机处理。

在一种优选的实施方式中,所述步骤二中排胶处理时排胶炉中温度为550℃,在真空条件下处理时间为6h,所述步骤二中压力烧结时在5.5MPa的氮气压力下加热至1930℃,保温烧结4h。

在一种优选的实施方式中,所述步骤三中预处理步骤为:在超声辅助作用下依次利用乙醇、去离子水、酸性溶液、碱性溶液、去离子水进行冲洗,冲洗完成后进行烘干处理,超声辅助时功率为420W。

在一种优选的实施方式中,所述步骤四中真空高温焊接的焊接温度为900℃,真空度为5×10-4Pa。

分别取上述实施例1-6所制得的高导热陶瓷覆铜基板分别作为实验组1、实验组2、实验组3、实验组4、实验组5和实验组6,采用市售氮化硅陶瓷覆铜基板作为对照组,对选取的陶瓷覆铜基板加工前陶瓷基板的结合强度、剥离强度进行测试,并对陶瓷覆铜基板的综合热导率和拉伸强度进行测试。测试结果如表一:

表一

由表一可知,采用本发明生产的陶瓷覆铜基板相比较传统氮化硅陶瓷覆铜基板力学性能显著提高,而导热性能更好,实施例4采用线状纳米硒材料,与实施例1相比力学性能和导热效果更好,实施例5未添加纳米硒和二乙基二硫代氨基甲酸锌,与实施例1相比,力学性能和导热效果明显降低;实施例6未添加纳米炭黑,与实施例1相比,力学性能和导热效果下降,采用氮化硅陶瓷板,使得陶瓷基板具有较高的硬度和耐磨性能,并在氮化硅基板中添加有氮化铝、氧化铍、烧结助剂、纳米炭黑、纳米硒、二乙基二硫代氨基甲酸锌、磷酸三乙酯,氧化铍在提高氮化硅陶瓷基板导热性的同时能够提高材料的热稳定性;通过添加有纳米炭黑、二乙基二硫代氨基甲酸锌、磷酸三乙酯和纳米硒,在二乙基二硫代氨基甲酸锌和磷酸三乙酯的作用下纳米炭黑和纳米硒能够在氮化硅陶瓷基板中形成致密的点状交联结构或线网状交联结构,既能够提高陶瓷基板的导热效率,而且能够提高陶瓷基板的力学性能,纳米炭黑和纳米硒也能够填充陶瓷基板内部的缺陷,使得导热网路更好,能够有效提高陶瓷基板的导热效果。

最后:以上所述仅为本发明的优选实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

9页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种特殊保温耐火材料及其加工设备

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!