复合减振器的设计方法及复合减振器

文档序号:338580 发布日期:2021-12-03 浏览:24次 >En<

阅读说明:本技术 复合减振器的设计方法及复合减振器 (Design method of composite shock absorber and composite shock absorber ) 是由 齐晓旭 宁明志 郭健 谢少华 王超 李冰莲 李文琪 孙雷 高恩猛 于 2020-05-27 设计创作,主要内容包括:本发明公开了一种复合减振器的设计方法及复合减振器,设计方法包括以下步骤:a、根据传动系统有NVH抱怨时的扭转共振频率,调试复合减振器的扭转振动参数,获得扭转振动参数范围;b、根据传动系统有NVH抱怨时的径向共振频率,调试复合减振器的径向振动参数,获得径向振动参数范围;c、根据扭转振动参数范围和径向振动参数范围,获得扭转振动和径向振动均符合减振要求时的复合减振器的验证参数,根据验证参数得到复合减振条件;d、根据验证参数,获得复合减振条件,根据复合减振条件试制样件装车验证。调整扭转减振器各项参数达到预期的范围,实现用一个复合减振器同时抑制径向振动和扭转振动的目的,从而取消径向振动减振器,节约成本。(The invention discloses a design method of a composite shock absorber and the composite shock absorber, wherein the design method comprises the following steps: a. debugging the torsional vibration parameters of the composite damper according to the torsional resonance frequency of the transmission system when NVH complaints exist, and obtaining the range of the torsional vibration parameters; b. debugging the radial vibration parameters of the composite vibration absorber according to the radial resonance frequency of the transmission system when NVH complaints exist, and obtaining the range of the radial vibration parameters; c. obtaining a verification parameter of the composite damper when the torsional vibration and the radial vibration both meet the damping requirement according to the torsional vibration parameter range and the radial vibration parameter range, and obtaining a composite damping condition according to the verification parameter; d. and obtaining a composite vibration reduction condition according to the verification parameters, and trial-producing a sample piece according to the composite vibration reduction condition for loading verification. The parameters of the torsional vibration damper are adjusted to reach the expected range, and the purpose of simultaneously inhibiting radial vibration and torsional vibration by using one composite vibration damper is realized, so that the radial vibration damper is eliminated, and the cost is saved.)

复合减振器的设计方法及复合减振器

技术领域

本发明涉及汽车传动系统减振技术领域,尤其涉及一种复合减振器的设计方法及复合减振器。

背景技术

现有技术中对传动系统的扭转振动和径向振动都是分开考虑的,即用扭转减振器(TVD)抑制扭转振动,仅有抑制扭转减振的功能;用径向振动减振器(Damper)来抑制径向振动,仅有抑制径向振动的功能。

发明内容

本发明的目的在于解决现有技术中传动系统的扭转振动和径向振动分开设置相关部件,导致的重力大、成本高的问题。通过调整扭转减振器各项参数达到预期的范围,从而实现用一个复合减振器同时抑制径向振动和扭转振动的目的,从而取消径向振动的减振器,节约成本和重量。

为解决上述问题,提供一种复合减振器的设计方法,包括以下步骤:

a、根据传动系统有NVH抱怨时的扭转共振频率,调试复合减振器的扭转振动参数,获得复合减振器的扭转振动参数范围;

b、根据传动系统有NVH抱怨时的径向共振频率,调试复合减振器的径向振动参数,获得复合减振器的径向振动参数范围;

c、根据扭转振动参数范围和径向振动参数范围,获得扭转振动和径向振动均符合减振要求时的复合减振器的验证参数;

d、根据验证参数,获得复合减振条件,并且根据复合减振条件试制样件装车验证。

采用上述方案,结合传动系统的扭转共振频率和径向转共振频率确定扭转振动参数和径向振动参数的大致范围,再通过不断改变复合减振器的材料或半径等条件,进而调试扭转振动参数和径向振动参数,确定符合减振条件的振动参数范围,再根据径向振动参数范围和扭转振动参数范围找到扭转振动和径向振动均符合减振要求时的参数,再根据该参数作为验证参数获得例如复合减振器的材料或半径等复合减振条件,再根据复合减振条件便可获得能同时起到抑制径向振动和扭转振动的复合减振器。用复合减振器,取代径向振动减振器和扭转减振器两个零件的形式,并达到整车抑制振动和噪声的效果,提升车内乘坐舒适感。并且安装在传动轴上,取消传动轴径向振动减振器,减重约1Kg/车,降本约预估25元/车;安装在后主减速器上,取消后主减速器减振器,减重约1.2Kg/车,降本约预估80元/车。

