High-strength graphite product, preparation method and application

文档序号:416520 发布日期:2021-12-21 浏览:13次 中文

阅读说明:本技术 一种高强度石墨制品、制备方法及应用 (High-strength graphite product, preparation method and application ) 是由 刘学艺 刘伟 于 2021-09-18 设计创作,主要内容包括:本发明公开了一种高强度石墨制品、制备方法及应用,所述高强度石墨制品由湿料、粉料、纤维和高温粘结剂混合后制成;湿料3~5份,湿料为水和酒精中的至少一种;粉料包括以下重量份数的组分:镐英粉9~11份,人造石墨38~42份,天然石墨粉20份,碳化硅粉14~16份,耐火粘土14~16份;纤维0.2~0.5份;高温粘结剂20~25份。本发明采用特殊配比的组分和特定的生产工艺制备的高强度石墨制品,具有表面光滑、不粘铁水、使用寿命长的特性;不但实现了石墨制品的机械化批量生产需求,且生产过程对环境无污染。(The invention discloses a high-strength graphite product, a preparation method and application, wherein the high-strength graphite product is prepared by mixing wet materials, powder, fibers and a high-temperature binder; 3-5 parts of wet material, wherein the wet material is at least one of water and alcohol; the powder comprises the following components in parts by weight: 9-11 parts of pickaxe powder, 38-42 parts of artificial graphite, 20 parts of natural graphite powder, 14-16 parts of silicon carbide powder and 14-16 parts of refractory clay; 0.2-0.5 parts of fiber; 20-25 parts of a high-temperature binder. The high-strength graphite product prepared by adopting the components with special proportions and a specific production process has the characteristics of smooth surface, no molten iron sticking and long service life; not only meets the requirement of mechanized mass production of graphite products, but also has no pollution to the environment in the production process.)

1. A high strength graphite article characterized by: the high-strength graphite product is prepared by mixing wet materials, powder, fibers and a high-temperature binder;

3-5 parts of wet material, wherein the wet material is at least one of water and alcohol;

the powder comprises the following components in parts by weight: 9-11 parts of pickaxe powder, 38-42 parts of artificial graphite, 20 parts of natural graphite powder, 14-16 parts of silicon carbide powder and 14-16 parts of refractory clay;

0.2-0.5 part of the fiber;

and 20-25 parts of a high-temperature binder.

2. A high strength graphite article according to claim 1, wherein: the high-strength graphite product is prepared by mixing wet materials, powder, fibers and a high-temperature binder;

3.75 parts of wet material, wherein the wet material is at least one of water and alcohol;

the powder comprises the following components in parts by weight: 10 parts of pickaxe powder, 40 parts of artificial graphite, 20 parts of natural graphite powder, 15 parts of silicon carbide powder and 15 parts of refractory clay;

0.3 part of fiber; 22.5 parts of high-temperature binder.

3. A high strength graphite article according to claim 1, wherein: the granularity of the pickaxe powder is 180 meshes; the artificial graphite comprises 9-11 parts of artificial graphite with the granularity of 100 meshes, 9-11 parts of artificial graphite with the granularity of 0-1 mesh and 20 parts of artificial graphite with the granularity of phi 5 mm; the granularity of the natural graphite powder is 325 meshes; the granularity of the silicon carbide powder is 0-1 mesh; the particle size of the refractory clay is 180 meshes.

4. A method of making a high strength graphite article according to any one of claims 1 to 3, comprising the steps of:

a: feeding the wet material, the powder, the fiber and the high-temperature binder into a stirrer (1) according to the weight parts, and uniformly stirring to obtain a mixed material;

b: conveying the mixed materials in the step A to a vacuum pugging machine (2) to produce mud strips;

c: c, feeding the mud strips obtained in the step B into a graphite product die arranged on a hydraulic machine (3) and performing hydraulic forming to obtain a high-strength graphite product blank;

d: c, demolding the high-strength graphite product blank in the graphite product mold in the step C through a gypsum turnover mold;

e: d, airing the high-strength graphite product blank subjected to demolding on a gypsum turnover mold to obtain a high-strength graphite product semi-finished product;

f: d, feeding the high-strength graphite product semi-finished product in the step D into an electric roasting kiln (4) for roasting;

g: and naturally cooling the roasted product to obtain the high-strength graphite product.

