用于预测性环境跌倒风险标识的系统及方法

文档序号:395587 发布日期:2021-12-14 浏览:15次 >En<

阅读说明:本技术 用于预测性环境跌倒风险标识的系统及方法 (System and method for predictive environmental fall risk identification ) 是由 J·R·赖特 H·S·里奇 于 2020-05-05 设计创作,主要内容包括:在各种示范性实施例中,方法包括:(a)接收环境地图的动态观察;(b)确定所述环境地图;(c)收集一组风险因素;(d)评估所述一组风险因素;(e)创建包括所述所收集一组风险因素的第一训练集;(f)使用所述第一训练集在第一阶段中训练人工神经网络;(g)创建第二训练集;(h)使用所述第二训练集在第二阶段中训练所述人工神经网络;(i)使用所述人工神经网络预测用户的跌倒风险;及(j)向所述用户发送警报。(In various exemplary embodiments, a method comprises: (a) receiving a dynamic view of an environmental map; (b) determining the environment map; (c) collecting a set of risk factors; (d) evaluating the set of risk factors; (e) creating a first training set comprising the collected set of risk factors; (f) training an artificial neural network in a first phase using the first training set; (g) creating a second training set; (h) training the artificial neural network in a second phase using the second training set; (i) predicting a fall risk for a user using the artificial neural network; and (j) sending an alert to the user.)

用于预测性环境跌倒风险标识的系统及方法

相关申请案的交叉参考

本申请案主张2019年5月7日申请的标题为“用于预测性环境跌倒风险标识的系统及方法(Systems and Methods for Predictive Environmental Fall RiskIdentification)”的第62/844,661号美国临时申请案的优先权权益,所述申请案的全部内容特此以引用的方式并入本文中。

技术领域

本技术涉及用于预测性环境跌倒风险标识的系统及方法。

发明内容

在一些实施例中,本公开涉及一或多个计算机的系统,其可经配置以凭借使软件、固件、硬件或其组合安装在所述系统上来执行特定操作或行动,所述软件、固件、硬件或其组合在操作中致使所述系统执行如本文描述的行动及/或方法步骤。

在各种实施例中,本技术是用于针对用户的预测性环境跌倒风险标识的方法。在一些实施例中,所述方法包括:(a)使用传感器接收环境地图的动态观察;(b)确定所述环境地图;(c)使用所述传感器收集针对所述环境地图的一组风险因素;(d)为所述用户评估针对所述环境地图的所述一组风险因素;(e)创建包括所述所收集一组风险因素的第一训练集;(f)使用所述第一训练集在第一阶段中训练人工神经网络;(g)创建用于第二阶段训练的第二训练集,其包括所述第一训练集及所述环境地图的所述动态观察;(h)使用所述第二训练集在所述第二阶段中训练所述人工神经网络;(i)使用所述人工神经网络预测所述用户的跌倒风险;及(j)基于所述环境地图的所述动态观察及所述用户的所述跌倒风险向所述用户发送警报。

在各种示范性实施例中,所述传感器包含(但不限于)视觉传感器。在一些实施例中,所述传感器包含射频(RF)传感器、光检测及测距传感器(“LiDAR”)、音频传感器、温度传感器、光传感器及类似者。

附图说明

通过

附图说明

本技术的某些实施例。将理解,图不一定是按比例绘制。将理解,所述技术不一定限于本文所说明的特定实施例。

图1是根据本技术的示范性实施例的用于预测性环境跌倒风险标识的方法的流程图。

图2说明根据本技术的示范性实施例的用于预测性环境跌倒风险标识的环境地图。

图3说明根据本技术的示范性实施例的用于其中检测到环境改变的预测性环境跌倒风险标识的环境地图。

图4说明根据本技术的示范性实施例的计算机系统。

具体实施方式

此处公开本技术的详细实施例。应理解,所公开实施例仅仅是本发明的示范性实施例,本发明可以多种形式体现。本文公开的所述细节不应以任何形式被解释为限制性的,而应被解释为权利要求的基础。

为防止跌倒,家庭医疗系统将如紧急警报的服务与由雇佣人员对家庭进行的初始跌倒危险评估组合。一些潜在危险不是预定义及预先存在的。因此,作为一种标识技术,与通用安全标准进行比较的视觉检验无法定量地预测未具体标准化的风险。将健康数据标准化集成到机器学习(ML)中对于检测危险的准确方法是必要的,所述方法可在其检测到危险时改进风险标识。由于各种原因,包含因为数据集不可用于训练ML模型以辨识风险,本技术的实施例先前尚未被追求。另外,用以部署本技术的基础设施以及用以收集训练数据的基础设施要么不存在,要么不可用。ML及深度学习是应用于本技术的实施例的摄像头技术中的新利用工具。

