低粘度双固化增材制造树脂

文档序号:310492 发布日期:2021-11-26 浏览:24次 >En<

阅读说明:本技术 低粘度双固化增材制造树脂 (Low viscosity dual cure additive manufacturing resin ) 是由 A·G·赖特 陈凯 B·E·斐乐 于 2020-04-21 设计创作,主要内容包括:根据一些实施方案,本文提供一种双固化增材制造树脂,包含:(i)光可聚合组分,(ii)光引发剂,(iii)热可聚合组分以及(iv)非反应性稀释剂,所述树脂通过增材制造可用于三维物体的生产。还提供了使用其的方法。(According to some embodiments, provided herein is a dual cure additive manufacturing resin comprising: (i) a light-polymerizable component, (ii) a photo-initiator, (iii) a thermally polymerizable component and (iv) a non-reactive diluent, said resin being useful for the production of three-dimensional objects by additive manufacturing. Methods of using the same are also provided.)

低粘度双固化增材制造树脂

相关申请的交叉引用

本申请要求提交于2019年4月30日的美国临时申请号62/840,567、提交于2019年7月18日的美国临时申请号62/875,819和提交于2019年9月20日的美国临时申请号62/903,022的权益,其公开内容通过引用并入本文。

技术领域

本发明总体上涉及增材制造,且特别涉及在制成物体中提供增强的可打印性及良好的功能特性二者的双固化树脂。

背景技术

有时被称为“立体光刻”的一组增材制造技术,通过光可聚合树脂的顺序聚合创造三维物体。此类技术可为“自下而上”技术,其中光穿过光可透过的窗投射入生长物体底部的树脂,或“自上而下”技术,其中光被投射至生长物体顶部的树脂上,然后其向下浸入树脂池中。

被称为连续液体界面生产(CLIP)的更快立体光刻技术的近来引入,联合用于增材制造的“双固化”树脂的引入,已扩大了立体光刻从样机研究到制造的实用性(见例如DeSimone等人的美国专利号9,211,678、9,205,601和9,216,546,以及J. Tumbleston、D.Shirvanyants、N. Ermoshkin等人,3D物体的连续液体界面生产,Science 347,1349-1352(2015)中;也见 Rolland等人,美国专利号9,676,963、9,453,142和9,598,606)。

虽然双固化增材制造树脂可生产有满足于消费者和其他最终用途的功能特性的物体,然而它们可为高粘性的,导致在如CLIP的增材制造过程中生产速度较慢。因此,需要双固化树脂,其在生产过程中有增强的可打印性,而不牺牲所得产品的功能特性。

发明内容

根据一些实施方案,本文提供一种双固化增材制造树脂,其包含:(i) 光可聚合组分(例如,从30或50重量百分比至80或90重量百分比),(ii)光引发剂(例如,从0.2或0.3重量百分比至2或4重量百分比),(iii)热可聚合组分(例如,从2或5重量百分比至20或25重量百分比)以及(iv)非反应性稀释剂(例如,从1、2、4或6重量百分比至20、60、80或90重量百分比)。

在一些实施方案中,非反应性稀释剂的沸点从80或100摄氏度至250摄氏度(在标准温度和压力下)。

在一些实施方案中,树脂在40摄氏度下粘度不超过3500 厘泊、3000 厘泊或2500厘泊(例如,当依照本文实施例3中给出的程序测量时)。

在一些实施方案中,非反应性稀释剂以从1或5重量百分比至10、15或20重量百分比的量包含于所述树脂中。

在一些实施方案中,非反应性稀释剂包含二醇醚(例如,二丙二醇单甲醚、二丙二醇二甲醚、二丙二醇甲醚乙酸酯、丙二醇甲醚、二乙二醇单甲醚、乙二醇乙醚、丙二醇单甲醚、乙二醇单丁醚乙酸酯、二乙二醇单丁醚、二乙二醇单丁醚乙酸酯、二乙二醇单乙醚乙酸酯、二丙二醇丁醚等等,包括它们的组合)。

