一种核壳结构复合纳米粒子及其制备方法和应用

文档序号:401428 发布日期:2021-12-17 浏览:23次 >En<

阅读说明:本技术 一种核壳结构复合纳米粒子及其制备方法和应用 (Core-shell structure composite nanoparticle and preparation method and application thereof ) 是由 陈健 魏雪 杨保成 张鑫宇 朱紫青 于 2021-08-09 设计创作,主要内容包括:本发明公开了一种核壳结构复合纳米粒子及其制备方法和应用,包括:CuBDC纳米粒子和Fe(III)-ART纳米粒子;所述CuBDC纳米粒子为核,Fe(III)-ART纳米粒子为壳。其制备方法包括:铜盐、对苯二甲酸、聚乙烯吡咯烷酮反应,得到CuBDC纳米粒子;所述CuBDC纳米粒子依次与三价铁盐、青蒿素反应,得到核壳结构复合纳米粒子。本发明所述核壳结构复合纳米粒子能够作为比色/荧光双模式纳米探针用于总抗氧化能力检测,该检测具有准确、灵敏、快速、无创的特点。(The invention discloses a core-shell structure composite nanoparticle, a preparation method and application thereof, wherein the preparation method comprises the following steps: CuBDC nanoparticles and Fe (III) -ART nanoparticles; the CuBDC nano particles are cores, and the Fe (III) -ART nano particles are shells. The preparation method comprises the following steps: reacting copper salt, terephthalic acid and polyvinylpyrrolidone to obtain CuBDC nanoparticles; and reacting the CuBDC nano particles with trivalent ferric salt and artemisinin in sequence to obtain the core-shell structure composite nano particles. The core-shell structure composite nano particle can be used as a colorimetric/fluorescent dual-mode nano probe for detecting the total oxidation resistance, and has the characteristics of accuracy, sensitivity, rapidness and no wound.)

一种核壳结构复合纳米粒子及其制备方法和应用

技术领域

本发明属于纳米医学器件研制领域,具体涉及一种核壳结构复合纳米粒子及其制备方法和应用。

背景技术

氧化还原失衡和氧化应激与人类的健康程度和疾病状态息息相关。人体氧化还原失衡可导致氧化应激,这是自由基(Reactive Oxygen Species,ROS and ReactiveNitrogen Species,RNS)ROS/RNS)ROS/RNS过度表达的状态。此外,长期的氧化应激会诱发各种疾病,包括癌症、糖尿病、阿尔茨海默病等,给人类健康带来严重威胁。因此,有效的识别与检测人体内的抗氧化物水平对疾病诊断非常重要,我们需要检测体内抗氧化物水平来评判人类的健康状况。目前市面上的检测方法大多是单一抗氧化物的单模式检测,存在的问题有:耗时、耗力、费用高、技术复杂且不准确。不准确的原因是因为抗氧化物质在同一体系中有协同作用,会产生叠加作用效果。

鉴于此,一个代表有机体内酶类和非酶类抗氧化物总体水平的指标——总抗氧化态(total antioxidant status,TAS)被广泛研究。TAS又称总抗氧化能力(totalantioxidant capacity,TAC)、总抗氧化活性(total antioxidant activity,TAA)、总抗氧化力(total antioxidantpower,TAOP)、总抗氧化应力(total antioxidant response,TAR)或总反应性抗氧化潜能(total reactive antioxidant potential,TRAP)等。它不仅代表体内酶类和非酶类抗氧化物质的总和,而且反映了各抗氧化物之间相互联系、协同保护作用的关系。机体抗氧化防御系统的能力强弱与健康状况和疾病状态之间存在着密切的联系,当其降低时,势必引起炎性反应、肿瘤和免疫系统疾病等。因此,TAS水平反映了不同状态下机体抗氧化能力的综合信息。目前抗氧化物的检测主要有比色法(AnalyticaChimicaActa,1127卷,1-8)、荧光法(Journal oftheAmerican Chemical Society,142卷,35期,14789-1480)、电化学法(Ceramics International,46卷,16期,25189-25199)等。