5. The method of claim 4, wherein the graphite product comprises: and F, gradually raising the roasting temperature from room temperature of 20 ℃ to 650 ℃, wherein the roasting time is 111 hours, and the roasting temperature raising process is as follows:

s1: linearly raising the temperature from the room temperature of 20 ℃ to 100 ℃ at the rate of raising the temperature by 8 ℃ per hour, and then keeping the temperature for 4 hours, wherein the total time is 14 hours;

s2: linearly raising the temperature from 100 ℃ to 200 ℃ at the rate of 5 ℃ per hour, and keeping the temperature for 4 hours, wherein the total time is 24 hours;

s3: linearly raising the temperature from 200 ℃ to 300 ℃ at the rate of 5 ℃ per hour, and keeping the temperature for 4 hours, wherein the total time is 24 hours;

s4: linearly raising the temperature from 300 ℃ to 550 ℃ at the rate of 10 ℃ per hour, and then keeping the temperature for 6 hours, wherein the total time is 31 hours;

s5: the temperature is linearly increased from 550 ℃ to 650 ℃ at the rate of 10 ℃ per hour, and then the temperature is kept for 8 hours, which is 18 hours in total.

6. Use of a high strength graphite product according to any one of claims 1 to 3, wherein: the high-strength graphite product is a high-strength graphite drop tank or a high-strength graphite crucible.

Technical Field

The invention relates to the technical field of graphite products, in particular to a high-strength graphite product, a preparation method and application.

Background

In the field of metal casting, casting is performed by pouring molten metal earth or the like into a mold to cast a metal member. The existing molten iron pouring processing is generally that molten iron after high-temperature treatment is poured into a ladle, and then poured onto a pouring station through a graphite dropping groove to perform pouring operation.

Most of the graphite drop grooves are of arc-shaped structures and U-shaped cross sections, and are made of graphite materials. The traditional preparation process mainly adopts the graphite electrode produced by a carbon plant to be manufactured by manual sawing, punching, steel wire threading, 5-6 butt joints, bonding and polishing, not only has low production efficiency and is easy to cause environmental pollution, but also the produced graphite drop groove is easy to be bonded with molten iron and has short service life.

In the existing graphite drop groove preparation process, for example, the graphite drop groove disclosed in CN109279894A and the preparation method thereof, the produced graphite drop groove not only has the characteristics of smooth surface, no molten iron sticking and long service life, but also has no pollution to the environment in the production process, meets the requirements of environmental protection and energy saving, but has a great difference in service life compared with the graphite drop grooves produced in germany and india. Therefore, the service life of the produced graphite drop groove can be further prolonged, which is a problem that needs to be solved by the technical personnel at the present stage.

Disclosure of Invention

The technical problem to be solved by the invention is to provide a high-strength graphite product, a preparation method and application, which have the characteristics of no pollution to the environment, long service life and no sticking of molten iron and are suitable for production of high-strength graphite drop tanks.

In order to solve the technical problems, the technical scheme adopted by the invention is as follows.

A high-strength graphite product is prepared by mixing wet materials, powder, fibers and a high-temperature binder;

3-5 parts of wet material, wherein the wet material is at least one of water and alcohol;

the powder comprises the following components in parts by weight: 9-11 parts of pickaxe powder, 38-42 parts of artificial graphite, 20 parts of natural graphite powder, 14-16 parts of silicon carbide powder and 14-16 parts of refractory clay;

0.2-0.5 part of the fiber;

and 20-25 parts of a high-temperature binder.

Preferably, the high-strength graphite product is prepared by mixing wet materials, powder, fibers and a high-temperature binder;

3.75 parts of wet material, wherein the wet material is at least one of water and alcohol;

the powder comprises the following components in parts by weight: 10 parts of pickaxe powder, 40 parts of artificial graphite, 20 parts of natural graphite powder, 15 parts of silicon carbide powder and 15 parts of refractory clay;

0.3 part of fiber; 22.5 parts of high-temperature binder.

