一种3d打印复杂结构陶瓷制件及其制备方法与应用

文档序号:388465 发布日期:2021-12-14 浏览:7次 >En<

阅读说明:本技术 一种3d打印复杂结构陶瓷制件及其制备方法与应用 (3D printing ceramic part with complex structure and preparation method and application thereof ) 是由 朱光达 侯仪 赵宁 徐坚 崔可建 于 2020-05-26 设计创作,主要内容包括:本发明公开一种3D打印复杂结构陶瓷制件及其制备方法与应用。制备方法包括如下步骤:(1)对柔性聚合物基陶瓷前驱体制件进行变形操作,并固定其变形后的形状;制备所述柔性聚合物基陶瓷前驱体的组合物包括:含巯基光敏树脂单体、含乙烯基光敏树脂单体、光引发剂以及任选的无机陶瓷填料;其中,至少一种光敏树脂单体中含硅元素。(2)步骤(1)得到的变形后制件经过两次热处理,得到所述陶瓷制件。本发明利用具有可变形的柔软聚合物基陶瓷前驱体,并进一步变形、通过两次热处理,得到结构更为复杂且多样化的陶瓷制件,赋予了3D打印陶瓷材料变形能力,能够制备出单纯光固化3D打印难以实现的更加复杂的结构。(The invention discloses a 3D printing ceramic part with a complex structure and a preparation method and application thereof. The preparation method comprises the following steps: (1) carrying out deformation operation on the flexible polymer-based ceramic precursor workpiece, and fixing the deformed shape of the flexible polymer-based ceramic precursor workpiece; the composition for preparing the flexible polymer-based ceramic precursor comprises: a mercapto group-containing photosensitive resin monomer, a vinyl group-containing photosensitive resin monomer, a photoinitiator and an optional inorganic ceramic filler; wherein at least one photosensitive resin monomer contains silicon element. (2) And (2) carrying out heat treatment twice on the deformed workpiece obtained in the step (1) to obtain the ceramic workpiece. According to the invention, the deformable soft polymer-based ceramic precursor is further deformed and subjected to two times of heat treatment to obtain ceramic parts with more complex and diversified structures, the deformation capability of the 3D printing ceramic material is endowed, and the more complex structure which is difficult to realize by the simplex photocuring 3D printing can be prepared.)

一种3D打印复杂结构陶瓷制件及其制备方法与应用

技术领域

本发明属于3D打印技术领域,具体涉及一种3D打印复杂结构陶瓷制件及其制备方法与应用。

背景技术

与金属材料和高分子材料相比,陶瓷材料难以加工成型,制备复杂形状的陶瓷材料更为困难。陶瓷材料难以通过铸造和机械加工获得,主要是通过粉末烧结和薄膜沉积制得,同时在加工过程中会产生空隙、不均匀性等缺陷,严重影响了陶瓷材料的高温性能、耐候性以及力学性能等,限制了陶瓷材料的使用。

3D打印,是一项新兴的快速成型技术,3D打印能够实现复杂结构的一次成型,获得传统加工方式难以实现的复杂结构,同时也无需传统加工繁琐的工艺流程。光固化3D打印具有高成型精度、高打印效率等优点,能够实现微米、亚微米甚至纳米尺度结构的打印。然而,现有的光固化3D打印陶瓷材料在打印制件完成后直接烧结定型,不具备再次成型的可能性,限制了光固化3D陶瓷材料结构的多样性及复杂性。

发明内容

本发明提供一种陶瓷制件的制备方法,所述制备方法包括如下步骤:

(1)对柔性聚合物基陶瓷前驱体制件进行变形操作,并固定其变形后的形状;

(2)步骤(1)得到的变形后制件经过两次热处理,得到所述陶瓷制件。

根据本发明的实施方案,制备所述柔性聚合物基陶瓷前驱体的组合物包括:含巯基光敏树脂单体、含乙烯基光敏树脂单体、光引发剂以及任选的无机陶瓷填料;其中,至少一种光敏树脂单体中含硅元素。