在一些实施方案中,非反应性稀释剂包含酯(例如,乙酸丁酯、乙酸己酯、乙酸辛酯、乙酸癸酯、乙酸十二烷基酯等等,包括它们的组合)。

在一些实施方案中,非反应性稀释剂包含醇(例如,丁醇、戊醇、己醇、1-辛醇、2-乙基己醇、癸醇、十二烷醇等等,包括它们的组合)。

在一些实施方案中,非反应性稀释剂包含N-甲基-2-吡咯烷酮、N,N-二甲基甲酰胺、重石脑油、甲苯、二甲苯、矿物油精或石油溶剂油,或它们的组合。

在一些实施方案中,非反应性稀释剂包含二丙二醇二甲醚、二丙二醇甲醚乙酸酯或它们的组合。

在一些实施方案中,非反应性稀释剂具有:(i) 在1 bar的压力下沸点小于160、200或240摄氏度;和/或(ii)自燃温度小于300、400或600摄氏度(即,依照在ASTM E659中描述的程序测量);和/或 (iii)通过Pensky-Martens闭杯法测量的闪点小于50、80、100或140摄氏度(例如,ASTM D93,EN ISO 2719或 IP 34)。

在一些实施方案中,光可聚合组分包含可通过暴露于光化辐照或光被聚合的单体、预聚体或单体和预聚体二者。

在一些实施方案中,所述光可聚合组分的单体、预聚体或单体和预聚体包含选自丙烯酸酯、甲基丙烯酸酯、α-烯烃、N-乙烯基类、丙烯酰胺、甲基丙烯酰胺、苯乙烯类、环氧化物、硫醇、1,3-二烯、乙烯基卤化物、丙烯腈、乙烯基酯、马来酰亚胺和乙烯基醚的反应性端基。

在一些实施方案中,热可聚合组分包含下列物质的前体:聚氨酯、聚脲、聚氨酯和聚脲的共聚物、硅酮树脂、环氧树脂、氰酸酯树脂、环氧和氰酸酯树脂的共聚物、或天然橡胶。

在一些实施方案中,光可聚合组分包含反应性封端单体、反应性封端预聚体或它们的组合。

在一些实施方案中,光可聚合组分包含由多异氰酸酯低聚物和胺(甲基)丙烯酸酯、醇(甲基)丙烯酸酯、马来酰亚胺或n-乙烯基甲酰胺单体封端剂的反应封端的多异氰酸酯预聚体。

在一些实施方案中,热可聚合组分包含多元醇和/或多元胺。在一些实施方案中,多元醇和/或多元胺可为液体或固体形式,包括包囊的固体或液体,溶解于或悬浮于所述树脂。

在一些实施方案中,树脂还包含以下物质中的至少一种、任意组合或全部:(v) 增链剂;(vi) 反应性稀释剂;(vii)颜料或染料;以及(viii)填料。

也提供了从光可聚合树脂制造三维(3D)物体的方法,包含以下步骤:(a) 提供如本文所教导的双固化树脂;(b) 通过在增材制造过程(例如,自下而上或自上而下立体光刻)中光聚合所述树脂,从所述树脂生产中间体3D物体;(c) 可选地清洁所述中间体3D物体;和然后(d) 加热所述中间体3D物体(例如,至从80至250摄氏度的温度)以使所述稀释剂挥发,聚合所述热可聚合组分以及生产所述三维物体。

在一些实施方案中,生产步骤通过自下而上立体光刻实施 (例如,连续液体界面生产)。

在一些实施方案中,包括了清洁步骤 (且例如通过洗涤、 旋转、擦、吹或它们的组合实施)。

在一些实施方案中,物体具有:(i)邵氏A硬度至少60或70;(ii) 杨氏模量至少15或16 MPa;(iii) 断裂伸长百分比至少200或250;(iv)极限拉伸强度至少16、18或20 MPa,或(v) 前述的任意组合 (其中每个例如依照本文实施例4中给出的程序确定)。