Preferably, the granularity of the pickaxe powder is 180 meshes; the artificial graphite comprises 9-11 parts of artificial graphite with the granularity of 100 meshes, 9-11 parts of artificial graphite with the granularity of 0-1 mesh and 20 parts of artificial graphite with the granularity of phi 5 mm; the granularity of the natural graphite powder is 325 meshes; the granularity of the silicon carbide powder is 0-1 mesh; the particle size of the refractory clay is 180 meshes.

A preparation method of a high-strength graphite product comprises the following steps:

a: feeding the wet material, the powder, the fiber and the high-temperature binder into a stirrer according to the weight parts, and uniformly stirring to obtain a mixed material;

b: conveying the mixed materials in the step A to a vacuum pugging machine to produce mud strips;

c: c, feeding the mud strips obtained in the step B into a graphite product die arranged on a hydraulic press, and performing hydraulic forming to obtain a high-strength graphite product blank;

d: c, demolding the high-strength graphite product blank in the graphite product mold in the step C through a gypsum turnover mold;

e: d, airing the high-strength graphite product blank subjected to demolding on a gypsum turnover mold to obtain a high-strength graphite product semi-finished product;

f: d, feeding the high-strength graphite product semi-finished product in the step D into an electric roasting kiln for roasting;

g: and naturally cooling the roasted product to obtain the high-strength graphite product.

Preferably, in the step F, the roasting temperature is gradually increased from room temperature of 20 ℃ to 650 ℃, the roasting time is 111 hours, and the roasting temperature increasing process is as follows:

s1: linearly raising the temperature from the room temperature of 20 ℃ to 100 ℃ at the rate of raising the temperature by 8 ℃ per hour, and then keeping the temperature for 4 hours, wherein the total time is 14 hours;

s2: linearly raising the temperature from 100 ℃ to 200 ℃ at the rate of 5 ℃ per hour, and keeping the temperature for 4 hours, wherein the total time is 24 hours;

s3: linearly raising the temperature from 200 ℃ to 300 ℃ at the rate of 5 ℃ per hour, and keeping the temperature for 4 hours, wherein the total time is 24 hours;

s4: linearly raising the temperature from 300 ℃ to 550 ℃ at the rate of 10 ℃ per hour, and then keeping the temperature for 6 hours, wherein the total time is 31 hours;

s5: the temperature is linearly increased from 550 ℃ to 650 ℃ at the rate of 10 ℃ per hour, and then the temperature is kept for 8 hours, which is 18 hours in total.

The application of the high-strength graphite product is characterized in that the high-strength graphite product is a high-strength graphite drop tank or a high-strength graphite crucible.

Due to the adoption of the technical scheme, the technical progress of the invention is as follows.

The high-strength graphite product prepared by adopting the components with special proportions and the specific production process has the characteristics of smooth surface, no molten iron adhesion and long service life. The method for preparing the high-strength graphite product meets the requirement of mechanical mass production of the graphite product, thereby greatly shortening the average time for producing one graphite product, having no pollution to the environment in the production process and meeting the requirements of environmental protection and energy conservation. The high-strength graphite product is applied to the high-strength graphite drop tank, and the produced high-strength graphite drop tank not only has the characteristic of non-sticking molten iron, but also has greatly prolonged service life, and can be compared favorably with the best graphite drop tank in the world of Germany and Indian production, so that the replacement frequency of the graphite drop tank is reduced, and the production efficiency of metal casting is greatly improved. The high-strength graphite product can also be applied to high-strength graphite crucibles and the like, and has a wide application range.

Drawings

FIG. 1 is a process flow diagram of the present invention;

FIG. 2 is a schematic structural view of an upper mold of the graphite drop groove of the present invention;

FIG. 3 is a schematic view of a lower mold structure of the graphite drop groove of the present invention;

FIG. 4 is a schematic structural view of a graphite drop groove gypsum turnover mold of the present invention;

fig. 5 is a top view of the graphite drop groove gypsum turning mold frame of the present invention.

Wherein: 1. the device comprises a stirrer, 2, a vacuum pugging machine, 3, a hydraulic machine, 4, an electric roasting kiln, 5, an upper graphite falling groove die, 6, a lower graphite falling groove die, 7, a gypsum turning die body of the graphite falling groove and 8, a gypsum turning die support of the graphite falling groove.