迄今为止,抗氧化剂检测需要昂贵的仪器、实验室设置和试剂,且操作复杂,并且它们是侵入性的,而且单一抗氧化物的检测不能体现人体总抗氧化物水平,不利于对疾病检测做出准确判断;另一方面,单一模式的检测方法灵敏度低,检测误差较大,易造成误诊。因此,开发出一种安全快速,准确高效,无创,灵敏且检测限尽可能低的总抗氧化物检测探针是临床中疾病诊断急需解决的问题。

发明内容

基于上述技术问题,本发明提供了一种核壳结构复合纳米粒子,所述核壳结构复合纳米粒子能够作为比色/荧光双模式纳米探针用于人体总抗氧化能力检测,该检测具有准确、灵敏、快速、无创的特点。

本发明技术方案具体如下:

本发明目的之一在于,提供了一种核壳结构复合纳米粒子,包括:CuBDC纳米粒子和Fe(III)-ART纳米粒子;所述CuBDC纳米粒子为核,Fe(III)-ART纳米粒子为壳。

本发明所述的核壳结构复合纳米粒子用[email protected](III)-ART表示,其中CuBDC为,金属有机骨架材料铜-对苯二甲酸纳米粒子;Fe(III)-ART为,铁(III)-青蒿素纳米粒子。

本发明所述核壳结构复合纳米粒子以Fe(III)-ART纳米粒子为壳包覆在CuBDC纳米粒子外层,在遇到抗氧化剂时,外层的Fe(III)-ART纳米粒子首先释放Fe3+和ART,释放的Fe3+进一步在抗氧化剂作用下还原为Fe2+,随后催化ART产生自由基。所产生的自由基能够与CuBDC纳米粒子中的对苯二甲酸反应产生荧光成分。CuBDC纳米粒子中的Cu2+易被抗氧化剂中的-NH2或-SH等基团夺取出来,导致质子化羧基的紫外-可见吸收强度恢复,故而,能够在比色/荧光双模式条件下对总抗氧化能力进行检测。

本发明目的之二在于,提供了一种核壳结构复合纳米粒子的制备方法,包括:铜盐、对苯二甲酸、聚乙烯吡咯烷酮反应,得到CuBDC纳米粒子;所述CuBDC纳米粒子依次与三价铁盐、青蒿素反应,得到核壳结构复合纳米粒子。

优选地,所述聚乙烯吡咯烷酮以水溶液形式参与反应,聚乙烯吡咯烷酮水溶液的质量分数为0.08-3.0%;更优选地,所述聚乙烯吡咯烷酮的平均分子量为45000-58000。

优选地,所述铜盐为二价铜盐或二价铜盐的水合物;所述三价铁盐选自三氯化铁、硝酸铁或硫酸铁;更优选地,所述铜盐选自醋酸铜、硝酸铜、氯化铜或硫酸铜,或者与以上所列铜盐之一对应的水合物。

优选地,所述制备方法具体包括如下步骤:

(1)制备CuBDC纳米粒子

将铜盐分散于聚乙烯吡咯烷酮水溶液中,得铜盐和聚乙烯吡咯烷酮混合液;将对苯二甲酸和氢氧化钠分散于水中,然后加入至上述铜盐和聚乙烯吡咯烷酮混合液中,静置20-30h,离心,洗涤,得CuBDC纳米粒子;

(2)制备核壳结构复合纳米粒子

将青蒿素分散于乙醇中,加入氢氧化钠,于40-50℃反应0.5-2h,加水并调节pH至6-7,得青蒿素分散液;将上述CuBDC纳米粒子分散于水中,依次加入三价铁盐和青蒿素分散液,静置20-30h,离心,洗涤,得核壳结构复合纳米粒子。

优选地,步骤(1)中,铜盐、对苯二甲酸、氢氧化钠的摩尔比为1.2-1.5:1:1.8-2.5。

优选地,步骤(2)中,所述三价铁盐加入量以Fe3+计与青蒿素的摩尔比为1:1-2。

本发明目的之三在于,提供了本发明所述核壳结构复合纳米粒子或上述方法制备得到的核壳结构复合纳米粒子在制备总抗氧化能力检测用纳米探针中的应用。

优选地,应用时,所述核壳结构复合纳米粒子作为比色/荧光双模式纳米探针用于人体总抗氧化能力检测。

本发明目的之四在于,提供了一种试剂盒,所述试剂盒中含有本发明所述的核壳结构复合纳米粒子或上述方法制备得到的核壳结构复合纳米粒子。

除此之外,本发明还提供了一种检测人体内总抗氧化能力的方法:

选择谷胱甘肽、L型半胱氨酸、抗坏血酸和尿酸四种抗氧化剂组成总抗氧化剂。总抗氧化剂的量是通过将不同量的单一抗氧化剂加在一起来进行计算。在抗氧化剂总量不变的情况下,可以在一定范围内(如尿酸占总抗氧化物的比例在65%-75%)改变各组成部分的比例进行检测。根据这一原则,通过将不同量的总抗氧化剂溶解到人工唾液中来制备标准样品(总抗氧化剂的浓度在0mM-0.0667mM的范围内)。然后,将本发明所述核壳结构复合纳米粒子作为紫外吸收和稳态荧光信号双模式纳米探针,通过比色和荧光双模式进行检测,室温下反应10min,根据检测结果做出标准线,再取真实唾液样本按照上述方法进行检测,检测结果通过标准线计算。

与现有技术相比,本发明具有如下有益效果:

本发明所述核壳结构复合纳米粒子,以CuBDC纳米粒子为核,以Fe(III)-ART纳米粒子为壳,将其作为纳米探针用于总抗氧化能力检测时,所述核壳结构复合纳米粒子能够与抗氧化剂反应,使得紫外吸收和荧光强度同时改变,即能够通过比色/荧光双模式进行检测。检测时,仅以少量唾液作为生物样本,室温下反应10min,即可产生紫外吸收及荧光信号,所述信号稳定,并持续80min以上仍可检测到信号,能够实现对人体总抗氧化能力准确、微量、快速检测。

本发明所述制备方法中,聚乙烯吡咯烷酮的作用表现为:一方面,能够对CuBDC纳米粒子的形貌进行调控;另一方面,聚乙烯吡咯烷酮上的酰胺键能够与Fe3+配位,有助于Fe(III)-ART纳米粒子的包覆。

附图说明

图1、为本发明制备[email protected](III)-ART及其应用的工作原理示意图;

图2、为本发明实施例1制备的CuBDC和[email protected](III)-ART的SEM图(a,b)和TEM图(c,d);

图3、为本发明实施例1制备的CuBDC和[email protected](III)-ART的XRD图;

图4、为本发明实施例1制备的CuBDC和[email protected](III)-ART的Zeta电位;

图5、为本发明实施例1制备的[email protected](III)-ART在水溶液中对GSH检测的紫外-可见吸收峰的强度和荧光发射峰的强度与浓度的线性关系;

图6、为本发明实施例1制备的[email protected](III)-ART在人工唾液中对GSH检测的紫外-可见吸收峰的强度和荧光发射峰的强度与浓度的线性关系;

图7、为本发明实施例1制备的[email protected](III)-ART在人工唾液中对总抗氧化能力检测的紫外吸收光谱、荧光光谱及对应的线性关系;

图8、为本发明实施例1制备的[email protected](III)-ART分散在不同pH的磷酸盐缓冲溶液中的紫外吸收光谱和荧光光谱在一定浓度范围内的线性关系图;

图9、为本发明实施例1制备的[email protected](III)-ART在含有不同金属离子和有机分子中的吸光度、荧光强度;

图10、为本发明实施例1制备的[email protected](III)-ART分散在水溶液中且GSH浓度为0.06mM时紫外吸收光谱和荧光光谱随时间变化的折线图;

图11、为本发明对比例1制备的CuBDC和CuBDC+Fe(III)-ART混合物以及实施例1制备的[email protected](III)-ART分散在水溶液中,及在H2O2浓度为0.1mM时的荧光光谱对比图。

具体实施方式

下面,通过具体实施例对本发明的技术方案进行详细说明,但是应该明确提出这些实施例用于举例说明,但是不解释为限制本发明的范围。

实施例1

一种核壳结构复合纳米粒子,包括:CuBDC纳米粒子和Fe(III)-ART纳米粒子;所述CuBDC纳米粒子为核,Fe(III)-ART纳米粒子为壳。

其制备方法具体如下:

(1)制备CuBDC纳米粒子

取0.05mmol醋酸铜分散在20mL质量百分数为0.08%的聚乙烯吡咯烷酮(平均分子量为58000)水溶液中,得醋酸铜和聚乙烯吡咯烷酮混合液;将0.035mmol对苯二甲酸与0.07mmol氢氧化钠分散在10mL蒸馏水中,然后将其逐滴加入到上述醋酸铜和聚乙烯吡咯烷酮混合液中,搅拌30min,接着将静置24h,离心,洗涤,即得到CuBDC纳米粒子;

(2)制备核壳结构复合纳米粒子

将1mmol青蒿素分散在50mL乙醇溶液中,加入4mL(0.02g/mL)NaOH,50℃搅拌30min,然后加入50mL蒸馏水和适量醋酸调节pH至7,得青蒿素分散液;将上述制得的CuBDC纳米粒子分散在10mL水中,加入1mL(0.01M)三氯化铁溶液,搅拌10min,再逐滴加入1mL青蒿素分散液,搅拌30min,接着将溶液静置24h,离心,洗涤,即得核壳结构复合纳米粒子[email protected](III)-ART。经ICP测试,CuBDC与Fe(III)-ART的质量分数比为1:1.66。

实施例2

一种核壳结构复合纳米粒子,包括:CuBDC纳米粒子和Fe(III)-ART纳米粒子;所述CuBDC纳米粒子为核,Fe(III)-ART纳米粒子为壳。

其制备方法具体如下:

(1)制备CuBDC纳米粒子

取0.05mmol硝酸铜分散在20mL质量百分数为3%的聚乙烯吡咯烷酮(平均分子量为58000)水溶液中,得硝酸铜和聚乙烯吡咯烷酮混合液;将0.035mmol对苯二甲酸与0.08mmol氢氧化钠分散在10mL蒸馏水中,然后将其逐滴加入到上述硝酸铜和聚乙烯吡咯烷酮混合液中,搅拌30min,接着将静置20h,离心,洗涤,即得到CuBDC纳米粒子;

(2)制备核壳结构复合纳米粒子

将1mmol青蒿素分散在50mL乙醇溶液中,加入4mL(0.02g/mL)NaOH,40℃搅拌1h,然后加入50mL蒸馏水和适量醋酸调节pH至6,得青蒿素分散液;将上述制得的CuBDC纳米粒子分散在10mL水中,加入1mL(0.01M)硝酸铁溶液,搅拌10min,再逐滴加入1mL青蒿素分散液,搅拌30min,接着将溶液静置30h,离心,洗涤,即得核壳结构复合纳米粒子[email protected](III)-ART。

对比例1

(1)制备CuBDC纳米粒子

方法及条件均与实施例1相同;

(2)制备Fe(III)-ART纳米粒子

将1mmol青蒿素分散在50mL乙醇溶液中,加入4mL(0.02g/mL)NaOH,50℃搅拌30min,然后加入50mL蒸馏水和适量醋酸调节pH至7,得青蒿素分散液;之后,转移在室温下搅拌30分钟,将该溶液加入到1mL(0.01M)三氯化铁溶液中,接着静置24-30h,离心,洗涤,得到Fe(III)-ART纳米粒子;

(3)制备CuBDC+Fe(III)-ART混合物

将上述制得的CuBDC纳米粒子分散在10mL水中,再加入上述制得的Fe(III)-ART纳米粒子;在这里,根据实施例1的ICP测试结果,使混合后CuBDC与Fe(III)-ART的质量分数比为1:1.66,接着静置24-30h,离心,洗涤,即得到CuBDC+Fe(III)-ART混合物。。

对实施例1制备得到的CuBDC纳米粒子和[email protected](III)-ART进行测试,有关测试结果具体如下:

1、SEM和TEM测试

对实施例1制得的CuBDC纳米粒子和[email protected](III)-ART分别进行SEM和TEM测试,结果见附图2。

其中,2a、为CuBDC纳米粒子的SEM图;2b、为[email protected](III)-ART的SEM图;2c、为CuBDC纳米粒子的TEM图;2d、为[email protected](III)-ART的TEM图;

由附图2可以看出,本发明制备得到的[email protected](III)-ART具有良好的分散性,单个粒子的形貌类似花状,外面的包覆层显示Fe(III)-ART成功包覆在CuBDC纳米粒子表面,形成核壳结构复合纳米粒子。

2、XRD测试

对实施例1制得的CuBDC和[email protected](III)-ART进行XRD测试测试,结果见附图3。

由附图3可以看出,所有衍射峰位置分别对应于CuBDC的特征峰,由于Fe(III)-ART是无定形的,用Fe(III)-ART包覆后的CuBDC衍射峰没有显示出显著的变化。

3、Zeta电位的检测

将实施例1制得的CuBDC和[email protected](III)-ART分别分散在水溶液中,用Zata电位仪检测CuBDC纳米粒子和[email protected](III)-ART纳米粒子的Zeta电位,结果见附图4。

由图4可以看出,CuBDC纳米粒子的Zeta电位为负,包覆完成后[email protected](III)-ART纳米粒子Zeta电位为正。

4、在水溶液中进行的抗氧化物的检测

将实施例1制得的[email protected](III)-ART纳米粒子分散于水中,得到浓度为1mg/mL的样品;取100μL样品分散在2mL水溶液中,得到[email protected](III)-ART纳米粒子浓度为50μg/mL的待测样品;

向待测样品中加入待检测的抗氧化物(如GSH、L-Cys、ASC、UA,抗氧化物的浓度为0~0.1mM),在室温下反应10min,用紫外可见分光光度计和荧光分光光度计检测,待测样品在240nm处的吸收峰以及在波长为315nm处的光的激发下在430nm处的荧光峰强,结果见附图5(以GSH为例)。

由图5可以看出,随GSH浓度增加,在一定浓度范围内(0~0.1mM),浓度与吸光度、浓度与荧光强度均有良好的线性关系,说明本发明制备得到的[email protected](III)-ART纳米粒子可以用于水溶液中抗氧化物的检测。

5、在人工唾液中进行的抗氧化物的检测

将实施例1制得的[email protected](III)-ART纳米粒子分散于水中,得到浓度为1mg/mL的样品;取100μL样品分散在2mL人工唾液中,得到[email protected](III)-ART纳米粒子浓度为50μg/mL的待测样品;

向待测样品中加入待检测的抗氧化物(如GSH、L-Cys、ASC、UA,抗氧化物的浓度为0~0.1mM),在室温下反应10min,用紫外可见分光光度计和荧光分光光度计检测,待测样品在240nm处的吸收峰以及在波长为315nm处的光的激发下在430nm处的荧光峰强,结果见附图6(以GSH为例)。

由图6可以看出,随GSH浓度增加,在一定浓度范围内(0~0.1mM),浓度与吸光度、浓度与荧光强度均有良好的线性关系,说明本发明制备得到的[email protected](III)-ART纳米粒子可以用于人工唾液中抗氧化物的检测。

6、以人工唾液为样品进行的总抗氧化物检测

将实施例1制得的[email protected](III)-ART纳米粒子分散于水中,得到浓度为1mg/mL的样品;取100μL分散在2mL水溶液中,得到[email protected](III)-ART纳米粒子浓度为50μg/mL,总抗氧化物的浓度分别为0.066、0.131、0.196、0.295、0.443、0.663mM的待测样品,接着取200μL待测溶液加入到2mL的人工唾液中,并将所述待测样品在室温下反应10min,用紫外可见分光光度计和荧光分光光度计检测,待测样品在240nm处的吸收峰以及在波长为315nm处的光的激发下在430nm处的荧光峰强,结果见附图7。

由图7可以看出,随总抗氧化物浓度增加,吸收峰和荧光强度增强,且在一定浓度之内(0~0.0663mM),浓度与吸光度、浓度与荧光强度均有良好的线性关系,说明本发明制备得到的[email protected](III)-ART纳米粒子可以进一步用于人体总抗氧化物的检测。