根据本发明的另一

具体实施方式

,本发明的实施方式公开的一种复合减振器的设计方法,步骤a和步骤b中获得振动参数范围的调试方法,包括以下步骤:

s1、建立径向振动模型,根据径向振动模型获得径向振动参数;

s2、根据径向振动参数得到径向振动幅度,并调整径向振动参数得到多个对应的径向振动幅度,根据每个径向振动幅度建立径向振动参数-振幅曲线;

s3、建立扭转振动模型,根据扭转振动模型获得扭转振动参数;

s4、根据扭转振动参数得到扭转振动幅度,并调整扭转振动参数得到多个对应的扭转振动幅度,根据每个扭转振动幅度建立扭转振动参数-振幅曲线;

s5、根据径向振动参数-振幅曲线得到径向振动参数范围,并且根据扭转振动参数-振幅曲线得到扭转振动参数范围。

采用上述方案,可以快速、可控地确定并改变相应参数所需的调试条件和关联条件,即采用本方案可以从仅由关联关系进行定性分析上升到可控地定量分析,减少实验次数和成本,以振动幅度评价减振效果,建立振动参数-振幅对照表可以快速准确的确定参数范围,从而快速找到符合抑制双重振动的验证参数。

根据本发明的另一具体实施方式,本发明的实施方式公开的一种复合减振器的设计方法,扭转振动参数包括复合减振器的扭转固有频率、外圈的转动惯量和复合减振器的橡胶的扭转阻尼;径向振动参数包括复合减振器的径向固有频率、外圈的质量和橡胶的径向阻尼;橡胶的扭转阻尼和径向阻尼根据橡胶的材料确定。

采用上述方案,抑制振动的效果用振幅来评价,经实验,复合减振器的扭转振动的振幅与扭转固有频率、外圈的转动惯量和复合减振器的橡胶的扭转阻尼有关联,通过改变上述参数便可以改变抑制扭转振动的效果。同时,径向振动的振幅与径向固有频率、外圈的质量和橡胶的径向阻尼,通过改变上述参数便可以改变抑制径向振动的效果。从而可以依据上述参数的关联,调试减振效果。其中,阻尼用阻尼因子衡量大小。

根据本发明的另一具体实施方式,本发明的实施方式公开的一种复合减振器的设计方法,根据径向影响因素确定径向固有频率,径向影响因素包括橡胶的材料和橡胶的径向刚度;根据扭转影响因素确定扭转固有频率,扭转影响因素包括橡胶的材料和橡胶的扭转刚度。

采用上述方案,经实验,径向固有频率与橡胶的材料和橡胶的径向刚度有关联,改变橡胶的材料和橡胶的径向刚度可以改变径向固有频率;同时,扭转固有频率与橡胶的材料和橡胶的扭转刚度有关联,改变橡胶的材料和橡胶的扭转刚度可以改变扭转固有频率。因此,可进一步地通过改变橡胶的材料、橡胶的径向刚度和橡胶的扭转刚度改变固有频率,进而调试减振效果。其中,刚度可以通过布置允许的空间设计外圈、安装骨架和橡胶的结构调整,并且上述结构的调整包括是否开孔、开孔大小、橡胶截面形状等。

根据本发明的另一具体实施方式,本发明的实施方式公开的一种复合减振器的设计方法,径向影响因素和扭转影响因素均还包括复合减振器的外圈的半径,半径包括内径和外径。

采用上述方案,经实验,复合减振器的外圈的半径会同时影响复合减振器的径向固有频率和扭转固有频率。因此,可进一步地通过改变外圈的半径去改变固有频率,进而调试减振效果。