本技术的各种实施例在摄像头技术及家庭健康的背景下使用ML作为提高家庭环境安全性的解决方案。举例来说,使用强化学习(RL)来产生相关联的环境跌倒风险(EFRTM)(其取决于个人(即,用户)及时间(改变)),并通知处于风险中的个人的类型的ML。

本技术的一些实施例是一种减小家庭保健监测的高成本,同时减少危险及防止跌倒,并维持用户的安全性及独立性的解决方案。本技术的实施例是环境评估系统及方法,其标识人类解释无法预期的风险、快速注意到风险并向用户发出警报。本技术的实施例包含并入近实时技术以预测及检测风险的模拟环境。

本技术的一些实施例使用模拟及视觉传感器来产生准确地预测潜在及现有EFRTM的强化学习(RL)模型,以及近实时地标识新开发的EFRTM。潜在及现有因素包含家具放置、房间相关风险、用户的个人跌倒风险及时间进展。环境中的每一房间具有从促成因素计算的EFRTM。示范性促成因素包含地板改变(例如,从垫子行进到地毯、瓷砖到垫子等)、不平地板(即,不平瓷砖)、房间相关基准(浴室具有高跌倒风险)及家具放置。环境跌倒风险的额外示范性促成因素不是物理纹理/障碍物,且包含非物理属性(即温度、光照条件、环境音频水平及类似者)的因果关系。环境改变导致新发展的风险(例如,水坑形成)。时间进展在针对组合的房间相关风险及个人跌倒风险因素的近实时改变的EFRTM中计算。

根据本技术的各种实施例,为评估家具放置及房间相关风险,预定义因素及初始风险值随着模型执行额外序列而改进。举例来说,建议的家具重新布置的风险值可被定义为潜在及现有风险,如果初始值大于或等于百分之六十(小于百分之三十),那么所述风险值为高(低),在序列之后针对大于百分之五十(小于百分之十)变高(低)。

在本技术的各种实施例中,使用通过本技术的系统收集及分析的训练数据产生这些模型,以包含随时间改变的所有所列因素,并输出新的跌倒风险。针对时间的改变,用户的RL模型及EFRTM与视觉传感器集成。举例来说,具有75%个人跌倒风险的人在具有0%个人跌倒风险的房间里,其总风险不改变。现在,同一个人在具有21.3%风险的房间里,那么总风险增加。也存在与时间的相依关系。人在房间里的时间越长,风险越高(即,总风险包含个人、房间及时间)。举例来说,可针对相依于时间的等式建立此基准(参见下面的等式1):

跌倒风险=f(t)=0.75t+0.213*t2(等式1),其中0.213表示房间的基准时间进展,且0.75t表示人在时间上的个人风险。因数0.213-卧室跌倒风险来自与垫子或地毯相关联的跌倒分析。参见罗森(Rosen)等人,在美国国家医学图书馆(2013年)中,参考图2脚注。通过包含更多变量,此处呈现的技术随着其变得被更好地定义而改进房间特定值。等式1是示范性等式,并且在各种实施例中,所述等式是线性的、对数的等。类似地,对于确定视觉传感器放置的风险单位分数,这些值用于说明性目的,且将随环境而变动且随着使用ML随时间推移收集数据而改进准确性。

在本技术的一些实施例中,针对新检测到的风险(水坑形成),检测某人在房间里停留的时间的相同视觉传感器也已被放置以最大化所覆盖的平方英尺。如果淋浴具有1个主要风险,那么其具有五十个风险单位的分数。如果可看到厨房的客厅区域具有若干具有两百个风险单位的分数的中等及轻微风险,那么将传感器放置在那里而不是浴室中。

本技术的实施例使用经训练模型来自动标识危险,并将RL标识的跌倒危险及EFRTM通知给处于危险中的个人。通过使用深度摄像头及机载神经网络处理,这种RL技术实时标识常见及不明确的环境跌倒风险(EFR),并入个体变量,并通过预防跌倒来减小健康成本。

