Multiplex pixel design method for multiple encryption patterns

文档序号:405111 发布日期:2021-12-17 浏览:7次 中文

阅读说明:本技术 一种用于多种加密图案的多路复用像素设计方法 (Multiplex pixel design method for multiple encryption patterns ) 是由 陈旭东 钟世龙 于 2021-08-23 设计创作,主要内容包括:本发明提供一种用于多种加密图案的多路复用像素设计方法,该方法通过合理的使用等尺寸的多路复用像素点可形成可同心切换的低串扰加密图案,每个多路复用像素点由8个等尺寸的子像素组成,子像素根据加密图案的显示需求进行相应光栅结构编码填充或留白,但不同子像素中的光栅结构排布方向各不相同。本发明通过基于防伪图案的像素点,提供了一种可用于八种不同加密图案的多路复用像素设计方法,实现了通过改变观察方位角同心解读八种无串扰的防伪加密图案,增加了单位面积内的加密信息密度,提高了光栅类防伪图案制作门槛。(The invention provides a method for designing multiplexing pixels for various encryption patterns, which can form concentrically switchable low-crosstalk encryption patterns by reasonably using multiplexing pixel points with equal size, wherein each multiplexing pixel point consists of 8 sub-pixels with equal size, the sub-pixels carry out corresponding grating structure coding filling or blank reserving according to the display requirements of the encryption patterns, and the grating structure arrangement directions in different sub-pixels are different. The invention provides a multiplex pixel design method for eight different encrypted patterns through pixel points based on anti-counterfeiting patterns, realizes that eight anti-counterfeiting encrypted patterns without crosstalk are read concentrically by changing an observation azimuth angle, increases the density of encrypted information in unit area, and improves the threshold for manufacturing grating anti-counterfeiting patterns.)

1. A method of designing multiplexed pixels for use with multiple encryption patterns, wherein the outline of a single multiplexed pixel is square or circular.

2. The method of claim 1, wherein a single multiplexed pixel has a side length or diameter of 1-1000 microns.

3. The method of claim 2, wherein the multiplexed pixel is comprised of 8 equal-sized sub-pixels.

4. The method for designing a multiplexed pixel for use with multiple encryption patterns according to any one of claims 1 to 3, wherein when the multiplexed pixel is a square, each of the sub-pixel outlines contained therein is an isosceles right triangle.

5. A method of designing a multiplexed pixel for use with a plurality of encryption patterns according to any one of claims 1 to 3, wherein when the multiplexed pixel is circular, each of the sub-pixel outlines contained therein is a sector of an equal area.

6. A method of designing a multiplex pixel for use with multiple encryption patterns according to any one of claims 1 to 3 wherein each sub-pixel in the multiplex pixel has a grating structure with the same period, the grating period is 1 to 100 microns and the grating line width is 0.1 to 99.9 microns.

7. The method of claim 6, wherein when the grating arrangement angle in the first sub-pixel is defined as 0 °, the grating arrangement angle in the nth sub-pixel is (n-1) × 22.5 °.

8. The method of claim 7, wherein the relative positions of two sub-pixels occupied by two adjacent switching images in the same multiplexed pixel are at the farthest positions except for the diagonal positions.

Technical Field

The invention relates to the field of anti-counterfeiting encryption pattern design and coding, in particular to a multiplexing pixel design method for multiple encryption patterns.

Background

Grating-shaped structures are often used for designing anti-counterfeiting patterns, and the encryption patterns formed by the grating structures often have colorful visual effects under illumination, so that the identification degree of the anti-counterfeiting patterns is increased, and the ornamental value of outer package of commodities is also increased. However, the existing grating-shaped anti-counterfeiting pattern design can only present a single anti-counterfeiting reading result, so that the technology of encrypting patterns or information by using a single grating structure does not have high-grade anti-counterfeiting characteristics, and the anti-counterfeiting pattern is easy to imitate, steal and clone. There is a need for a method of designing a raster-like multiplexed pixel structure that can be used for multiple image concentric switching.