根据本发明的另一具体实施方式,本发明的实施方式公开的一种复合减振器的设计方法,径向影响因素还包括附加模块,附加模块包括设置在复合减振器上的销子、金属插片或与复合减振器的橡胶不同硬度的附加橡胶。

采用上述方案,经实验,通过在复合减振器设置例如销子或金属插片等附加模块可以改变径向固有频率。在扭转固有频率满足减振效果的基础上,通过增加一些辅助方法来调整径向固有频率,进一步达到更好的减振效果。

根据本发明的另一具体实施方式,本发明的实施方式公开的一种复合减振器的设计方法,径向振动幅度与径向振动参数满足关系式:

其中,A1——复合减振器的径向振动幅度;

μ1——复合减振器的外圈的质量与传动系统的质量比;

f1——复合减振器的径向固有频率与传动系统的径向共振频率比;

g1——传动系统的受径向激励频率与传动系统的径向共振频率比;

ξ1——橡胶的径向阻尼比;并且,

扭转振动幅度与扭转振动参数满足关系式:

其中,A2——复合减振器的扭转振动幅度;

λ2——传动系统的受扭转激励频率与传动系统的扭转共振频率比;

α2——复合减振器的扭转固有频率与传动系统的扭转共振频率比;

μ2——复合减振器的转动惯量与传动系统转动惯量比;

ξ2——橡胶的扭转阻尼比。

采用上述方案,经建模分析和实验,可以得到上述公式。从而得到影响扭转振动幅度的各扭转振动参数,以及影响径向振动幅度的各径向振动参数之间的关系。进而使得调试过程更加快速、准确和可控,提高了开发人员的设计效率,降低了开发成本。

根据本发明的另一具体实施方式,本发明的实施方式公开的一种复合减振器的设计方法,扭转固有频率根据下述关系式确定:

其中,f扭转——复合减振器的扭转固有频率;

K扭转——外圈绕复合减振器的轴向的扭转刚度;

ρ——复合减振器的外圈的材料密度;

h——复合减振器的外圈的宽度;

r1——复合减振器的外圈的内径;

r2——复合减振器的外圈的外径;

并且,径向固有频率根据下述关系式确定:

其中,K径向——复合减振器的外圈沿半径方向的变形刚度;

f径向——复合减振器的径向固有频率。

采用上述方案,经建模分析和实验,可以得到上述公式。从而得到影响扭转固有频率的各种条件,以及影响径向固有频率的各种条件。进而使得调试过程更加快速、准确和可控,提高了开发人员的设计效率,降低了开发成本。

根据本发明的另一具体实施方式,本发明的实施方式公开的一种复合减振器的设计方法,步骤d中根据验证参数获得复合减振条件的方法包括:

d-1、根据外圈的质量的范围得到所需的外圈的转动惯量的半径范围;

d-2、根据扭转阻尼和径向阻尼确定橡胶材料;

d-3、根据径向固有频率和扭转固有频率确定复合减振器的橡胶的结构;

d-4、在满足扭转固有频率的基础上,根据径向固有频率添加附加模块。

采用上述方案,通过调试找到可以同时起到两种减振效果的验证参数之后,需要进一步将验证参数转化为其所代表的符合减振器材料、模态和附加部分等,即转化为复合减振条件。其中,可以通过外圈的质量和转动惯量得到复合减振器的半径;根据阻尼确定复合减振器的橡胶材料,并进一步根据橡胶材料确定橡胶配方;根据径向固有频率和扭转固有频率确定复合减振器的橡胶的,例如橡胶的径向刚度和扭转刚度;根据径向固有频率还能确定需要条件的插片、销子等附件模块。

还提供一种复合减振器,包括安装骨架、橡胶和外圈,并且橡胶设置在安装骨架上,外圈套设在橡胶上,复合减振器根据上述复合减振器的设计方法设计得到。

本发明的有益效果:

通过调整复合减振器各项参数达到预期的范围,从而实现用一个复合减振器同时抑制径向振动和扭转振动的目的,从而取消径向振动的减振器,节约成本和重量。

附图说明

图1为本发明中实施例1的复合减振器的设计方法流程方框图;