Detailed Description

The present invention will be described in further detail with reference to the accompanying drawings and specific embodiments.

A high-strength graphite product is prepared from wet material, powder, fibres and high-temp adhesive through mixing.

3-5 parts of wet material, wherein the wet material is at least one of water and alcohol, and when the ambient temperature is higher, water is selected as the wet material; when the environmental temperature is lower, alcohol is selected as the wet material, which is beneficial to quick air drying.

The powder comprises the following components in parts by weight: 9-11 parts of pickaxe powder, 38-42 parts of artificial graphite, 20 parts of natural graphite powder, 14-16 parts of silicon carbide powder and 14-16 parts of refractory clay, wherein the granularity of the pickaxe powder is 180 meshes; the artificial graphite comprises 9-11 parts of artificial graphite with the granularity of 100 meshes, 9-11 parts of artificial graphite with the granularity of 0-1 mesh and 20 parts of artificial graphite with the granularity of phi 5 mm; the granularity of the natural graphite powder is 325 meshes; the granularity of the silicon carbide powder is 0-1 mesh; the particle size of the refractory clay is 180 mesh.

0.2-0.5 parts of fiber; 20-25 parts of a high-temperature binder.

The artificial graphite can be obtained by grinding dust waste collected in the process of producing graphite electrodes in a carbon plant and leftovers generated in the production process, so that the production cost is reduced, and the waste is utilized.

As shown in fig. 1, the preparation method of the high-strength graphite product specifically includes the following steps:

a: the wet material, the powder, the fiber and the high-temperature binder are sent into a stirrer 1 according to the weight portion and are stirred evenly to form a mixed material.

B: and D, conveying the mixed materials in the step A to a vacuum pugging machine 2 to produce into mud strips.

C: and D, conveying the mud strips obtained in the step B into a graphite product die arranged on a hydraulic machine 3, and performing hydraulic forming to obtain a high-strength graphite product blank.

D: and D, demolding the high-strength graphite product blank in the graphite product mold in the step C through a gypsum turnover mold.

E: and D, airing the high-strength graphite product blank subjected to demoulding in the step D on a gypsum overturning mould to obtain a high-strength graphite product semi-finished product.

F: and D, feeding the high-strength graphite product semi-finished product in the step D into an electric roasting kiln 4 for roasting.

G: and naturally cooling the roasted product to obtain the high-strength graphite product.

The high-strength graphite product can be applied to high-strength graphite drop tanks, high-strength graphite crucibles and the like.

The present invention will be described in further detail with reference to specific examples.

Example 1

A high-strength graphite drop tank is prepared by mixing wet materials, powder, fibers and a high-temperature binder, wherein the wet materials are 3.75 parts, and the wet materials are at least one of water and alcohol; the powder comprises the following components in parts by weight: 10 parts of 180-mesh pickaxe-quartz powder, 10 parts of 100-mesh artificial graphite, 10 parts of 0-mesh artificial graphite, 20 parts of phi 5mm artificial graphite, 20 parts of 325-mesh natural graphite powder, 15 parts of 0-mesh silicon carbide powder and 15 parts of 180-mesh refractory clay; 0.3 part of fiber; 22.5 parts of high-temperature binder.

The graphite drop groove in the embodiment is prepared by the following steps:

a: the wet material, the powder, the fiber and the high-temperature binder are sent into a stirrer 1 according to the weight portion and are stirred evenly to form a mixed material. When the environmental temperature is higher, water is selected as a wet material; when the environmental temperature is lower, alcohol is selected as the wet material.

B: and D, conveying the mixed materials in the step A to a vacuum pugging machine 2 to produce into mud strips.

C: and D, feeding the mud strips obtained in the step B into a graphite drop groove die arranged on a hydraulic machine 3, and performing hydraulic forming to obtain a high-strength graphite drop groove blank. As shown in fig. 2 to 3, the graphite drop groove die comprises a graphite drop groove upper die 5 and a graphite drop groove lower die 6, wherein the graphite drop groove upper die 5 is arranged on an upper movable beam and a lower movable beam of the hydraulic machine 3, and the graphite drop groove lower die 6 is arranged on a working table of the hydraulic machine 3.

