一种逆变器死区电压补偿模型的构建方法及应用

文档序号:37917 发布日期:2021-09-24 浏览:10次 >En<

阅读说明:本技术 一种逆变器死区电压补偿模型的构建方法及应用 (Construction method and application of inverter dead zone voltage compensation model ) 是由 童乔凌 刘涛 闵闰 于 2021-06-09 设计创作,主要内容包括:本发明公开了一种逆变器死区电压补偿模型的构建方法及其应用,包括:S1、通过e指数函数拟合的方式,分别拟合各相补偿电压与其相电流、逆变器功率回路中其相所对应的硬件参数以及逆变器的最大补偿电压之间的非线性关系,得到各相补偿电压方程;S2、基于死区补偿电压与各相补偿电压之间的线性变换关系,结合各相补偿电压方程,得到死区补偿电压与各相电流、逆变器功率回路中各相所对应的硬件参数以及逆变器的最大补偿电压之间的非线性关系,记为逆变器死区电压补偿模型。本发明不需要用到逆变器的电气参数,也避免了传统补偿算法的补偿误差和繁琐的理论模型计算,可以获得更好的补偿效果,能够实时的、自适应的对逆变器的非线性效应进行精确补偿。(The invention discloses a construction method and application of an inverter dead zone voltage compensation model, wherein the construction method comprises the following steps: s1, fitting nonlinear relations between each phase of compensation voltage and phase current thereof, hardware parameters corresponding to each phase of the inverter power loop and the maximum compensation voltage of the inverter respectively in an e exponential function fitting mode to obtain a compensation voltage equation of each phase; and S2, obtaining a nonlinear relation between the dead zone compensation voltage and each phase current, hardware parameters corresponding to each phase in the inverter power loop and the maximum compensation voltage of the inverter by combining a compensation voltage equation of each phase based on the linear transformation relation between the dead zone compensation voltage and each phase compensation voltage, and recording the nonlinear relation as an inverter dead zone voltage compensation model. The method does not need to use the electrical parameters of the inverter, avoids the compensation error of the traditional compensation algorithm and the complex theoretical model calculation, can obtain better compensation effect, and can carry out accurate compensation on the nonlinear effect of the inverter in real time and in a self-adaptive manner.)

一种逆变器死区电压补偿模型的构建方法及应用

技术领域

本发明属于电机控制领域,更具体地,涉及一种逆变器死区电压补偿模型的构建方法及其应用。

背景技术

随着科技的发展,越来越多的电力电子产品已应用到人们的日常生产生活中,逆变器是电力电子产业中的一个重要应用,它的主要作用是将直流电转换成交流电。而三相逆变器作为常用的逆变器广泛应用于各种电机驱动控制系统中,但是由于为了避免三相逆变器同一桥臂上下管直通插入了死区时间,且功率器件存在开通关断延迟、管压降等非线性效应,容易导致实际输出电压和参考电压存在失真,造成三相电流的畸变,影响电机的控制性能,故如何减小电流电压的畸变成为亟待解决的技术问题。

现有技术中通常对逆变器的非线性效应进行补偿来减小电流电压的畸变,目前常见的逆变器死区补偿方法多是基于简单的符号函数模型、梯形补偿模型以及基于离线测定的查找表补偿模型来进行补偿;但是不同逆变器的硬件参数不同,上述模型针对不同的硬件参数均需要进行繁复的离线标定,操作复杂,具有局限性,对于不同的逆变器无法实时且自适应的动态补偿逆变器的非线性效应。另外,上述模型较为简单,通过对死区补偿电压与相电流之间的关系进行近似构建得到,精确度较低,无法实现逆变器的非线性效应的精确补偿。

发明内容

针对现有技术的以上缺陷或改进需求,本发明提供了一种逆变器死区电压补偿模型的构建方法及其应用,用以解决现有技术无法自适应的对逆变器的非线性效应进行精确补偿的技术问题。

为了实现上述目的,第一方面,本发明提供了一种逆变器死区电压补偿模型的构建方法,包括以下步骤:

S1、通过e指数函数拟合的方式,分别拟合各相补偿电压与其相电流、逆变器功率回路中其相所对应的硬件参数以及逆变器的最大补偿电压之间的非线性关系,得到各相补偿电压方程;

S2、基于死区补偿电压与各相补偿电压之间的线性变换关系,结合各相补偿电压方程,得到死区补偿电压与各相电流、逆变器功率回路中各相所对应的硬件参数以及逆变器的最大补偿电压之间的非线性关系,记为逆变器死区电压补偿模型。

