波导集成等离子体激元辅助场发射检测器

文档序号:385183 发布日期:2021-12-10 浏览:28次 >En<

阅读说明:本技术 波导集成等离子体激元辅助场发射检测器 (Waveguide integrated plasmon auxiliary field emission detector ) 是由 W.M.琼斯 L.B.德罗斯 A.谢勒 于 2020-02-27 设计创作,主要内容包括:将场发射与表面等离子体激元极化相结合的光检测器。描述了允许在THz范围内且在高频下检测和测量光的方法和器件。所公开的器件包括具有窄纳米尺寸间隙的等离子体激元金属触点,以将光波导模态耦合到等离子体激元模态,从而通过偏置所述触点来产生场发射电流。(A photodetector that combines field emission with surface plasmon polarization. Methods and devices are described that allow detection and measurement of light in the THz range and at high frequencies. The disclosed device includes a plasmonic metal contact with a narrow nano-sized gap to couple an optical waveguide mode to a plasmonic mode to generate a field emission current by biasing the contact.)

波导集成等离子体激元辅助场发射检测器

相关申请的交叉引用

本公开要求2019年3月1日提交的美国临时申请62/812,748的优先权,其内容通过引用整体结合于此。

技术领域

在整个文件中,术语“表面等离子体激元极化(surface plasmon polariton)”用来指准粒子(即电介质中的电磁波和金属中电子的集体运动的组合)。两者结合产生波现象,即表面等离子体激元,它沿着电介质和金属的表面传播。

本公开涉及光检测器,更具体地说,涉及等离子体激元辅助场发射检测器,这是一种新型光检测器,其结合了场发射的物理特性和表面等离子体激元对光的聚焦特性。

背景技术

光电检测器包括光电倍增管、测辐射热计和半导体检测器等器件。快速检测器通常需要使用半导体材料,将光子转化为电子-空穴对,并改变电导率或提供光电流。通常,光子的能量必须超过一个阈值能量,通常是带隙,这使得电子或空穴能够被产生和测量。这些载波必须移动到电触点才能被检测到,而这种载波传输时间通常会限制光电检测器的最终频率响应。在设计高频检测器时,器件的电容以及载流子产生和触点之间的距离通常被最小化。电信号的放大是通过引入晶体管或载流子倍增机制来实现的,如雪崩光电二极管或集成光电晶体管。

图1示出了集成在硅(Si)波导上的现有技术锗(Ge)p-n二极管检测器(100)。通过将来自直径为6微米的玻璃纤维(110)的模态的光耦合到200x400纳米的硅波导(120)中,光场的集中度超过300倍。典型地,波导由与检测材料不同的材料组成,因为光在到达检测区域之前不应被吸收。在图1中,通过反向偏置的面内p-n二极管(130)检测光,并且测量触点(141)和触点(142)之间的电流。在这种情况下,光从硅波导(120)耦合到锗检测器区域,并且在p-n二极管(130)的耗尽区中产生电子-空穴对。

图1的检测器(100)的工作频率极限通常由触点和载流子产生区域之间的距离决定。应该注意的是,半导体中电子的最大速度受限于饱和速度,对于硅来说,饱和速度大约为1x10^7厘米/秒,对于InP和GaAs来说,饱和速度大约为2倍。对于在半导体波导/检测器区域中移动100纳米的载流子,这转化为大约10^12秒的渡越时间,或者光电检测器的基频限制为1THz。因此,需要在高于1THZ的更高频率下工作的更快的光电检测器。

发明内容

本文公开的方法和器件解决了上述问题。所述类型的光电检测器能够超越上述限制和速度问题,并且能够在更高的频率下工作,同时提供高灵敏度和低噪声的潜力。

根据本公开的第一方面,公开了一种检测和测量光的方法,提供了:提供由10至50nm范围内的间隙分开的第一和第二等离子体激元金属触点,以形成等离子体激元波导;将第一和第二等离子体激元金属触点与具有第一折射率的片上光波导耦合,光波导通过具有第二折射率的介电层与等离子体激元波导垂直分离,第二折射率大于1且小于第一折射率;将光耦合到光波导中以产生一光学模态;向第一和第二等离子体激元金属触点施加偏置电压;和配置等离子体激元波导,使得所述光学模态耦合到间隙内的等离子体激元模态,从而产生作为光强度的函数的场发射电流,场发射电流从第一等离子体激元金属触点流过间隙并到达第二等离子体激元金属触点。