根据本发明的实施方案,所述含巯基光敏树脂单体可选自以下化合物中的至少一种:巯基硅氮烷或其低聚物、巯基硅氧烷或其低聚物、和巯基丙烯酸酯或其低聚物等。例如,所述巯基硅氧烷的低聚物可以选自巯基聚二甲基硅氧烷;所述巯基丙烯酸酯的低聚物可以选自巯基聚醚丙烯酸酯、巯基聚酯丙烯酸酯中的至少一种;所述巯基丙烯酸酯可以选自巯基环氧丙烯酸酯和三羟基甲基丙烷三(3-巯基丙烯酸酯)中的至少一种。优选地,所述含巯基光敏树脂单体为巯基丙烯酸酯和/或其低聚物;示例性为三羟基甲基丙烷三(3-巯基丙烯酸酯)、巯基环氧丙烯酸酯、巯基聚醚丙烯酸酯中的至少一种。

根据本发明的实施方案,所述含乙烯基光敏树脂单体可选自以下化合物中的至少一种:乙烯基硅烷或其低聚物(例如乙烯基聚硅氧烷)、乙烯基硅氮烷或其低聚物(例如乙烯基聚硅氮烷)、(甲基)丙烯酸酯(例如1,6,己二醇二丙烯酸酯、甲基丙烯酸酸异氰基乙酯和丙烯酸异冰片酯中的至少一种)、聚氨酯(甲基)丙烯酸酯等,优选为2,4,6-三甲基-2,4,6-三乙烯基环氮硅烷、乙烯基聚硅氮烷和/或乙烯基聚硅氧烷。

根据本发明的实施方案,所示光引发剂可以选自以下材料的至少一种:联苯甲酰、二苯基乙二酮、二烷氧基苯乙酮、樟脑醌、α-羟烷基苯酮类(例如HMPP、HHMP和HCPK中的至少一种)、α-胺烷基苯酮类(例如Irgacure907和Irgacure369中的至少一种)、酰基膦氧化物(例如TPO、TEPO和BAPO中的至少一种)、二苯甲酮类化合物(例如二苯甲酮、4-甲基二苯甲酮和2,4,6-三甲基二苯甲酮中的至少一种)、乙醇胺类化合物(例如三乙醇胺、N-甲基乙醇胺、N,N-二甲基乙醇胺和N,N-二乙基乙醇胺中的至少一种)、醌类化合物、茂钛类化合物、碘鎓盐类化合物、硫鎓盐类化合物和三嗪类化合物。

根据本发明的实施方案,所述无机陶瓷填料可选自下列材料中的至少一种:结构陶瓷(例如二氧化硅、氮化硅、氧化锆、磷酸钙和氮化硅中的至少一种)、压电陶瓷(例如选自钛酸钡和锆钛酸铅二元系压电陶瓷)、介电陶瓷(氧化铝、碳化硅和氧化铍中的至少一种)等,优选为二氧化硅、钛酸钡、氧化铝和氧化锆中的至少一种。

根据本发明的实施方案,所述含巯基光敏树脂单体与所述含乙烯基光敏树脂的单体的摩尔比为(1-100):(1-100),优选摩尔比为(1-10):(1-10),更优选为(1-5):(1-5),例如摩尔比为1:1、2:1、1:2、1:3、3:1。

根据本发明的实施方案,所述光引发剂与所述光敏树脂单体总质量的质量比为(0.01-5):100,优选质量比为(0.1-3):100,更优选为(0.5-2):100,例如质量比为0.5:100、0.55:100、0.61:100、1:100、1.5:100。

根据本发明的实施方案,所述无机陶瓷填料与所述光敏树脂单体总质量的质量比为(0.01-50):100,优选质量比为(5-30):100,更优选为(10-20):100,例如质量比为10:100、15:100、20:100。