在一些实施方案中,加热步骤在惰性气氛中对所述中间体物体实施。

在一些实施方案中,方法进一步包括:(e) 在所述加热步骤同时,从所述惰性气氛中冷凝出占足够量的挥发的稀释剂以减少所述加热步骤的持续时间。

进一步提供了由本文描述的方法生产的产品。在一些实施方案中,产品包含开放单元点阵(例如,支杆点阵、三周期表面点阵)。

本发明的前述和其他目的和方面在本文附图和以下提出的详述中更为详细解释。所有本文引用的美国专利参考文献的公开内容将通过引用并入本文。

具体实施方式

现参考随附的附图在下文更充分地描述了本发明,其中附图中示出了本发明的实施方案。然而,本发明可以许多不同方式体现,且不应被解释为受限于本文提出的实施方案;相反,提供这些实施方案以使得本公开彻底和完整,也将向本领域技术人员充分传达本发明的范围。

如本文所使用,术语“和/或”包括相关的列出条目中一个或更多个的任意和所有可能组合,而且当以替代(“或”)解释时,不包括组合。

1.树脂

优选双固化树脂用于实施本发明。此类树脂被知晓且描述于例如Rolland等人的美国专利号9,676,963、9,453,142 和9,598,606以及Arndt等人的美国专利号10,316,213,其公开内容通过引用以其全文并入本文。

如本文所教导的双固化增材制造树脂可包括: (i)光可聚合组分(例如,从30或50重量百分比至80或90重量百分比),(ii)光引发剂(例如,从0.2或0.3重量百分比至2或4重量百分比),(iii)热可聚合组分 (例如,从2或5重量百分比至20或25重量百分比)以及(iv)非反应性稀释剂(例如,从1、2、4或6重量百分比至20、60、80或90重量百分比)。

本发明中可用的非反应性稀释剂通常为有机液体,其可为极性或非极性,以及质子或非质子。稀释剂优选为不可燃、不吸湿、低气味及低粘度的。

在一些实施方案中,非反应性稀释剂的沸点从80或100摄氏度至250摄氏度(在标准温度和压力下)。在一些实施方案中,非反应性稀释剂在1 bar的压力下沸点小于160、200或240摄氏度。在一些实施方案中,非反应性稀释剂自燃温度小于300、400或600摄氏度(即,依照在ASTM E659中描述的程序测量)。 在一些实施方案中,非反应性稀释剂由Pensky-Martens闭杯法测量的闪点小于50、80、100或140摄氏度(例如,ASTM D93,EN ISO 2719或IP 34)。

在一些实施方案中,树脂在40摄氏度下粘度不超过3500 厘泊、3000 厘泊或2500厘泊(例如,当依照本文实施例3中给出的程序测量时)。

在一些实施方案中,非反应性稀释剂以从1或5重量百分比至10、15或20重量百分比的量包含于所述树脂中。

合适稀释剂的特定例子包括但不限于:二醇醚(例如,二丙二醇单甲醚、二丙二醇二甲醚、二丙二醇甲醚乙酸酯、丙二醇甲醚、二乙二醇单甲醚、乙二醇乙醚、丙二醇单甲醚、乙二醇单丁醚乙酸酯、二乙二醇单丁醚、二乙二醇单丁醚乙酸酯、二乙二醇单乙醚乙酸酯、二丙二醇丁醚等等,包括它们的组合); 酯(例如,乙酸丁酯、乙酸己酯、乙酸辛酯、乙酸癸酯、乙酸十二烷基酯等等,包括它们的组合);醇(例如,丁醇、戊醇、己醇、1-辛醇、2-乙基己醇、癸醇、十二烷醇等等,包括它们的组合);N-甲基-2-吡咯烷酮、N,N-二甲基甲酰胺、重石脑油、甲苯、二甲苯、矿物油精或石油溶剂油,或它们的组合;以及二丙二醇二甲醚、二丙二醇甲醚乙酸酯或它们的组合。