One patent of korea institute for electronic communication: an apparatus for multiplexing multi-view images and a method (201710229131.0) using the same, the apparatus for multiplexing multi-view images comprising: an upgrade unit for upgrading the view image using an interpolation method; a pixel multiplexing unit for multiplexing the pixels of the upgraded view image on a sub-pixel basis; and a pixel mixing unit for mixing the sub-pixels based on a mapping table including a mixing ratio of the sub-pixels. This patent can solve the problem of image distortion occurring when the PTC method is applied to a multi-view image. This patent can solve the problem of image quality degradation that occurs because view images overlap in adjacent viewing zones; a high-quality multi-view image based on an interpolation method and a blending method can be provided. However, this patent does not relate to any technical solution for increasing the encryption level of the raster-like pattern while increasing the density of encrypted information per unit area.

Disclosure of Invention

The invention provides a method for designing multiplexing pixels for various encrypted patterns, which improves the encryption level of raster-shaped patterns and increases the density of encrypted information in unit area.

In order to achieve the technical effects, the technical scheme of the invention is as follows:

a method of designing multiplexed pixels for use with multiple encryption patterns by contouring individual multiplexed pixels to be square or circular.

Further, the side length or diameter of a single multiplexed pixel is 1-1000 microns.

Further, the multiplexing pixel point is composed of 8 equal-sized sub-pixels.

Further, when the multiplexed pixel is square, the outline of each sub-pixel contained therein is an isosceles right triangle.

Further, when the multiplexed pixel is circular, the contour of each sub-pixel contained therein is a fan shape with an equal area.

Furthermore, each sub-pixel in the multiplexing pixel contains a grating structure with the same period, the grating period is 1-100 microns, and the width of a grating line is 0.1-99.9 microns.

Further, when it is defined that the grating arrangement angle in the first sub-pixel is 0 °, the grating arrangement angle in the nth sub-pixel is (n-1) × 22.5 °.

Further, the relative positions of the two sub-pixels occupied by the two adjacent switched images in the same multiplexed pixel should be at the farthest distance positions except for the diagonal positions.

Compared with the prior art, the technical scheme of the invention has the beneficial effects that:

the invention can form concentrically switchable low-crosstalk encryption patterns by reasonably using the multiplexing pixel points with equal size, each multiplexing pixel point is composed of 8 sub-pixels with equal size, the sub-pixels carry out corresponding grating structure coding filling or blank reserving according to the display requirement of the encryption patterns, but the grating structure arrangement directions in different sub-pixels are different. The invention provides a multiplex pixel design method for eight different encrypted patterns through pixel points based on anti-counterfeiting patterns, realizes that eight anti-counterfeiting encrypted patterns without crosstalk are read concentrically by changing an observation azimuth angle, increases the density of encrypted information in unit area, and improves the threshold for manufacturing grating anti-counterfeiting patterns.

Drawings

FIG. 1 is a schematic diagram of a multiplexed pixel structure encoding;

FIG. 2 is a schematic diagram of a concentrically switchable encryption pattern constructed from a multiplexed pixel structure;

FIG. 3 is a diagram showing effects of eight different encryption patterns that can be concentrically switched under illumination;

FIG. 4 is an optical micrograph of a multiplexed pixel structure used to construct an encrypted pattern;

Detailed Description

The drawings are for illustrative purposes only and are not to be construed as limiting the patent;

for the purpose of better illustrating the embodiments, certain features of the drawings may be omitted, enlarged or reduced, and do not represent the size of an actual product;

it will be understood by those skilled in the art that certain well-known structures in the drawings and descriptions thereof may be omitted.

The invention relates to a method for designing multiplex pixels for various encryption patterns, which is characterized in that the outline of a single multiplex pixel is square or circular.

Wherein, the side length or diameter of a single multiplexing pixel point is 1-1000 microns; the multiplexing pixel point is composed of 8 equal-sized sub-pixels.

When the multiplexing pixel is square, the outline of each sub-pixel contained in the multiplexing pixel is an isosceles right triangle; when the multiplex pixel is circular, the contour of each sub-pixel contained therein is a fan shape with equal area.

Each sub-pixel in the multiplexing pixel contains a grating structure with the same period, the grating period is 1-100 microns, and the width of a grating line is 0.1-99.9 microns.

When the grating arrangement angle in the first sub-pixel is defined to be 0 degrees, the grating arrangement angle in the nth sub-pixel is (n-1) multiplied by 22.5 degrees; the relative positions of the two sub-pixels occupied by the two adjacent switched images in the same multiplexed pixel should be at the farthest distance positions except for the diagonal positions.