根据本公开的第二方面,提供了一种光电检测器,包括:与等离子体激元波导连接的光波导,所述等离子体激元波导包括以10nm至50nm的间隙分开的第一和第二等离子体激元金属触点,其中:光波导被配置成接收光以产生一光学模态;和等离子体激元波导被配置成允许所述光学模态耦合到间隙内的等离子体激元模态。

在本公开的描述、附图和权利要求中提供了本公开的其他方面。

附图说明

图1示出了现有技术的Ge PN二极管检测器。

图2示出了等离子体激元波导内相关场强的示例性建模结果。

图3示出了根据本公开实施例的示例性光电检测器。

图4示出了根据本公开实施例的示例性光场发射器的响应。

图5A示出了根据本公开的教导的场发射电压的示例性栅极电压响应。

图5B示出了根据本公开的进一步实施例的示例性光电检测器。

具体实施方式

根据本公开的教导,光可用于通过由等离子体激元金属(plasmonic metal),如金、银、铜和铝或其组合,制成的适当设计的纳米结构中的表面等离子体激元产生非常高的电磁场。这样大的光场又可以用来改变场发射器的Fowler-Nordheim发射特性。例如,通过用光照射金场发射器,可以改变它们的电子性能,并且可以获得可以用作高频光电检测器的光活性电子放大器。

根据本公开的实施例可以通过在例如形成等离子体激元波导(plasmonicwaveguide)的两个金触点之间引入间隙来实现。等离子体激元波导可以通过在高折射率波导的顶部上重叠金属层而与由高折射率电介质波导组成的片上(on-chip)光子层有效耦合,在金属层和高折射率波导之间有薄的、较低折射率的电介质层,例如二氧化硅。图2示出了这种等离子体激元波导横截面中光场强度的示例性建模结果。发明人已经注意到,减小间隙宽度可能导致光场的局部化(localization),并伴随着场强的增加。在整个文件中,等效术语“小间隙”和“窄间隙”可互换地用于描述两个金属触点之间的纳米范围的间隙,两个金属触点都耦合到电介质波导的同一表面上并制造在该表面上,其中通过光场以及场发射的存在,电子可以从一个金属触点移动通过该间隙到另一个触点,同时避免金属触点之间的直接隧穿,这可能不期望地导致器件击穿。这种间隙的宽度在10纳米到50纳米的范围内。

作为实施例的示例,并且根据本公开的实施例,可以制造等离子体激元三极管(plamonic triodes),其中等离子体激元三极管的栅极可以通过对等离子体激元金属(例如金)触点下方的掺杂硅电介质波导进行偏置来提供。硅波导中的光可以通过绝热模态转换器而有效地耦合到由等离子体激元金属接触结构限定的等离子体激元波导中,以有效地将光硅波导模态连接到经聚焦混合等离子体激元模态并最小化插入损耗。混合等离子体模态会导致光场比硅波导中的光场增强约100倍,这导致影响场发射所需的光功率的绝对幅值降低。

此外,因为光是通过模态匹配而不是通过谐振器几何形状聚集的,所以开关时间不受谐振腔寿命的限制,高于1THz的工作频率成为可能。在下文中,将使用本公开的一些示例性实施例来进一步描述上面公开的原理。

图3示出了根据本公开实施例的光电检测器(300)。光电检测器(300)本质上是等离子体激元辅助场发射二极管,包括光波导(320)和两个等离子体激元金属触点(341,342),这两个金属触点由纳米范围内的窄间隙(330)分隔开,这两个金属触点与光波导(320)耦合,纳米范围内的薄电介质层(350)放置在i)两个金属触点下方和ii)两个金属触点和光波导(320)之间。换句话说,薄电介质层设置有与金属触点(341,342)连接的第一侧和与光波导(320)连接的第二侧。光波导(320)可以具有平板波导或其他波导几何形状的结构。根据本公开的实施例,薄介电层(350)可以具有的折射率大于1且小于光波导(320)的折射率。换句话说,光波导(320)也可以制成折射率大于薄电介质层(350)的折射率的电介质层。根据本公开的进一步实施例,薄电介质层(350)可以具有两种功能:1)使得等离子体激元部分在聚焦期间损耗更小,以及2)通过允许金属触点(341,342)的底切,减少光电检测器(300)的暗电流(dark current),从而从高电场区域移除泄漏路径。