根据本发明的实施方案,所述柔性聚合物基陶瓷前驱体制件的制备方法包括如下步骤:

a)将含巯基光敏树脂单体、含乙烯基光敏树脂单体与光引发剂共混,得到树脂溶液;

b)任选地,加入所述无机陶瓷填料于所述树脂溶液中,得到混合分散液;

c)对步骤a)所述树脂溶液或步骤b)所述混合分散液进行光固化3D打印,得到所述柔性聚合物基陶瓷前驱体制件。

根据本发明的实施方案,步骤a)和/或b)中,物料在搅拌条件下混合。

根据本发明的实施方案,步骤c)中,所述光固化3D打印选用的激光为可见光或者紫外光。其中,所述可见光的波长范围为425-780nm,例如波长为430-600nm,示例性地为445nm。其中,所述紫外光的波长范围为265-420nm,例如300-410nm,示例性为405nm。其中,每层固化时间为1-600秒,示例性地,每层固化时间为10秒、15秒、20秒或60秒。其中,每层层厚为5-100μm,例如为20-80μm,示例性地为80μm、100μm。

根据本发明的实施方案,步骤(1)中,所述变形的方式选自以下的至少一种:拉伸、弯曲、折叠、扭转、压缩等;例如,拉伸率为大于0且不超过1000%;例如,弯曲角度大于0且不超过180度;例如,扭转角度大于0且不超过360度。示例性地,所述拉伸率为100%、110%、200%。

根据本发明的实施方案,步骤(1)中,固定形状的方式可以通过金属丝(例如铁丝)或夹具来固定制件形状。

根据本发明的实施方案,步骤(2)中,两次热处理均包括完整的升温、保温和降至室温的过程。

根据本发明的实施方案,步骤(2)中,第一次热处理的温度低于第二次热处理的温度。

例如,第一次热处理的温度为100-600℃,优选200-500℃,示例性为200℃,300℃,400℃,500℃,600℃。

例如,第二次热处理的温度为600-2000℃,优选800-1500℃,示例性为800℃,900℃,1000℃,1200℃,1400℃,1500℃。

根据本发明的实施方案,步骤(2)中,第一次热处理和第二次热处理的升温速率可以相同或不同,例如为1-30℃/min,优选3-10℃/min,示例性为3℃/min、4℃/min、5℃/min、6℃/min。作为实例,所述第一次热处理和第二次热处理的温度不同,例如第一次热处理的升温速率为3℃/min、4℃/min或5℃/min,第二次热处理的升温速率为5℃/min。

根据本发明的实施方案,步骤(2)中,第一次热处理和第二次热处理的时间相同或不同,例如热处理的时间为0.5-24h,优选地1-10h,示例性为1h、2h、3h、4h、5h、10h。作为示例,所述第一次热处理和第二次热处理的时间不同,例如第一次热处理时间为3h,第二次热处理时间为4h、6h。

根据本发明的实施方案,步骤(2)中,所述降至室温的过程为随炉自然冷却。

根据本发明的实施方案,步骤(2)中,所述两次热处理的气氛可以相同或不同,例如可以为氮气、空气等惰性气氛。当选用氮气为热处理气氛时,可以得到黑色陶瓷制件;当选用空气为热处理气氛时,可以得到白色陶瓷制件。

根据本发明的实施方案,步骤(2)中,所述热处理在管式炉内进行。

根据本发明的实施方案,步骤(2)中,第一次热处理完成后,除去用于固定的夹具或金属丝。

根据本发明示例性的方案,所述陶瓷制件的制备方法包括如下步骤:

1-1)对柔性聚合物基陶瓷前驱体制件进行拉伸、弯曲、折叠、扭转等至少一种变形操作,并利用金属丝固定其形状;

所述柔性聚合物基陶瓷前驱体制件由下述组合物通过3D光固化打印制备得到:含巯基光敏树脂单体、含乙烯基光敏树脂单体、光引发剂以及任选的无机陶瓷填料;其中,至少一种光敏树脂单体中含硅元素;

2-1)将步骤1-1)得到的变形后制件进行第一次热处理,使聚合物基陶瓷前驱体定型,并除去用于固定的金属丝;