图2为本发明中实施例1的径向振动简化模型图;

图3为本发明中实施例1的扭转振动简化模型图;

图4为本发明中实施例1的径向幅频响应曲线图;

图5为本发明中实施例1的不同外圈质量影响下的径向幅频响应曲线图;

图6为本发明中实施例1的不同阻尼因子影响下的径向幅频响应曲线图;

图7为本发明中实施例1的扭转幅频响应曲线图;

图8为本发明中实施例2的复合减振器结构示意图。

附图标记说明:

1:外圈;2:橡胶;3:安装骨架;4:传动系统;5:减振器。

具体实施方式

以下由特定的具体实施例说明本发明的实施方式,本领域技术人员可由本说明书所揭示的内容轻易地了解本发明的其他优点及功效。虽然本发明的描述将结合较佳实施例一起介绍,但这并不代表此发明的特征仅限于该实施方式。恰恰相反,结合实施方式作发明介绍的目的是为了覆盖基于本发明的权利要求而有可能延伸出的其它选择或改造。为了提供对本发明的深度了解,以下描述中将包含许多具体的细节。本发明也可以不使用这些细节实施。此外,为了避免混乱或模糊本发明的重点,有些具体细节将在描述中被省略。需要说明的是,在不冲突的情况下,本发明中的实施例及实施例中的特征可以相互组合。

应注意的是,在本说明书中,相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步定义和解释。

在本实施例的描述中,需要说明的是,术语“上”、“下”、“内”、“底”等指示的方位或位置关系为基于附图所示的方位或位置关系,或者是该发明产品使用时惯常摆放的方位或位置关系,仅是为了便于描述本发明和描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。

术语“第一”、“第二”等仅用于区分描述,而不能理解为指示或暗示相对重要性。

在本实施例的描述中,还需要说明的是,除非另有明确的规定和限定,术语“设置”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本实施例中的具体含义。

为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明的实施方式作进一步地详细描述。

实施例1

为解决上述问题,提供一种复合减振器的设计方法,如图1所示,包括以下步骤:

a、根据传动系统有NVH抱怨时的扭转共振频率,调试复合减振器的扭转振动参数,获得复合减振器的扭转振动参数范围;

b、根据传动系统有NVH抱怨时的径向共振频率,调试复合减振器的径向振动参数,获得复合减振器的径向振动参数范围;

c、根据扭转振动参数范围和径向振动参数范围,获得扭转振动和径向振动均符合减振要求时的复合减振器的验证参数;

d、根据验证参数,获得复合减振条件,并且根据复合减振条件试制样件装车验证。

具体地,本说明书中径向频率,指沿半径方向的振动频率;扭转频率,指沿圆周转动方向的振动频率。传动系统的扭转共振频率和径向共振频率为由于共振产生抱怨的NVH频率。

NVH是指噪声、振动与声振粗糙度(Noise、Vibration、Harshness)的英文缩写,为本领域衡量汽车制造质量的一个综合性指标。传动系统的固有频率分为径向固有频率和扭转固有频率,传动系统的径向固有频率和扭转固有频率为传动系统的固有属性。传动系统发生抱怨时也有分两类(即系统受到的激励频率与固有频率接近),径向(弯曲)共振抱怨和扭转共振抱怨,当传动系统受到径向激励的频率接近径向固有频率时,会发生径向(弯曲)共振的抱怨,当传动系统受到扭转激励的频率接近扭转固有频率时,会发生扭转共振的抱怨。

需要理解的是,为方便区分,后文中出现的扭转固有频率,指该部件或传动系统的扭转振动的固有属性,扭转频率达到该扭转固有频率时就会发生扭转共振,传动系统失稳;径向固有频率,该部件或传动系统的径向振动的固有属性,径向频率达到该径向固有频率时就会发生径向共振,传动系统失稳。

更具体地,本实施方式中复合减振器的结构同实施例2中所提供的复合减振器的结构,如图6所示,包括外圈1、安装骨架3和设置于外圈1与安装骨架3之间的橡胶2。传动系统,指的是共振发生部位或附近,可以安装在传动轴上或传动轴端部。复合减振器安装在传动系统的传动轴上。