The specific design process comprises the following steps:

as shown in fig. 1, a square with a side length of 200 μm is first set to determine the physical size of a single multiplexing pixel, then the square is cut into eight isosceles right triangles in equal area, and one of the isosceles right triangles is selected as the first sub-pixel position for subsequent encoding. The first sub-pixel with the triangular outline is filled with a grating structure with the period of 1 micron and the line width of 0.5 micron, and the included angle between the grating arrangement direction in the sub-pixel and the X axis is 0 degree. Then, with the first sub-pixel as a starting reference, skipping two isosceles right triangles in the counterclockwise direction, determining a third isosceles right triangle as the position and the contour of the second sub-pixel, wherein the sub-pixel is filled with a grating structure with the period of 1 micron and the line width of 0.5 micron, and the included angle between the grating arrangement direction in the sub-pixel and the X axis is 22.5 degrees. Then, the second sub-pixel is taken as the initial reference, two isosceles right triangles are skipped in the counterclockwise direction, and then the third isosceles right triangle is determined as the position and the contour of the third sub-pixel, the sub-pixel is filled with a grating structure with the period of 1 micron and the line width of 0.5 micron, and the included angle between the grating arrangement direction in the sub-pixel and the X axis is 45 degrees. Then, the third sub-pixel is taken as the initial reference, two isosceles right triangles are skipped in the counterclockwise direction, the third isosceles right triangle is determined as the position and the contour of the fourth sub-pixel, the sub-pixel is filled with a grating structure with the period of 1 micron and the line width of 0.5 micron, and the included angle between the grating arrangement direction in the sub-pixel and the X axis is 67.5 degrees. Then, the fourth sub-pixel is taken as the initial reference, two isosceles right triangles are skipped in the counterclockwise direction, the third isosceles right triangle is determined as the position and the contour of the fifth sub-pixel, the sub-pixel is filled with a grating structure with the period of 1 micron and the line width of 0.5 micron, and the included angle between the grating arrangement direction in the sub-pixel and the X axis is 90 degrees. Then, the fifth sub-pixel is taken as the initial reference, two isosceles right triangles are skipped in the counterclockwise direction, the third isosceles right triangle is determined as the position and the contour of the sixth sub-pixel, the sub-pixel is filled with a grating structure with the period of 1 micron and the line width of 0.5 micron, and the included angle between the grating arrangement direction in the sub-pixel and the X axis is 112.5 degrees. Then, the sixth sub-pixel is taken as the initial reference, two isosceles right triangles are skipped in the counterclockwise direction, the third isosceles right triangle is determined as the position and the contour of the seventh sub-pixel, the sub-pixel is filled with a grating structure with the period of 1 micron and the line width of 0.5 micron, and the included angle between the grating arrangement direction in the sub-pixel and the X axis is 135 degrees. Then, taking the seventh sub-pixel as an initial reference, skipping two isosceles right triangles in the counterclockwise direction, and determining the position and the contour of the eighth sub-pixel as a third isosceles right triangle, wherein the sub-pixel is filled with a grating structure with the period of 1 micrometer and the line width of 0.5 micrometer, and the included angle between the grating arrangement direction in the sub-pixel and the X axis is 90 degrees;

in practical application, the area not covered by the encrypted pattern is kept blank, and no grating structure is set, as shown in fig. 2;

after the encrypted pattern constructed by the multiplexing pixels proposed by the present invention shown in fig. 2 is inscribed on the photoresist by laser lithography, the effect is shown in fig. 3. Fig. 3 shows the switchable patterns that occur when the photoresist film is rotated clockwise in light, each pattern being offset by 22.5 deg. from the other. Fig. 4 is an optical micrograph of one of the multiplexed pixel structures used to construct the encryption pattern.

The technical solution of the present invention is further described below with reference to the accompanying drawings and examples.

The same or similar reference numerals correspond to the same or similar parts;

the positional relationships depicted in the drawings are for illustrative purposes only and are not to be construed as limiting the present patent;

it should be understood that the above-described embodiments of the present invention are merely examples for clearly illustrating the present invention, and are not intended to limit the embodiments of the present invention. Other variations and modifications will be apparent to persons skilled in the art in light of the above description. And are neither required nor exhaustive of all embodiments. Any modification, equivalent replacement, and improvement made within the spirit and principle of the present invention should be included in the protection scope of the claims of the present invention.

7页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种用于双重图案加密的光栅结构设计方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!