D: and D, demolding the high-strength graphite falling groove blank in the graphite falling groove mold in the step C through a graphite falling groove gypsum turnover mold. As shown in fig. 4 to 5, the graphite falling groove gypsum turnover mold comprises a graphite falling groove gypsum turnover mold body 7 and a graphite falling groove gypsum turnover mold body support 8, wherein the graphite falling groove gypsum turnover mold body 7 is erected on the graphite falling groove gypsum turnover mold body support 8; the graphite drop groove gypsum turnover mould body support 8 is erected on the ground. The graphite falling groove die gypsum overturning die is equivalent to an inverted graphite falling groove upper die 5, and when the graphite falling groove die gypsum overturning die is used, a high-strength graphite falling groove blank in a graphite falling groove lower die 6 is overturned and buckled on a graphite falling groove gypsum overturning die body 7, so that demoulding is completed.

E: and D, air-drying the demolded high-strength graphite drop groove blank in the graphite drop groove gypsum turnover mold to obtain a high-strength graphite drop groove semi-finished product. In the air drying process, if alcohol is selected as the wet material, the air drying speed can be accelerated in a low-temperature environment.

F: and D, feeding the high-strength graphite groove semi-finished product in the step D into an electric roasting kiln 4 for roasting. The roasting temperature in the roasting process is gradually increased from room temperature of 20 ℃ to 650 ℃, the roasting time is 111 hours in total, and the roasting temperature increasing process is as follows:

s1: the temperature is linearly increased from the room temperature of 20 ℃ to 100 ℃ at the rate of 8 ℃ per hour, and then the temperature is kept for 4 hours, and the total time is 14 hours.

S2: the temperature is linearly increased from 100 ℃ to 200 ℃ at the rate of 5 ℃ per hour, and then the temperature is kept constant for 4 hours, and the total time is 24 hours.

S3: the temperature is linearly increased from 200 ℃ to 300 ℃ at the rate of 5 ℃ per hour, and then the temperature is kept constant for 4 hours, and the total time is 24 hours.

S4: the temperature is linearly increased from 300 ℃ to 550 ℃ at the rate of 10 ℃ per hour, and then the temperature is kept for 6 hours, which is 31 hours in total.

S5: the temperature is linearly increased from 550 ℃ to 650 ℃ at the rate of 10 ℃ per hour, and then the temperature is kept for 8 hours, which is 18 hours in total.

G: and naturally cooling the roasted product to obtain the high-strength graphite drop tank.

The high-strength graphite drop groove prepared by the embodiment has smooth surface and no stubble, is used for guiding molten iron, does not have the phenomenon of sticking the molten iron, has the service life equivalent to four times of that of the graphite drop groove machined by the existing machine, reduces the production cost of a metal casting manufacturer, and simultaneously reduces the production stop time of the metal casting manufacturer when the drop groove is replaced in the production process, thereby improving the production efficiency.

Example 2

A high-strength graphite drop tank is prepared by mixing wet materials, powder, fibers and a high-temperature binder, wherein the wet materials are 3.75 parts, and the wet materials are at least one of water and alcohol; the powder comprises the following components in parts by weight: 10 parts of 180-mesh pickaxe-quartz powder, 10 parts of 100-mesh artificial graphite, 10 parts of 1-mesh artificial graphite, 20 parts of phi 5mm artificial graphite, 20 parts of 325-mesh natural graphite powder, 15 parts of 0-1-mesh silicon carbide powder and 15 parts of 180-mesh refractory clay; 0.3 part of fiber; 22.5 parts of high-temperature binder.

The high-strength graphite drop groove in the embodiment is prepared by the following steps:

a: the wet material, the powder, the fiber and the high-temperature binder are sent into a stirrer 1 according to the weight portion and are stirred evenly to form a mixed material. When the environmental temperature is higher, water is selected as a wet material; when the environmental temperature is lower, alcohol is selected as the wet material.

B: and D, conveying the mixed materials in the step A to a vacuum pugging machine 2 to produce into mud strips.