在操作期间,光电检测器(300)被配置成使得来自光纤(310)的光耦合到高折射率光波导(320)中,然后耦合到由触点(341)和触点(342)之间的间隙限定的等离子体激元波导。已经通过模态转换到高折射率光波导(320)中而增加的光场通过从高折射率介质波导模态耦合到等离子体激元模态而再次增加,具有甚至更小的模态面积和相应的进一步电场集中。插入和吸收损失将减少最终光场,但原则上,有可能获得非常高的场强。根据本公开的实施例,光波导(320)可以由诸如硅的高折射率电介质半导体制成,并且低折射率电介质层包括二氧化硅或一些其他低折射率材料。低折射率介电层的厚度在15至25纳米的范围,例如20纳米。

图4示出了可行性测试,其中测量了光场发射器(发射器电压)对光(光感应电流)的响应。光通过损耗很大的光栅耦合器耦合到硅中,因此检测器的量子效率低于预期。从图4中可以看出,源极和阳极之间的场发射电流对光强度敏感,通过等离子体激元波导聚焦到这两个触点之间的间隙中。

再次参考图3,并且考虑光电检测器(300)的几何形状,可以通过引入靠近触点(341,342)的栅极来改变场发射电流。选通(gate)这种器件的方法是向光波导(320)施加栅极电压,在这种情况下,光波导将稍微掺杂固态掺杂剂,例如硼或磷。图5A示出了不同栅极偏置值下的场发射体电流/电压特性(当没有照明时),表明这种器件的功能类似于三端真空三极管。

图5B示出了根据上述考虑构造的光学光电检测器(500)。光电检测器(500)具有类似于关于图3的光电检测器(300)描述的结构和特征,不同之处在于光学光电检测器(500)还包括用于施加栅极电压以控制场发射电流的额外触点(543)。在有照明的操作过程中,光场和静电场集中的组合能够优化该器件的最大灵敏度和频率响应,同时偏置该器件以实现信号放大。

类似于光电晶体管,但没有饱和速度限制,等离子体激元辅助的三极管可以在1THz以上的频率下工作,并且可以在不需要复杂的串行解复用电路的情况下,在传输Tb/s数据的光学系统中匹配比特级数据内省(bit-scale data introspection)的需求。

因为载流子散射不限制速度,纳米级场发射三极管有望在THz频率下工作,比传统晶体管快得多。然而,在实际电路中,如前所述,电子频率响应受到连接器件的触点中电子散射的限制。总之,基于本公开的上述教导,可以通过将三极管与等离子体激元波导光学连接来避免这种散射,例如如图5B的实施例所示,以光速在这些器件之间传输信号。根据本公开构建的光电场发射器能够在纳米水平上组合高静电场和电磁场。使用由诸如金、银、铜和铝之类的金属或它们的组合制成的触点作为等离子体激元波导和静电场发射的电极,允许减少互连延迟时间并开发更复杂的集成和更简单的电路设计。

根据本公开的教导,场发射三极管可以与等离子体激元和硅波导集成,以限定光电三极管电路。通过在光波导上直接集成超快电子器件,将可以简化现代硅光子学数据通信链路所需的多路复用和解复用电路。此外,通过将电子光学器件与纳米尺度的光子器件相结合,可以制造一类器件,为下一代光电器件奠定基础,不再受载流子散射的限制。

大多数电光调制器依赖于光的吸收或折射率的变化。具有高非线性的电光聚合物最近被开发用于非线性调制器,其中高静电场被施加到小间隙上以调节折射率,从而产生电光(EO)器件。因此,通过将电光材料结合到如本公开中所述的小型高电场器件中,将可以构建EO调制器。即使在真空中,电子密度的变化也会导致折射率的变化,从而实现电光真空电子器件。然而,在EO聚合物中可以发现更大的非线性,特别是在这些聚合物在非常高的静电场中在高温下极化之后。根据本公开的实施例,可以通过使用等离子体激元波导来制造微尺度电光调制器,制造成小型Mach-Zehnder干涉仪,其中干涉仪的一条支腿可以被偏置,而另一条支腿不受干扰。

13页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:背接触型太阳能电池单元的制造方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!

技术分类