图1是根据本技术的示范性实施例的用于预测性环境跌倒风险标识的方法的流程图100。图1展示用于预测及标识环境跌倒风险(EFRTM)的模拟过程。模拟过程中的第一步骤是输入信息,所述信息由代理使用强化学习(RL)从环境状态的测量获取,目标是开始三维地对环境绘制地图。本技术的方法及系统基于通过与周围环境交互检测到的内容采取行动。代理通过奖励函数来评估行动,并学习如何改进能力。举例来说,奖励函数规定,所有目标都可通过最大化对所有序列的预期未来奖励来实现。如果代理采取好的行动,那么代理获得正向奖励,这使得代理想要最大化累积奖励并实现最高可能奖励(即,在所有序列内,预期的未来奖励被最大化)。举例来说,在序列i=1中采取的测量及行动具有等级10,好=10,并且代理可针对所完成的每一序列实现等级10+i。另外,完成的序列越多,本技术的系统及方法以越少交互越快改进。

在各种实施例中,代理是创建环境地图(例如,家庭地图)的自动驾驶汽车。举例来说,连接到部署有ML模型的传感器的小型计算机评估及标识跌倒风险。代理(例如,自动驾驶汽车)产生环境的基准及环境优化建议(例如,重新布置家具、照明调整等),以及传感器用于检测改变的RL的基准。

图2说明根据本技术的示范性实施例的用于预测性环境跌倒风险标识的环境地图200。图2展示通过将环境地图中的项目与用户的个人风险、时间进展及预定义的相依因素合并来建立跌倒风险。促成因素包含家具放置、地板改变(当从地毯行进到瓷砖、垫子到地毯或瓷砖等时风险增加)及房间相关风险。针对房间相关的跌倒风险的变量包含浴室中的35.7%、卧室中的21.3%及厨房中的15.3%。百分比被提供作为实例并且是非限制性的。

根据各种示范性实施例,代理从前门左侧开始初始序列,进入卧室,并在穿过厨房之后完成最后一个序列。当代理绘制地图并评估对应风险时,两者随着每一序列变得被更好地定义。举例来说,在前门的起点处,初始序列xi+1=x0+1=x1,其中f1(x)及g1(f(x))用于状态输入。在下一个顺序点(i=1),代理已交互,检测到下一个环境状态x2中应包含的内容,对其绘制地图,并标识相关联风险。此等式被提供作为实例,且随着额外数据被收集,其准确度使用ML改进。举例来说,一般来说,通过在代理建立模型时增加可靠性,勾号(√)表示低到无风险,且叉号(×)表示中高风险。明暗百分比分别代表未完成及已完成的风险模型。一旦到达卧室,如此处描绘,从前门到客厅的EFRTM评估就完成。此时,所述模型已改进其对高风险的评估以具有针对所述区域的50%,而不是60%的基准。初始60%来自与用户的个人跌倒风险组合的不同房间因素,例如针对卧室的21.3%。这个减少到50%是来自评估家具放置并将其考虑在内。从滑动玻璃门穿过走廊到厨房(其尽头)的风险在此处仍然未完成,因为尚未考虑穿过路径的额外方向(但将在其结束时考虑)。所述等式被提供作为实例并且是非限制性的。

在本技术的各种示范性实施例中,代理需要理解地图并标识代理是在卧室里或浴室里等,而同时标识及绘制风险(例如,来自家具或垫子放置)。向个人用户通知特定风险,并建议家具重新布置,以及相关联风险变化。举例来说,从房间本身(21.3%)及梳妆台位置(35%),组合起来(0.213+0.35=0.563)总基准风险超过百分之五十(56.3%)来说,卧室是高风险的。如果椅子及沙发互换,这减少到21.3%。此外,人从大厅走进厨房时应小心,瓷砖的改变产生跌倒的高风险。最后,代理包含用户的个人跌倒风险及时间进展。举例来说,假设具有百分之七十五(75%)的恒定跌倒风险的用户走进卧室(21.3%),其风险f(t)现在是f(t)=0.75+0.213*t,时间因素针对不同房间不同地缩放。参见罗森,T.、马克,K.A.及努南,R.K.(2013),“滑倒和绊倒:与垫子及地毯相关联的成人跌倒伤害(Slipping andtripping:fall injuries in adults associated with rugs and carpets)”,伤害与暴力研究杂志,5(1),第61到69页,doi:10.5249/jivr.v5i1.177。在各种实施例中,所有这些因素被包含在EFRTM评估中,并集成到视觉传感器中,以便能够近实时地检测新发展的风险。