通过改变外圈和橡胶影响减振效果的条件而改变振动参数,这些条件可以是外圈质量、半径、橡胶材料等。例如,根据计算出的外圈尺寸、惯量、质量,在三维软件中建模,调整尺寸以及在软件中测量质量和惯量,调到符合要求范围的惯量和质量。

更具体地,改变复合减振器的振动参数的具体条件可通过多次实验或建立振动简化模型进行分析等方式确定。通过不断改变影响复合减振器的减振效果的条件并结合传动系统的扭转共振频率和径向共振频率确定振动参数的大致范围,进而调试扭转振动参数和径向振动参数,找到扭转振动和径向振动均符合减振要求时的参数,再根据该参数作为验证参数获得例如复合减振器的材料或半径等复合减振条件,再根据复合减振条件便可获得能同时起到抑制径向振动和扭转振动的复合减振器。

例如,对径向振动,测得径向频率、径向阻尼、和质量;对扭转振动,测得扭转频率、扭转阻尼、转动惯量。在得到扭转振动参数范围和径向振动参数范围后,在三维软件中绘制数模,并在软件中对数模测量转动惯量,调整外圈尺寸使转动惯量符合要求。然后在CAE软件中,通过分析橡胶硬度等,调整橡胶在扭转方向和半径方向的刚度,根据扭转方向的刚度和转动惯量,可以算出扭转频率,根据半径方向刚度和外圈质量,可以算出径向频率。

需要理解的是,本说明书中刚度(包括径向刚度和扭转刚度)除了调整橡胶材料以外,还可以通过布置允许的空间设计外圈、安装骨架和橡胶的结构调整,并且上述结构的调整包括是否开孔、开孔大小、橡胶截面形状等。

影响振动效果的扭转振动参数和径向振动参数可以根据建模分析或实验找出有影响和关联关系的影响因素得到。例如,扭转振动参数可以是包括由扭转刚度、外圈半径和橡胶材料得到的扭转固有频率、外圈的转动惯量和由橡胶材料确定的橡胶的扭转阻尼等,还可以是外圈的半径、质量、密度或宽度等。同样径向振动参数可以是径向固有频率、外圈的质量和橡胶的径向阻尼等。

经济效益在于,安装在传动轴上,取消传动轴径向振动减振器,减重约1Kg/车,降本约预估25元/车;安装在后主减速器(RDM)上,取消后主减速器减振器(RDM Damper),减重约1.2Kg/车,降本约预估80元/车。

在一种优选的实施方式中,步骤a和步骤b中获得振动参数范围的调试方法,包括以下步骤:

s1、建立径向振动模型,根据径向振动模型获得径向振动参数;

s2、根据径向振动参数得到径向振动幅度,并调整径向振动参数得到多个对应的径向振动幅度,根据每个径向振动幅度建立径向振动参数-振幅曲线;

s3、建立扭转振动模型,根据扭转振动模型获得扭转振动参数;

s4、根据扭转振动参数得到扭转振动幅度,并调整扭转振动参数得到多个对应的扭转振动幅度,根据每个扭转振动幅度建立扭转振动参数-振幅曲线;

s5、根据径向振动参数-振幅曲线得到径向振动参数范围,并且根据扭转振动参数-振幅曲线得到扭转振动参数范围。

具体地,s1中建立径向振动模型(系统简化的数学模型)如图2所示,根据径向固有频率计算公式:

将某一部分传动系统(如传动轴和后桥输入轴)简化为仅仅是径向(弯曲)刚度和质量这两个参数(金属零件忽略阻尼),而忽略零件具体结构形状,同样对复合减振器也同样简化为径向刚度,质量,橡胶径向阻尼三个参数,忽略复合减振器的具体结构形状。其中,传动系统4为发生径向共振的零件;k1为发生径向共振零件的径向刚度;m1为传动系统的等效质量,减振器5内的k2,c2,m2分别代表复合减振器的径向刚度,径向阻尼,外圈质量。此外,x1(t)指传动系统径向振动位移随时间变化量,x2(t)指的是复合减振器本身的径向振动位移随时间变化量,该模型中仅关心传动系统的振动位移,复合减振器本身的振动位移不再讨论。

s3中建立扭转振动模型(系统简化的数学模型)如图3所示,即简化为扭转刚度和转动惯量,不考虑结构形状,其对应的扭转固有频率公式为:

复合减振器在扭转方向的作用简化为扭转刚度,转动惯量,橡胶扭转阻尼。其中,K1为发生扭转共振零件的扭转刚度;J1为发生扭转共振零件的转动惯量;Kd,C,Jd分别代表复合减振器的扭转刚度,扭转阻尼,转动惯量。

更具体地,抑制振动的效果用振幅来评价,建立模型后可以快速、可控地确定并改变相应参数所需的调试条件和关联条件,而排出无关的影响因素,减少实验次数。

例如,通过建模可以分析得出,最有效的扭转振动参数可以是包括由扭转刚度、外圈半径和橡胶材料得到的扭转固有频率、外圈的转动惯量和由橡胶材料确定的橡胶的扭转阻尼等;径向振动参数可以是径向固有频率、外圈的质量和橡胶的径向阻尼等。

并且在确定各影响因素和影响参数之后,还可以确认各参数之间的函数关系,建立振动参数-振幅对照表可以快速准确的确定参数范围,从而快速找到符合抑制双重振动的验证参数。

在本实施方式中,建立径向振动模型后,可以确定调整减振器径向频率、外圈质量、橡胶阻尼等参数,能减小传动系统该部位的径向振动幅度;并且调整减振器扭转频率、外圈转动惯量、橡胶阻尼等参数,从而减小传动系统该部位的扭转振动幅度。

以上述如图2和图3所示的建立的模型为例,确定径向振动参数和扭转振动参数后,建立如图4-图6所示的径向振动参数-振幅曲线,以及如图7所示的扭转振动参数-振幅曲线,具体地:

径向振动参数-振幅曲线如图4、图5、图6所示的径向幅频响应曲线,其中,图4为不同的复合减振器的径向固有频率与传动系统共振频率比影响下的幅频响应曲线,f1、f2、f3为固有-共振频率比,分别代表不同的复合减振器的径向固有频率与传动系统的径向共振频率的频率比,f0为原状态;图5为不同外圈质量影响下的幅频响应曲线,m、2m、3m分别代表不同的外圈质量;图6为不同阻尼因子影响下的幅频响应曲线,ξa、ξb、ξc分别代表不同阻尼因子影响下的幅频响应曲线,并且ξa=2、ξb=0.2、ξc=0.1。图4-图6的横坐标为传动系统的受激励径向振动频率与传动系统的径向共振频率(发生抱怨的径向频率)之比。

图7是扭转振动参数-振幅曲线,图7中为不同扭转固有频率影响下的幅频响应曲线。同理,扭转振动参数的其他影响振动的参数的影响效果可以参照图5或图6建立类似的扭转振动参数-振幅曲线,本实施方式中不再一一例举。图7的横坐标为传动系统的受激励扭转振动频率与传动系统的扭转共振频率(发生抱怨的扭转频率)之比。

纵坐标为振幅放大系数,传动系统受到不变的激励力的时候,传动系统有一个稳定的变形幅度,当激励力按照某一频率变化时,传动系统的变形幅度就会放大,振幅放大系数指的就是放大的振幅与静态变形幅度的比值。其中,图4-图6的纵坐标为复合减振器的径向振动幅度放大系数,图7的纵坐标为复合减振器的扭转振动幅度放大系数。

还需要理解的是,受激励径向频率指的是,传动系统受到的外部激励力,不是恒定值,而是按照一定频率变化的值,变化的频率就是传动系统的受激励径向频率。受激励扭转频率同理。

更具体地,减振效果用振幅衡量,根据图4-图7,各种振幅越低,说明振动越小,目标就是要将原状态的振幅降下来,越低效果越好。

以图4为例,图4为调试减振器的径向固有频率时的减振效果,可以看到在不同的f0、f1、f2、f3的影响下,可以分别得到一条固有-共振频率比与振幅放大系数的对应关系的曲线。从图2所建立的简易模型可知振幅与径向固有频率有关联关系,根据图4可以找到符合径向减振效果的径向振动参数范围。同理,扭转振动参数的确定方法类似。