进一步优选地,第m相补偿电压方程为:

其中,m为a或b或c;ΔVm为第m相补偿电压;Vd为逆变器的最大补偿电压;wm为逆变器功率回路中第m相所对应的硬件参数;im为第m相相电流。

进一步优选地,逆变器死区电压补偿模型的代价函数为:

其中,Vref为逆变器的参考电压;Vs为逆变器补偿后的输出电压。

逆变器死区电压补偿模型包括在αβ坐标系、dq坐标系或静止三相坐标系下的逆变器死区电压补偿模型。

进一步优选地,αβ坐标系下的逆变器死区电压补偿模型为:

其中,ΔVα为逆变器α轴的死区补偿电压;ΔVβ为逆变器β轴的死区补偿电压。

进一步优选地,对于αβ坐标系下的逆变器死区电压补偿模型:

Vs 2=(Vα-ΔVα)2+(Vβ-ΔVβ)2

其中,Vα为逆变器α轴的实际输出电压;Vβ为逆变器β轴的实际输出电压;Tf为滤波时间常数;S为拉普拉斯常数。

第二方面,本发明提供了一种逆变器非线性效应补偿方法,包括以下步骤:

基于电机静止时逆变器输出的阶跃电压及其对应的稳态反馈电流,计算逆变器的最大补偿电压;

将逆变器的最大补偿电压代入本发明第一方面所提供的逆变器死区电压补偿模型中进行辨识,得到逆变器功率回路中各相所对应的硬件参数,进而得到死区补偿电压,以对逆变器非线性效应进行补偿。

进一步优选地,通过最小化逆变器死区电压补偿模型的代价函数对逆变器死区电压补偿模型进行辨识。

进一步优选地,采用神经网络算法反向更新待辨识的逆变器功率回路中各相所对应的硬件参数,以最小化逆变器死区电压补偿模型的代价函数。

进一步优选地,最小化αβ坐标系下逆变器死区电压补偿模型的代价函数时,逆变器功率回路中各相所对应的硬件参数的辨识递推公式为:

wa(k)=wa(k-1)+Δwa

wb(k)=wb(k-1)+Δwb

wc(k)=wc(k-1)+Δwc

其中,Δwm(k-1)为第k-1次迭代下逆变器功率回路中第m相所对应的硬件参数的改变量;η为学习率;Verror(k-1)为第k-1次迭代下所得的代价函数值;Vd为逆变器的最大补偿电压;wm(k-1)为第k-1次迭代下逆变器功率回路中第m相所对应的硬件参数;im为第m相相电流;Vαr为逆变器α轴补偿后的电压;Vβr为逆变器β轴补偿后的电压;m为a或b或c。

进一步优选地,逆变器的最大补偿电压为:

其中,V1和V2为电机静止时逆变器输出的阶跃电压;I1和I2为电机静止时逆变器的稳态反馈电流。

总体而言,通过本发明所构思的以上技术方案,能够取得以下有益效果:

1、本发明提供了一种逆变器死区电压补偿模型的构建方法,考虑到逆变器功率回路中各相对应的硬件参数不同,通过e指数函数拟合的方式,分别拟合各相补偿电压与其相电流、逆变器功率回路中其相所对应的硬件参数以及逆变器的最大补偿电压之间的非线性关系,以此构建逆变器死区电压补偿模型,e指数可以获得更平滑的过渡过程,更满足电容充放电的物理过程,可以自适应的对逆变器的非线性效应进行精确补偿。

2、本发明提供了一种逆变器非线性效应补偿方法,将逆变器的最大补偿电压代入上述逆变器死区电压补偿模型中进行辨识,分别得到逆变器功率回路中各相所对应的硬件参数,不需要用到逆变器的电气参数,也避免了传统补偿算法的补偿误差和繁琐的理论模型计算,可以获得更好的补偿效果;并且对于不同逆变器参数,本发明都可以进行自适应补偿,避免了重复标定工作,可以实时的、自适应的对逆变器的非线性效应进行精确补偿。

3、本发明所提供的逆变器非线性效应补偿方法,基于补偿后的电压矢量为一恒幅值矢量的原则来构建逆变器死区电压补偿模型的代价函数,通过最小化代价函数对逆变器死区电压补偿模型进行动态辨识;由于补偿后的电压矢量的幅值大小随转速、电流变化,该方法可以采用自参考的方式来实现对其幅值改变的跟踪,具有实时性。