光可聚合组分可包含可通过暴露于光化辐照或光被聚合的单体、预聚体或单体和预聚体二者。在一些实施方案中,光可聚合组分包含选自丙烯酸酯、甲基丙烯酸酯、α-烯烃、N-乙烯基类、丙烯酰胺、甲基丙烯酰胺、苯乙烯类、环氧化物、硫醇、1,3-二烯、乙烯基卤化物、丙烯腈、乙烯基酯、马来酰亚胺和乙烯基醚的反应性端基。

光可聚合组分可包括反应性封端单体、反应性封端预聚体或它们的组合。比如,光可聚合组分可包括由多异氰酸酯低聚物和胺(甲基)丙烯酸酯、醇(甲基)丙烯酸酯、马来酰亚胺或n-乙烯基甲酰胺单体封端剂的反应封端的多异氰酸酯预聚体。

根据一些实施方案,热可聚合组分可包括多元醇和/或多元胺,其可以液体或固体形式提供,包括包囊的固体或液体,溶解于或悬浮于所述树脂。在一些实施方案中,热可聚合组分包含下列物质的前体:聚氨酯、聚脲、聚氨酯和聚脲的共聚物、硅酮树脂、环氧树脂、氰酸酯树脂、环氧和氰酸酯树脂的共聚物、或天然橡胶。

树脂可进一步包含以下物质中的至少一种、任意组合或全部:(v) 增链剂;(vi)反应性稀释剂;(vii)颜料或染料;以及(viii)填料。

树脂可进一步包括抗氧化剂和/或增塑剂。 抗氧化剂的例子包括但不限于酚、受阻酚、亚磷酸酯、硫代增效剂(thiosynergist)及它们的组合(可从Mayzo,Suwanee,Georgia得到)。增塑剂的具体例子包括但不限于邻苯二甲酸酯增塑剂,比如邻苯二甲酸二(2-乙基己基)酯(DEHP)、邻苯二甲酸二(2-丙基庚基)酯(DPHP)、邻苯二甲酸二异壬酯(DINP);偏苯三酸酯增塑剂,比如偏苯三酸三-(2-乙基己基)酯 (TEHTM) (TOTM);己二酸酯增塑剂,比如己二酸二(2-乙基己基)酯(DEHA),己二酸二异壬酯(DINA);癸二酸酯增塑剂,比如癸二酸二丁酯(DBS);马来酸酯增塑剂,比如马来酸二异丁酯(DBM)等等。举例也包括天然来源的增塑剂,例如环氧化大豆油(ESBO)或其他环氧化植物油(例如腰果油)。

2.增材制造

通过增材制造从此类树脂生产中间体物体、或“生”中间体的技术已被知晓。合适的技术包括自下而上和自上而下增材制造,通常称为立体光刻。此类方法被知晓且描述于,例如Hull的美国专利号5,236,637,Lawton的美国专利号5,391,072 和5,529,473,John的美国专利号7,438,846,Shkolnik的美国专利号 7,892,474,El-Siblani的美国专利号8,110,135,Joyce的美国专利申请公开号 2013/0292862以及Chen等人的美国专利申请公开号2013/0295212。这些专利和申请的公开内容通过引用以其全文并入本文。