在一种优选的实施方式中,扭转振动参数包括复合减振器的扭转固有频率、外圈的转动惯量和复合减振器的橡胶的扭转阻尼;径向振动参数包括复合减振器的径向固有频率、外圈的质量和橡胶的径向阻尼;橡胶的扭转阻尼和径向阻尼根据橡胶的材料确定。

具体地,经实验或建模分析,复合减振器的扭转振动的振幅与扭转固有频率、外圈的转动惯量和复合减振器的橡胶的扭转阻尼有关联,通过改变上述参数便可以改变抑制扭转振动的效果。同时,径向振动的振幅与径向固有频率、外圈的质量和橡胶的径向阻尼,通过改变上述参数便可以改变抑制径向振动的效果。从而可以依据上述参数的关联,调试减振效果。

进一步地,根据径向影响因素确定径向固有频率,径向影响因素包括橡胶的材料和橡胶的径向刚度;根据扭转影响因素确定扭转固有频率,扭转影响因素包括橡胶的材料和橡胶的扭转刚度。

经实验,径向固有频率与橡胶的材料和橡胶的径向刚度有关联,改变橡胶的材料和橡胶的径向刚度可以改变径向固有频率;同时,扭转固有频率与橡胶的材料和橡胶的扭转刚度有关联,改变橡胶的材料和橡胶的扭转刚度可以改变扭转固有频率。因此,可进一步地通过改变橡胶的材料、橡胶的径向刚度和橡胶的扭转刚度改变固有频率,进而调试减振效果。

进一步地,径向影响因素和扭转影响因素均还包括复合减振器的外圈的半径,半径包括内径和外径。

采用上述方案,经实验,复合减振器的外圈的半径会同时影响复合减振器的径向固有频率和扭转固有频率。因此,可进一步地通过改变外圈的半径去改变固有频率,进而调试减振效果。

进一步地,径向影响因素还包括附加模块,附加模块包括设置在复合减振器上的销子、金属插片或与复合减振器的橡胶不同硬度的附加橡胶。

具体地,经实验,通过在复合减振器设置例如销子或金属插片等附加模块可以改变径向固有频率。在扭转固有频率满足减振效果的基础上,通过增加一些辅助方法来调整径向固有频率,进一步达到更好的减振效果。

更具体地,可以安装销子或金属插片,用以提高其径向模态,以改变径向固有频率。当需要降低径向模态时,取消销子或金属插片,降低径向模态,或采用与减振器橡胶不同硬度的橡胶取代销子,以调整径向模态。其中,径向模态是指模态频率,即modefrequency,是CAE软件模态分析计算出来的固有频率。

进一步地,径向振动幅度与径向振动参数满足关系式:

其中,A1——复合减振器的径向振动幅度放大系数;

μ1——复合减振器的外圈的质量与传动系统的质量比;

f1——复合减振器的径向固有频率与传动系统的径向共振频率比;

g1——传动系统的受径向激励频率与传动系统的径向共振频率比;

ξ1——橡胶的径向阻尼比;并且,

扭转振动幅度与扭转振动参数满足关系式:

其中,A2——复合减振器的扭转振动幅度放大系数;

λ2——传动系统的受扭转激励频率与传动系统的扭转共振频率比;

α2——复合减振器的扭转固有频率与传动系统的扭转共振频率比;

μ2——复合减振器的转动惯量与传动系统转动惯量比;

ξ2——橡胶的扭转阻尼比。

具体地,经实验和建模分析,可以得到上述公式。从该公式中定量地体现了减振器径向频率、外圈质量、橡胶阻尼等参数,与传动系统该部位的径向振动幅度的关系,以及减振器扭转频率、外圈转动惯量、橡胶阻尼等参数,与传动系统该部位的扭转振动幅度的关系。