基于EFR百分比的对应变化,不同家具布置的结果将输出优先级方面的选项。所述风险是基于逐个房间组合成总体改进。从图1中解释的方法,为了并入相依因素、视觉传感器及时间进展,可从多种数值方法确定输出风险。出于说明性目的,此处将使用线性回归作为一种方法的实例。线性回归(其中回归模型将多条线(形式为y=mx+b)拟合到数据点以找到最好拟合)可通过主成分分析(PCA)在此处三维空间中实施,所述主成分分析(PCA)最小化从一点到所述(最佳拟合)线的平均距离平方,其后紧接的是如隔离森林的异常排名方法。所述方法包括使用于一维数据的方法适于三维。第i次观察的回归线/预测响应值为h(xi)=β01xi,其中β0及β1是回归系数,且分别表示回归线的y截距及斜率。接着使用最小二乘法:yi=β01xii=h(xi)+εi=→εi=yi–h(xi)。

使用PCA以r=r(xi,yi,zi)的形式横跨此,用于输出二维平面的法向量,或线的方向向量,以及三维空间中所述平面或线上的点。换句话说,找到β0及β1以最小化从点到所述线的平均距离平方h(x),且所述向量在隔离森林算法中用作路径长度h(x)。其为异常检测方法,其提供等级或分数s(x,n),从而反映异常的程度。

s(x,n)=2-E(h(x))/c(n);c(n)=2H(n-1)–(2(n-1)/n)

E(h(x))→c(n);s(x,n)→0.5

E(h(x))→0;s(x,n)→1

E(h(x))→n–1;s(x,n)→0

其中h(x)-路径长度,c(n)-收敛度量,s(x,n)-例子x的异常分数,H(i)-谐波数,由ln(i)+0.5772156649估计,以及E(h(x))-在随机树的森林上平均化的h(x)的平均值。所述算法将使用个别房间因素作为线性回归的系数,从之前,f(t)=0.75+0.213*t(具有75%个人跌倒风险的人在其风险为21.3%的卧室中的实例)。

可采用许多不同的数值方法来实现本发明的结果,其一个组成部分是为不同的家具布置提供在EFR方面更安全的多个选项。举例来说,个别房间具有重新布置,此个别地减小针对所述房间的EFR(表1),并且是为整个环境输出的选项的促成因素。这可在下表表2及图2中看到,其中等级反映在从“1”作为最高等级(即,最优选)开始的选项编号中。值得注意的是,此处仅考虑卧室及客厅,且这是为清楚起见(如有必要,未被包含的环境的其它区域将用于本发明)。

表中的组合及其相应风险以百分比呈现,此处所有正百分比表示EFR下降。请注意,在图2及图3中左下放描绘的选项1中,此组合是如何将EFR减小百分之五十五。此处说明的重新布置是对原始布局的最优改变,如图2中左上方描绘,表示客厅X及卧室X。考虑选项10,其没有改变客厅且使用卧室A。这产生卧室EFR的百分之六十(60%)减少,及总体上大约百分之二十八(28%)的总减少。卧室中家具布置的改变更为重要,因为其自身具有更高EFR,如先前提及总计约21.3%(罗森,T.等人,2013)。这在比较选项3及4时再次被反映,在家具重新布置的评估及输出中,高风险区域被适当地排名。

图3说明根据本技术的示范性实施例的用于其中检测到环境改变的预测性环境跌倒风险标识的环境地图300。图3展示与家具重新布置相关联的新风险,视觉传感器如何使用RL检测环境改变以标识新发展的风险,以及视觉传感器的放置以最大化平方英尺覆盖范围。最大化覆盖范围赋予标识及检测新形成的风险及停留在房间中的时间(或离开房间)的能力。举例来说,图3展示猫打翻花瓶,从而形成改变用户的跌倒风险的一个水坑。几乎实时地向用户通知跌倒风险的改变。

图4说明根据本技术的示范性实施例的计算机系统。图4是以计算机系统1的形式的实例机器的示意性表示,在其内可执行用于致使机器执行本文论述的方法中的任何一或多者的一组指令。在各种实例实施例中,机器作为独立装置操作,或者可连接(例如,联网)到其它机器。在联网部署中,机器可在服务器-客户端网络环境中以服务器或客户端机器的身分操作,或者在对等(或分布式)网络环境中作为对等机器操作。所述机器可为个人计算机(PC)、平板PC、机顶盒(STB)、个人数字助理(PDA)、蜂窝电话、便携式音乐播放器(例如,便携式硬盘驱动器音频装置,例如运动图像专家组音频层3(MP3)播放器)、网络设备、网络路由器、交换机或桥接器,或能够执行一组指令(循序或以其它方式)的任何机器,所述指令指定由所述机器采取的行动。此外,虽然仅说明单个机器,但术语“机器”还应被视为包含个别地或联合地执行一组(或多组)指令以执行本文所论述的方法中的任何一或多者的任何机器集合。