4、本发明所提供的逆变器非线性效应补偿方法,采用神经网络算法反向更新待辨识的逆变器功率回路中各相所对应的硬件参数,以最小化逆变器死区电压补偿模型的代价函数。神经网络算法的计算量小,而用于构造逆变器死区电压补偿模型的e指数函数是神经网络中常用的一种激活函数,更适合用来进行各相所对应的硬件参数的辨识。

5、由于逆变器功率回路存在寄生电容电阻参数的差异,导致各相硬件参数不一致,本发明所提供的逆变器非线性效应补偿方法考虑到逆变器功率回路中各相对应的硬件参数的差异,分别辨识各相硬件参数,更加精确。

6、本发明所提供的逆变器非线性效应补偿方法在数字控制芯片中自动完成,无需手动调整,简单方便,并且计算量小,不会占用较多的计算资源,便于不同系统间的移植应用。

附图说明

图1为本发明实施例1提供的逆变器死区电压补偿模型的构建方法流程图;

图2为本发明实施例2提供的逆变器非线性效应补偿方法流程图;

图3为本发明实施例2提供的逆变器非线性效应补偿方法的控制流程图;

图4为本发明实施例2提供的逆变器非线性效应补偿方法的辨识结果图。

具体实施方式

为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。

实施例1、

一种逆变器死区电压补偿模型的构建方法,如图1所示,包括以下步骤:

S1、通过e指数函数拟合的方式,分别拟合各相补偿电压与其相电流、逆变器功率回路中其相所对应的硬件参数以及逆变器的最大补偿电压之间的非线性关系,得到各相补偿电压方程;

具体地,考虑逆变器功率回路中各相对应的硬件参数不同,本发明分别通过e指数函数拟合的方式,拟合得到各相补偿电压方程;

其中,第m相补偿电压方程为:

其中,m为a或b或c;ΔVm为第m相补偿电压;Vd为逆变器的最大补偿电压;wm为逆变器功率回路中第m相所对应的硬件参数;im为第m相相电流。

S2、基于死区补偿电压与各相补偿电压之间的线性变换关系,结合各相补偿电压方程,得到死区补偿电压与各相电流、逆变器功率回路中各相所对应的硬件参数以及逆变器的最大补偿电压之间的非线性关系,记为逆变器死区电压补偿模型;其中,逆变器死区电压补偿模型的代价函数为:

Vref为逆变器的参考电压;Vs为逆变器补偿后的输出电压。

具体地,可以基于αβ坐标系、dq坐标系或静止三相坐标系下的死区补偿电压与各相补偿电压之间的线性变换关系,构建逆变器死区电压补偿模型;即逆变器死区电压补偿模型包括在αβ坐标系、dq坐标系或静止三相坐标系下的逆变器死区电压补偿模型;三者之间可以相互转换,辨识效果等效。

本实施例中以αβ坐标系下的逆变器死区电压补偿模型为例进行详述:

αβ坐标系下的逆变器死区电压补偿模型为:

其中,ΔVα为逆变器α轴的死区补偿电压;ΔVβ为逆变器β轴的死区补偿电压。

αβ坐标系下的逆变器死区电压补偿模型的代价函数为:

Vs 2=(Vα-ΔVα)2+(Vβ-ΔVβ)2

其中,Vα为逆变器α轴的实际输出电压;Vβ为逆变器β轴的实际输出电压;Tf为滤波时间常数;S为拉普拉斯常数。

实施例2、

一种逆变器非线性效应补偿方法,包括最大补偿电压辨识单元和辨识单元。最大补偿电压辨识单元用于在电机静止时,根据输出两个不同的阶跃电压来进行最大补偿电压辨识。辨识单元用于在电机运行时,对实施例1所得的逆变器死区电压补偿模型进行辨识,从而实现对逆变器非线性效应的自适应补偿。具体地,辨识单元在电机运行时,采用等效死区补偿电压来描述逆变器非线性效应造成的电压畸变,对逆变器死区电压补偿模型进行在线辨识,然后根据辨识的模型对其进行补偿,从而消除了逆变器非线性效应导致的输出电压和电流的畸变。

如图2所示,具体步骤如下:

基于电机静止时逆变器输出的阶跃电压及其对应的稳态反馈电流,计算逆变器的最大补偿电压,以为后后续的模型辨识提供基本参数;其中,逆变器的最大补偿电压为:

V1和V2为电机静止时逆变器输出的阶跃电压;I1和I2为电机静止时逆变器的稳态反馈电流。

将逆变器的最大补偿电压代入实施例1所得的逆变器死区电压补偿模型中进行辨识,得到逆变器功率回路中各相所对应的硬件参数,进而得到死区补偿电压,以对逆变器非线性效应进行补偿。具体地,通过最小化逆变器死区电压补偿模型的代价函数对逆变器死区电压补偿模型进行辨识。优选地,采用神经网络算法反向更新待辨识的逆变器功率回路中各相所对应的硬件参数,以最小化逆变器死区电压补偿模型的代价函数。神经网络算法的计算量小,而用于构造逆变器死区电压补偿模型的e指数函数是神经网络中常用的一种激活函数,更适合用来进行各相所对应的硬件参数的辨识。

下面以αβ坐标系下的逆变器死区电压补偿模型为例进行详述:

如图3所示为逆变器非线性效应补偿方法的控制流程图,将实施例1所构建的逆变器死区电压补偿模型对应为神经网络结构;

基于逆变器死区电压补偿模型得到死区补偿电压,本实施例中逆变器α轴的死区补偿电压记为ΔVα,逆变器β轴的死区补偿电压记为ΔVβ

在常规α-β轴输出参考电压上加上死区补偿电压,获得新的参考电压来控制逆变器输出,具体地,逆变器的实际输出电压为:

其中,Vα为逆变器α轴的实际输出电压;Vβ为逆变器β轴的实际输出电压;Vαr为逆变器α轴补偿后的电压;Vβr为逆变器β轴补偿后的电压。

经过补偿后,利用原补偿输出参考电压特性,计算输出电压矢量幅值。通过设计的神经网络结构,在线逐步修正逆变器死区电压补偿模型中的逆变器功率回路中各相所对应的硬件参数(对应为神经网络的权重w),以最小化逆变器死区电压补偿模型的代价函数,从而实现对逆变器死区电压补偿模型的动态辨识:具体地,训练过程中,逆变器功率回路中各相所对应的硬件参数的辨识递推公式如下:

wa(k)=wa(k-1)+Δwa

wb(k)=wb(k-1)+Δwb

wc(k)=wc(k-1)+Δwc

其中,Δwm(k-1)为第k-1次迭代下逆变器功率回路中第m相所对应的硬件参数的改变量;η为学习率,本实施例中取值为0.02;Verror(k-1)为第k-1次迭代下所得的代价函数值;Vd为逆变器的最大补偿电压;wm(k-1)为第k-1次迭代下逆变器功率回路中第m相所对应的硬件参数;im为第m相相电流;Vαr为逆变器α轴补偿后的电压;Vβr为逆变器β轴补偿后的电压;m为a或b或c。

其中,逆变器的最大补偿电压Vd的计算方法如下:在电机静止时,逆变器输出两个电压矢量V1、V2,并分别获得稳态反馈电流I1、I2,根据所得电压矢量和稳态反馈电流计算逆变器的最大补偿电压(又称最大死区补偿电压)。其中,为了便于实现和简化稳态,在αβ坐标系下,输出电压矢量V1(Vα=0,Vβ=V1),获得反馈电流I1=Iβ1;Vα为逆变器α轴的实际输出电压;Vβ为逆变器β轴的实际输出电压。

上述过程是基于补偿后的电压矢量为一恒幅值矢量的原则来进行动态模型辨识的,由于补偿后的电压矢量的幅值大小随转速、电流变化,故此神经网络算法采用自参考的方式来实现对其幅值改变的跟踪。本实施例所得的逆变器非线性效应补偿方法的辨识结果图如图4所示,从图中可以看出,逆变器功率回路中各相所对应的硬件参数在辨识过程中不断的更新,最后趋于稳定,此时,补偿后的电压矢量趋近于逆变器的参考电压Vref。需要说明的是,本发明中的非线性效应补偿方法不限于αβ坐标系下,在其他坐标系下,如dq坐标系、静止三相坐标系下均可同样实现。

基于上述方法,在电机运行时,根据构建的神经网络结构,逐步辨识死区电压补偿模型,并同时进行死区电压补偿,从而消除逆变器非线性效应导致的电压电流畸变。当辨识完成后,逆变器功率回路中各相所对应的硬件参数稳定,可以得到自适应的逆变器死区电压补偿模型,根据辨识的逆变器死区电压补偿模型进行在线补偿,从而消除电压电流畸变。本发明可以通过调整权重的大小来辨识不同逆变器的非线性效应,可以自适应的实现对不同逆变器的非线性效应的补偿。

相关技术方案同实施例1,这里不做赘述。

本领域的技术人员容易理解,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

12页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种双馈异步电动机控制系统的起动方法和装置

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!