更具体地,扭转固有频率是复合减振器的固有属性,传动系统的扭转共振频率为由于共振产生抱怨的NVH频率,径向固有频率和径向共振频率同理。阻尼比指实际阻尼与临界阻尼的比值,实际阻尼和临界阻尼均指该复合减振器的橡胶的实际阻尼和临界阻尼。橡胶阻尼有径向阻尼和扭转阻尼,通过实验测得。此外,复合减振器的转动惯量指外圈的转动惯量。其中,径向固有频率,由橡胶阻尼、橡胶径向刚度确定;扭转固有频率由橡胶阻尼、橡胶扭转刚度确定;橡胶阻尼由橡胶材料确定,橡胶材料由橡胶配方确定。

更具体地,如前述,振幅放大系数指放大的振幅与静态变形幅度的比值。以图2中所建立的模型为例,图2中x1(t)指传动系统径向振动位移随时间变化量,则A1是为x1(t)的最大值。

需要理解的是,在本实施方式中,根据图2和图3所建立的模型,得到上述公式,公式中的g1和A1分别对应前述的图4-图6的中的横坐标(频率比)和纵坐标(幅度放大系数),λ2和A2分别对应前述的图7的中的横坐标(频率比)和纵坐标(幅度放大系数)。

进一步地,在一种优选的实施方式中,扭转固有频率根据下述关系式确定:

其中,f扭转——复合减振器的扭转固有频率;

K扭转——外圈绕复合减振器的轴向的扭转刚度;

ρ——复合减振器的外圈的材料密度;

h——复合减振器的外圈的宽度;

r1——复合减振器的外圈的内径;

r2——复合减振器的外圈的外径;

并且,径向固有频率根据下述关系式确定:

其中,K径向——复合减振器的外圈沿半径方向的变形刚度;

f径向——复合减振器的径向固有频率。

经建模分析和实验,可以得到上述公式。

更具体地,从上述公式可知调整减振器橡胶的扭转刚度K扭转和径向刚度K径向,可以改变扭转频率和径向频率,改变减振器半径r1和r2,也可以改变扭转频率和径向频率。并且,还可根据上述公式确定扭转固有频率和径向固有频率之间的比例关系。即

根据该比例关系可方便计算减振效果。

更具体地,K扭转、K径向以及f扭转、f径向的矢量方向如实施例2中的图8所示。

在一种优选的实施方式中,步骤d中根据验证参数获得复合减振条件的方法包括:

d-1、根据外圈的质量的范围得到所需的外圈的转动惯量的半径范围;

d-2、根据扭转阻尼和径向阻尼确定橡胶材料;

d-3、根据径向固有频率和扭转固有频率确定复合减振器的橡胶的结构;

d-4、在满足扭转固有频率的基础上,根据径向固有频率添加附加模块。

具体地,因外圈材料是确定的,例如为铁,所以密度是确定的,根据外圈的质量的范围便可以得到所需的外圈的转动惯量的半径范围。d-3中的橡胶结构指截面结构,整个圆周内是否开孔等,目的是调整橡胶的刚度。由于参数跟通过调试找到可以同时起到两种减振效果的验证参数之后,需要进一步将验证参数转化为其所代表的符合减振器材料、模态和附加部分等,即转化为复合减振条件。其中,可以通过外圈的质量和转动惯量得到复合减振器的半径;根据阻尼确定复合减振器的橡胶材料,并进一步根据橡胶材料确定橡胶配方;根据径向固有频率和扭转固有频率确定复合减振器的橡胶的,例如橡胶的径向刚度和扭转刚度;根据径向固有频率还能确定需要条件的插片、销子等附件模块。

实施例2

一种复合减振器,如图8所示,包括安装骨架3、橡胶2和外圈1,并且橡胶2设置在安装骨架3上,外圈1套设在橡胶2上,复合减振器根据实施例1中的复合减振器的设计方法设计得到。

虽然通过参照本发明的某些优选实施方式,已经对本发明进行了图示和描述,但本领域的普通技术人员应该明白,以上内容是结合具体的实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。本领域技术人员可以在形式上和细节上对其作各种改变,包括做出若干简单推演或替换,而不偏离本发明的精神和范围。

20页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种梯度压扭储能减振结构

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!

技术分类