3-1)将步骤2-1)定型后的聚合物基陶瓷前驱体制件进行第二次热处理,得到所述陶瓷制件;

其中,第一次热处理的温度低于第二次热处理的温度。

本发明还提供由上述制备方法制备得到的陶瓷制件。

优选地,所述陶瓷制件具有结构多样性和复杂性。

本发明还提供上述柔性聚合物基陶瓷前驱体在制备结构多样性和复杂性的陶瓷制件中的应用。优选地,所述陶瓷制件可以为压电陶瓷制件、介电陶瓷制件、吸波陶瓷制件、陶瓷固体电池、半导体陶瓷制件或储能陶瓷制件。

本发明还提供所述陶瓷制件在压电材料、介电材料、吸波材料、陶瓷固体电池、半导体材料或储能材料等方面的应用。

本发明的有益效果:

本发明利用具有可变形的柔软聚合物基陶瓷前驱体,并进一步变形、通过两次热处理,得到结构更为复杂且多样化的陶瓷制件,赋予了3D打印陶瓷材料变形能力,能够制备出单纯光固化3D打印难以实现的更加复杂的结构。得到的陶瓷制件能够应用于介电材料、压电材料、储能器件等领域。

附图说明

图1为实施例1步骤1)中树脂混合分散液的照片。

图2为实施例1步骤2)得到的光固化3D打印制件断面的扫描电镜图。

图3为烧结后所得变形陶瓷制件的照片。

图4为实施例1中变形陶瓷制件断面的扫描电镜图。

图5为实施例2中步骤2)得到的光固化3D打印制件的照片。

图6为实施例2中最终样品的照片。

具体实施方式

下文将结合具体实施例对本发明的技术方案做更进一步的详细说明。应当理解,下列实施例仅为示例性地说明和解释本发明,而不应被解释为对本发明保护范围的限制。凡基于本发明上述内容所实现的技术均涵盖在本发明旨在保护的范围内。

除非另有说明,以下实施例中使用的原料和试剂均为市售商品,或者可以通过已知方法制备。

实施例1

1)将51g 2,4,6-三甲基-2,4,6-三乙烯基环氮硅烷、47g三羟基甲基丙烷三(3-巯基丙烯酸酯)、0.5g樟脑醌和10g氧化锆粉共混,2,4,6-三甲基-2,4,6-三乙烯基环氮硅烷和三羟基甲基丙烷三(3-巯基丙烯酸酯)两种树脂的摩尔比约为2:1。共混时在常温下磁力搅拌30min,转速600rpm,得到树脂混合分散液;

2)将步骤1)所得树脂混合分散液进行光固化3D打印,激光波长445nm,每层层厚控制为100μm,每层固化时间控制为10s,打印完成后可得到光固化3D打印制件,作为柔性聚合物基陶瓷前驱体制件;

3)将步骤2)所得制件进行扭曲处理,并用夹具固定住其形状,可得到变形后的制件;

4)将步骤3)得到的变形后制件置于氮气保护的管式炉内以4℃/min的升温速率升至600℃,随后保温3h,随炉冷却至室温,从夹具上取下即可得一次热处理后的样品;

5)将步骤4)得到的一次热处理后的样品置于空气气氛的管式炉内以5℃/min的升温速率升至1500℃,随后保温4h,随炉冷却至室温,可得二次热处理后的样品,即为最终样品-变形陶瓷制件。

图1为步骤1)中得到的树脂混合分散液的照片,可以看出二氧化锆粉稳定分散在树脂混合分散液中。

图2为步骤2)中得到的光固化3D打印制件的断面的扫描电镜图,可以看出二氧化锆粉均匀分布,没有明显团聚现象。

图3为烧结后所得变形陶瓷制件的照片,变形后得到了扭曲的陶瓷制件,结构保持完整。

图4为变形陶瓷制件断面的扫描电镜图,可以看出烧结后聚合物前驱体转变为致密块体,二氧化锆粉末均匀分布其中。

实施例2

1)将51g 2,4,6-三甲基-2,4,6-三乙烯基环氮硅烷、47g三羟基甲基丙烷三(3-巯基丙烯酸酯)、0.5g樟脑醌共混,2,4,6-三甲基-2,4,6-三乙烯基环氮硅烷和三羟基甲基丙烷三(3-巯基丙烯酸酯)两种树脂的摩尔比约为2:1,在常温下磁力搅拌30min,转速600rpm,得到树脂混合分散液;