在一些实施方案中,增材制造步骤通过有时称为连续液体界面生产 (CLIP)的一系列方法之一实施。CLIP被知晓且描述于,例如,美国专利号9,211,678;9,205,601;9,216,546;及其他;于 J. Tumbleston等人,3D物体的连续液体界面生产,Science 347,1349-1352 (2015);以及于R. Janusziewcz等人,利用连续液体界面生产的无层制造,Proc. Natl. Acad. Sci. USA113,11703-11708 (2016)。用于实施增材制造步骤(有时被称为CLIP)的特定实施方案、且可被用于实施本发明的方法和装置的其他例子,包括但不限于:Batchelder等人,美国专利申请公开号 US 2017/0129169;Sun 和Lichkus,美国专利申请公开号US 2016/0288376;Willis等人,美国专利申请公开号 US 2015/0360419;Lin等人,美国专利申请公开号US 2015/0331402;D. Castanon,美国专利申请公开号US 2017/0129167;B. Feller,美国专利申请公开号 US 2018/0243976(2018年8月30日公开);M.Panzer和J. Tumbleston,美国专利申请公开号US 2018/0126630 (2018年5月10日公开);以及K. Willis 和B. Adzima,美国专利申请公开号US 2018/0290374 (2018年10月11日)。

3.进一步固化

一旦中间体物体形成且可选被清洁(例如通过擦、吹、旋转、洗涤等等,包括它们的组合),然后物体被进一步固化,例如通过加热。加热可为主动加热(例如在烘箱中烘烤,比如电、燃气、太阳能烘箱或微波烘箱,或它们的组合),或被动加热(例如,在环境(室)温度)。主动加热通常将比被动加热更快,且通常优选,但被动加热——比如仅在环境温度保持中间体足够时间以引起进一步固化——也可应用于一些实施方案中。

惰性气氛和烘箱。在一些使用主动加热或烘烤的实施方案中,物体在惰性气氛(即比空气包含更少氧气的气氛)中被加热。其中烘箱室被惰性气体(比如氮气或氩气)吹扫的惰性气氛烘箱被知晓且可从Gruenberg/Thermal Products Solutions,2821 Old Route15,新哥伦比亚,宾夕法尼亚州17856 美国;Despatch Thermal Processing Technology,8860 207th Street,明尼阿波利斯,明尼苏达州 55044 美国,以及其他得到。在一些实施方案中,烘箱可包括冷凝器以在烘烤步骤期间冷却一部分烘箱气氛,并通过冷凝从烘箱气氛中分离出挥发的溶剂(且由此加速另外的惰性稀释剂从被加热物体挥发进入烘箱气氛)。可应用任意合适的冷凝器结构,比如在烘箱室本身中的冷却盘管(带有液体收集器,比如:带有与冷凝器可操作相连的排出管的盛液盘或漏斗);用于将气体测流从烘箱室移除、冷凝出挥发溶剂以及将气体测流返回到烘箱室中的组件;等等。大量此类冷凝系统已被知晓(见例如美国专利号5,220,796)且可从例如以上提到的那些烘箱制造商得到。

4.三维产品

在一些实施方案中,由本文方法生产的三维产品可包括一个或更多个重复结构元素,包括例如为(或大体相当于)封闭空腔、部分封闭空腔、重复单元格或单元格网络、泡沫单元、开尔文泡沫单元或其他开放单元或关闭单元泡沫结构、交错结构、悬垂结构、悬臂、微针、纤维、桨、突起、销、凹坑、环、隧道、管、壳、面板、梁(包括I型梁、U型梁、W型梁和圆柱梁)、支杆、拉杆、通道(不管是开放、关闭或部分封闭的)、波导、三角结构、四面体或其他棱锥形状、立方体、八面体、八角棱柱、三十二面体、菱形三十面体或其他多面体形状或模块(包括开尔文极小表面十四面体、棱柱或其他多面体形状)、五边形、六边形、八边形和其他多边形结构或棱柱、多边形网格或其他三维结构的结构。在一些实施方案中,物体可包括任意这些结构的组合或这些结构的相互连接网络。在一个示例实施方案中,3D成形的物体的所有或部分结构可相当于(或大体相当于)一个或更多个Bravais点阵或单元格结构,包括立方(包括简单、体心或面心)、四方(包括简单或体心)、单斜(包括简单或底心)、正交(包括简单、体心、面心或底心)、菱方、六方和三斜结构。在一些实施方案中,物体可包括相当于(或大体相当于)悬链曲面(catenoid)、螺旋面(helicoid)、gyroid或 lidinoid、其他三周期极小表面(TPMS)的形状或表面,或来自相关系列(或Bonnet系列)或Schwarz P (“原始”) 或SchwarzD (“菱形”)、Schwarz H (“六方”)或 Schwarz CLP (“平行交叉层”) 表面的其他几何形状,菱形花纹或钻石图案、点阵或其他图案或结构。