实例计算机系统1包含处理器或多个处理器5(例如,中央处理单元(CPU)、图形处理单元(GPU)或两者),以及主存储器10及静态存储器15,其经由总线20彼此通信。计算机系统1可进一步包含视频显示器35(例如,液晶显示器(LCD))。计算机系统1还可包含字母数字输入装置30(例如,键盘)、光标控制装置(例如,鼠标)、语音辨识或生物特征验证单元(未展示)、驱动单元37(也称为磁盘驱动单元)、信号产生装置40(例如,扬声器)及网络接口装置45。计算机系统1可进一步包含数据加密模块(未展示)以加密数据。

磁盘驱动器单元37包含计算机或机器可读媒体50,其上存储一或多组指令及数据结构(例如,指令55),其体现或利用本文描述的方法或功能中的任何一或多者。在由计算机系统1执行指令55期间,指令55还可全部或至少部分地驻留在主存储器10内及/或处理器5内。主存储器10及处理器5也可构成机器可读媒体。

指令55可进一步经由网络接口设备45利用数个众所周知的传送协议(例如,超文本传送协议(HTTP))中的任一者通过网络传输或接收。虽然机器可读媒体50在实例实施例中被展示为单个媒体,但术语“计算机可读媒体”应被视为包含存储一或多组指令的单个媒体或多个媒体(例如,集中式或分布式数据库及/或相关联高速缓存及服务器)。术语“计算机可读媒体”还应被视为包含任何媒体,其能够存储、编码或携载供机器执行以及致使机器执行本申请案的方法中的任何一或多者的一组指令,或者能够存储、编码或携载由此一组指令利用或与其相关联的数据结构。术语“计算机可读媒体”应相应地被视为包含(但不限于)固态存储器、光学及磁性媒体以及载波信号。此类媒体还可包含(但不限于)硬盘、软盘、闪存卡、数字视频光盘、随机存取存储器(RAM)、只读存储器(ROM)及类似者。本文描述的实例实施例可在包括安装在计算机上的软件的操作环境中、在硬件中或在软件及硬件的组合中实施。

所属领域的技术人员将认识到,因特网服务可经配置以向耦合到因特网服务的一或多个计算装置提供因特网接入,并且计算装置可包含一或多个处理器、总线、存储器装置、显示装置、输入/输出装置及类似者。此外,所属领域的技术人员可了解,因特网服务可耦合到一或多个数据库、存储库、服务器及类似者,其可被利用以便实施如本文描述的本公开的实施例中的任何者。

这些计算机程序指令也可存储在计算机可读媒体中,所述计算机程序指令可指示计算机、其它可编程数据处理设备或其它装置以特定方式起作用,使得存储在计算机可读媒体中的指令产生包含实施流程图及/或框图框中指定的功能/动作的指令的制品。

计算机程序指令也可加载到计算机、其它可编程数据处理设备或其它装置上,以致使在计算机、其它可编程设备或其它装置上执行一系列操作步骤以产生计算机实施过程,使得在计算机或其它可编程设备上执行的指令提供用于实施流程图及/或框图框中指定的功能/动作的过程。

在描述中,出于解释且非限制的目的,阐述具体细节,例如特定实施例、程序、技术等,以便提供对本技术的透彻理解。然而,对于所属领域的技术人员来说将显而易见的是,本技术可在偏离这些具体细节的其它实施例中实践。

尽管上文出于说明性目的而描述系统的特定实施例及实例,但如相关领域的技术人员将认识到,在系统的范围内各种等效修改是可能的。举例来说,当以给定顺序呈现过程或步骤时,替代实施例可执行具有呈不同顺序的步骤的例程,并且一些过程或步骤可被删除、移动、添加、细分、组合及/或修改以提供替代或子组合。这些过程或步骤中的每一者可以各种不同方式实施。此外,虽然过程或步骤有时被展示为连续地执行,但这些过程或步骤可代替地并行执行,或可在不同时间执行。

尽管上文已经描述各种实施例,但应理解,其仅通过实例的方式而不是限制来呈现。描述并不希望将本技术的范围限于本文阐述的特定形式。相反,本描述希望涵盖可能包含在本技术的精神及范围内的这些替代方案、修改及等效物,如所属领域的一般技术人员所了解。因此,优选实施例的宽度及范围不应受到上文描述的示范性实施例中的任何者限制。

14页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:用于多形状因数信息处理系统的可折叠壳体

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!