2)将步骤1)所得树脂混合分散液进行光固化3D打印,激光波长445nm,每层层厚控制为100μm,每层固化时间控制为15s,打印完成后可得到光固化3D打印制件,即为柔性聚合物基陶瓷前驱体制件;

3)将步骤2)所得制件压缩5%,并用夹具固定住其形状,可得到变形后的制件;

4)将步骤3)得到的变形后制件置于氮气保护的管式炉内以5℃/min的升温速率升至600℃,随后保温3h,随炉冷却至室温,从夹具上取下即可得一次热处理后的样品;

5)将步骤4)得到的一次热处理后的样品置于氮气保护的管式炉内以5℃/min的升温速率升至1500℃,随后保温6h,随炉冷却至室温,可得二次热处理后的样品,即为最终样品。

图5为步骤2)中光固化3D打印制件的照片。图6为最终样品的照片。

实施例3

1)将51g 2,4,6-三甲基-2,4,6-三乙烯基环氮硅烷、47g三羟基甲基丙烷三(3-巯基丙烯酸酯)、0.5g TPO共混,2,4,6-三甲基-2,4,6-三乙烯基环氮硅烷和三羟基甲基丙烷三(3-巯基丙烯酸酯)两种树脂的摩尔比约为2:1,在常温下磁力搅拌30min,转速600rpm,得到树脂混合分散液;

2)将步骤1)所得树脂混合分散液进行光固化3D打印,激光波长445nm,每层层厚控制为100μm,每层固化时间控制为15s,打印完成后可得到光固化3D打印制件;

3)将步骤2)所得制件压拉伸至原始长度的1.1倍,并用夹具固定住其形状,可得到变形后的制件;

4)将步骤3)得到的变形后制件置于氮气保护的管式炉内以5℃/min的升温速率升至600℃,随后保温3h,随炉冷却至室温,从夹具上取下即可得一次热处理后的样品;

5)将步骤4)得到的一次热处理后的样品置于氮气保护的管式炉内以5℃/min的升温速率升至1500℃,随后保温6h,随炉冷却至室温,可得二次热处理后的样品,即为最终样品。

实施例4

1)将将51g 2,4,6-三甲基-2,4,6-三乙烯基环氮硅烷、31g三羟基甲基丙烷三(3-巯基丙烯酸酯)和0.5g樟脑醌共混,2,4,6-三甲基-2,4,6-三乙烯基环氮硅烷和三羟基甲基丙烷三(3-巯基丙烯酸酯)两种树脂的摩尔比约为3:1,在常温下磁力搅拌30min,转速600rpm,得到树脂溶液;

2)将步骤1)所得树脂溶液进行光固化3D打印,激光波长445nm,每层层厚控制为100μm,每层固化时间控制为10s,打印完成后可得到光固化3D打印制件;

3)将步骤2)所得制件拉伸至其初始长度的1倍,并用铁丝固定住其形状,可得到变形后的制件;

4)将步骤3)得到的变形后的制件置于氮气保护的管式炉内以4℃/min的升温速率升至600℃,随后保温3h,随炉冷却至室温可得一次热处理后的样品;

5)将步骤4)得到的一次热处理的样品置于氮气保护的管式炉内以5℃/min的升温速率升至1500℃,随后保温4h,随炉冷却至室温。可得二次热处理后的样品,即为最终样品。

实施例5

1)将51g乙烯基聚硅氧烷、31g三羟基甲基丙烷三(3-巯基丙烯酸酯)和0.5gTPO共混,在常温下磁力搅拌30min,转速600rpm,得到树脂溶液;