在一些实施方案中,由本文方法生产的三维产品可包括在其一个或更多个部分(例如,表面部分)上相互连接的点阵单元格(例如,开放单元点阵)的排列。 在一些实施方案中,产品可包括三周期单元(即在三个维度上重复的单元),比如三周期表面或三周期极小表面(见,例如 Ryan 的US 9,440,216以及Robb等人,US 7,718,109 )。

本发明在以下非限制性实施例中进一步详细解释。

实施例 1-2

(比较实施例 A)

包含非反应性溶剂的树脂(和对照)的制备

本文实施例中所使用的材料、其缩写和其来源在以下表1中给出。

在200 mL容器中加入ABPU、68.48% 的 PEG600DMA、Irganox 245和 TPO。经由THINKY™-混合器在2000 rpm下混合30 分钟后,加入剩下的PEG600DMA、TMPTMA、DINA和DMM。容器经由 THINKY™-混合器关闭混合4 分钟。加入颜料且再次混合4分钟。加入MACM且经由THINKY™-混合器在2000 rpm 下混合4分钟然后在2200 rpm 下混合30秒钟。配方的重量份数在以下表2中给出。与以上相似地制备配方2和对照配方(A),其相应组分在以下表2中示出。

实施例3

树脂配方的粘度

使用装配有SC4-31 主轴的Brookfield粘度计(DV1型)在40摄氏度下测量树脂配方的粘度。将无气泡样品(9.0 g)倒入样品室且使温度平衡15分钟。平衡后,将主轴的 RPM调整至约50%的目标扭矩(RPM大致3.0-1.5,取决于样品粘度),在此测量粘度。 结果在以下表3中给出。

实施例4

由树脂配方生产的物体的特性

各树脂在 Carbon Inc. M1 增材制造装置(Carbon,Inc.,红木城,加利福尼亚)上混合后立即打印,以产生0.8 mm厚的板材。板材在90℃按原样(无洗涤步骤)烘烤2小时,然后在128℃烘烤2小时。将拉伸样品使用Die C切成ASTM D 412狗骨试样,并以500 mm/min应变速率测试拉伸特性。结果在以下表4中给出。

尽管在打印期间粘度有显著不同,以及在后续固化步骤期间溶剂从物体中大量失去,惊讶的看到从配方1和2生产的零件的最终机械特性和从对照树脂生产的零件的机械特性非常相似。相应地,基于生产的物体的最终机械特性,使用惰性挥发性溶剂以增强树脂的可打印性似乎没有任何缺点。

实施例5

环己酮作为非反应性溶剂

当使用环己酮代替DMM重复以上实施例的配方时,在混合所有组分且在40℃加热后1小时内树脂粘度快速增加以形成凝胶,使其不能在这些条件下成功加工/打印。当前相信这是由于MACM和环己酮的化学不相容性,因此在此情况下使得环己酮为“反应性”稀释剂。然而,如果固化性物为多元醇而不是多元胺(MACM),可能环己酮(以及其他酮/醛)可用作“非反应性”稀释剂。

实施例6

树脂配方另外的实施例

ABPU可由以下物质构成:

前述为本发明的说明,且不应解释为其限制。本发明由随附权利要求限定,且权利要求的等同物包括于其中。

13页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:聚氨酯预聚物的连续制备

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!