7、在不同的pH环境下产生紫外吸收和荧光的能力检测

以检测抗氧化物GSH为例,将实施例1所述制得[email protected](III)-ART纳米粒子分散在GSH浓度为0~0.1mM(GSH在四个不同pH缓冲液中的浓度均为0~0.1mM),pH分别为5.7、6.2、7.4和8.0的磷酸盐缓冲溶液中,[email protected](III)-ART纳米粒子在磷酸盐缓冲液中的浓度均为50μg/mL,用紫外分光光度计和荧光分光光度计检测混合溶液在波长为240nm的吸光度和在发射波长为315nm的光的激发下,在430nm处的荧光峰强。结果见附图8。

由图8可知,在pH分别为5.7、6.2、7.4和8.0时,在一定浓度之内(0~0.1mM),浓度与吸光度、浓度与荧光强度均有良好的线性关系。说明本发明制备得到的[email protected](III)-ART纳米粒子可以在不同pH的检测环境下使用,而不影响其检测效果。

8、抗干扰能力检测

将实施例1制备得到的[email protected](III)-ART纳米粒子分散到2mL水溶液中,得到[email protected](III)-ART纳米粒子浓度为50μg/mL待测样品,分别将Ca2+、K+、Mg2+、Na+、Zn2+、NH4+、Cl-、Ethanol、Dopaminehydrochloride、Tyrosine、Fructose、Urea、Glucose、α-lactose、H2O2、L-Cys、GSH、UA、ASC加入待测样品中,室温下反应10min,用荧光分光光度计检测溶液在波长为315nm的光的激发下,在430nm处的荧光峰强;用紫外可见分光光度计测试240nm处的吸光度,比较吸光度和荧光强度,探究[email protected](III)-ART纳米粒子的选择性。结果详见附图9。

由图9可知,该纳米粒子产生的荧光的强度和紫外吸收的强度不受环境中存在的金属离子和有机分子的影响。

9、稳定性检测

将实施例1制备得到的[email protected](III)-ART纳米粒子分散在GSH浓度为0.06mM水溶液中,得到[email protected](III)-ART纳米粒子浓度为50μg/mL的待测样品,在分散后的不同时间点,用荧光分光光度计检测待测样品在波长为315nm的光的激发下,在430nm处的荧光峰强,用紫外可见分光光度计测试240nm处吸光度,比较吸光度和荧光强度探究[email protected](III)-ART纳米粒子反应时间的变化,结果详见附图10。

由附图10可以看出,该[email protected](III)-ART纳米粒子产生的荧光的强度和紫外吸收随反应时间的延长而增加,室温下反应10min即可进行检测且在分散80min后仍保持稳定且较缓慢的增长趋势及检测能力,说明[email protected](III)-ART纳米粒子具有优异的检测稳定性。

对对比例1制备得到的CuBDC+Fe(III)-ART混合物进行荧光检测,其结果见附图11;将对比例1制得的CuBDC+Fe(III)-ART按照比例混合的混合物分散在2mL水溶液中,得到CuBDC+Fe(III)-ART混合物的总浓度为50μg/mL的待测样品;向待测样品中加入H2O2,H2O2的浓度为0.1mM,在室温下反应10min,用荧光分光光度计检测,待测样品在波长为315nm处的光的激发下在430nm处的荧光峰强,结果见附图11。

由附图11可知,与实施例1制备得到的[email protected](III)-ART纳米粒子相比,对比例1制备得到的CuBDC+Fe(III)-ART混合物的荧光强度在加入H2O2后明显增加。说明本发明所述核壳结构是[email protected](III)-ART纳米粒子实现特异准确检测的必要条件。这可能是由于通过Fe(III)-ART纳米粒子作为壳对CuBDC纳米粒子进行隔离和保护,避免了CuBDC纳米粒子直接与生物样本中的自由基如H2O2反应产生荧光对总抗氧化物能力检测造成的干扰。

以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,根据本发明的技术方案及其发明构思加以等同替换或改变,都应涵盖在本发明的保护范围之内。

16页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种巯基β-环糊精-金纳米簇及其制备方法和应用

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!