2)将步骤1)所得树脂溶液进行光固化3D打印,激光波长445nm,每层层厚控制为100μm,每层固化时间控制为10s,打印完成后可得到光固化3D打印制件;

3)将步骤2)所得制件进行弯曲,弯曲角度控制为90度,并用铁丝固定住其形状,可得到变形后的制件;

4)将步骤3)得到的变形后的制件置于氮气保护的管式炉内以4℃/min的升温速率升至600℃,随后保温3h,随炉冷却至室温可得一次热处理后的样品;

5)将步骤4)得到的一次热处理后的样品置于氮气保护的管式炉内以5℃/min的升温速率升至1500℃,随后保温4h,随炉冷却至室温,可得二次热处理后的样品,即为最终样品。

实施例6

1)将将51g乙烯基聚硅氮烷、31g三羟基甲基丙烷三(3-巯基丙烯酸酯)、0.5gTPO、10g二氧化硅共混,在常温下磁力搅拌30min,转速600rpm,得到树脂溶液;

2)将步骤1)所得树脂溶液进行光固化3D打印,激光波长445nm,每层层厚控制为80μm,每层固化时间控制为10s,打印完成后可得到光固化3D打印制件;

3)将步骤2)所得制件进行弯曲,弯曲角度控制为120度,并用夹具固定住其形状,可得到变形后的制件;

4)将步骤3)得到的变形后的制件置于氮气保护的管式炉内以3℃/min的升温速率升至600℃,随后保温3h,随炉冷却至室温可得一次热处理后的样品;

5)将步骤4)得到的一次热处理后的样品置于氮气保护的管式炉内以5℃/min的升温速率升至1500℃,随后保温4h,随炉冷却至室温,可得二次热处理后的样品,即为最终样品。

实施例7

1)将50g巯基聚醚丙烯酸酯、50g乙烯基聚硅氧烷、0.5g二苯甲酮和5g二氧化锆共混,在常温下磁力搅拌30min,转速800rpm,得到树脂混合分散液;

2)将步骤1)所得树脂混合分散液进行光固化3D打印,激光波长445nm,每层层厚控制为100μm,每层固化时间控制为15s,打印完成后可得到光固化3D打印制件;

3)将步骤2)所得制件拉伸至原始长度的2倍,并用夹具固定住其形状,可得到变形后的制件;

4)将步骤3)得到的变形后的制件置于氮气保护的管式炉内以5℃/min的升温速率升至600℃,随后保温3h,随炉冷却至室温,从夹具上取下即可得一次热处理后的样品;

5)将步骤4)得到的一次热处理后的样品置于氮气保护的管式炉内以5℃/min的升温速率升至1500℃,随后保温6h,随炉冷却至室温,可得二次热处理后的样品,即为最终样品。

实施例8

1)将40g巯基环氧丙烯酸酯、50g乙烯基聚硅氮烷、0.5g 4-甲基二苯甲酮、5g钛酸钡共混,在常温下磁力搅拌30min,转速600rpm,得到树脂混合分散液;

2)将步骤1)所得树脂混合分散液进行光固化3D打印,激光波长405nm,每层层厚控制为100μm,每层固化时间控制为15s,打印完成后可得到光固化3D打印制件;

3)将步骤2)所得制件弯曲180度,并用夹具固定住其形状,可得到变形后的制件;

4)将步骤3)得到的变形后的制件置于氮气保护的管式炉内以5℃/min的升温速率升至600℃,随后保温3h,随炉冷却至室温,从夹具上取下即可得一次热处理后的样品;

5)将步骤4)得到的一次热处理后的样品置于氮气保护的管式炉内以5℃/min的升温速率升至1400℃,随后保温6h,随炉冷却至室温,可得二次热处理后的样品,即为最终样品。

以上,对本发明的实施方式进行了说明。但是,本发明不限定于上述实施方式。凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

12页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种热态修补用铝硅质耐磨喷涂料的制备方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!