C: and D, feeding the mud strips obtained in the step B into a graphite drop groove die arranged on a hydraulic machine 3, and performing hydraulic forming to obtain a high-strength graphite drop groove blank. As shown in fig. 2 to 3, the graphite drop groove die comprises a graphite drop groove upper die 5 and a graphite drop groove lower die 6, wherein the graphite drop groove upper die 5 is arranged on an upper movable beam and a lower movable beam of the hydraulic machine 3, and the graphite drop groove lower die 6 is arranged on a working table of the hydraulic machine 3.

D: and D, demolding the high-strength graphite falling groove blank in the graphite falling groove mold in the step C through a graphite falling groove gypsum turnover mold. As shown in fig. 4 to 5, the graphite falling groove gypsum turnover mold comprises a graphite falling groove gypsum turnover mold body 7 and a graphite falling groove gypsum turnover mold body support 8, wherein the graphite falling groove gypsum turnover mold body 7 is erected on the graphite falling groove gypsum turnover mold body support 8; the graphite drop groove gypsum turnover mould body support 8 is erected on the ground. The graphite falling groove die gypsum overturning die is equivalent to an inverted graphite falling groove upper die 5, and when the graphite falling groove die gypsum overturning die is used, a high-strength graphite falling groove blank in a graphite falling groove lower die 6 is overturned and buckled on a graphite falling groove gypsum overturning die body 7, so that demoulding is completed.

E: and D, air-drying the demolded high-strength graphite drop groove blank in the graphite drop groove gypsum turnover mold to obtain a high-strength graphite drop groove semi-finished product. In the air drying process, if alcohol is selected as the wet material, the air drying speed can be accelerated in a low-temperature environment.

F: and D, feeding the high-strength graphite groove semi-finished product in the step D into an electric roasting kiln 4 for roasting. The roasting temperature in the roasting process is gradually increased from room temperature of 20 ℃ to 650 ℃, the roasting time is 111 hours in total, and the roasting temperature increasing process is as follows:

s1: the temperature is linearly increased from the room temperature of 20 ℃ to 100 ℃ at the rate of 8 ℃ per hour, and then the temperature is kept for 4 hours, and the total time is 14 hours.

S2: the temperature is linearly increased from 100 ℃ to 200 ℃ at the rate of 5 ℃ per hour, and then the temperature is kept constant for 4 hours, and the total time is 24 hours.

S3: the temperature is linearly increased from 200 ℃ to 300 ℃ at the rate of 5 ℃ per hour, and then the temperature is kept constant for 4 hours, and the total time is 24 hours.

S4: the temperature is linearly increased from 300 ℃ to 550 ℃ at the rate of 10 ℃ per hour, and then the temperature is kept for 6 hours, which is 31 hours in total.

S5: the temperature is linearly increased from 550 ℃ to 650 ℃ at the rate of 10 ℃ per hour, and then the temperature is kept for 8 hours, which is 18 hours in total.

G: and naturally cooling the roasted product to obtain the high-strength graphite drop tank.

Example 3

A high-strength graphite drop tank is prepared by mixing wet materials, powder, fibers and a high-temperature binder, wherein the wet materials are 3.75 parts, and the wet materials are at least one of water and alcohol; the powder comprises the following components in parts by weight: 10 parts of 180-mesh pickaxe-quartz powder, 10 parts of 100-mesh artificial graphite, 10 parts of 1-mesh artificial graphite, 20 parts of phi 5mm artificial graphite, 20 parts of 325-mesh natural graphite powder, 15 parts of 0-mesh silicon carbide powder and 15 parts of 180-mesh refractory clay; 0.3 part of fiber; 22.5 parts of high-temperature binder.

The graphite drop groove in the embodiment is prepared by the following steps:

a: the wet material, the powder, the fiber and the high-temperature binder are sent into a stirrer 1 according to the weight portion and are stirred evenly to form a mixed material. When the environmental temperature is higher, water is selected as a wet material; when the environmental temperature is lower, alcohol is selected as the wet material.

B: and D, conveying the mixed materials in the step A to a vacuum pugging machine 2 to produce into mud strips.

C: and D, feeding the mud strips obtained in the step B into a graphite drop groove die arranged on a hydraulic machine 3, and performing hydraulic forming to obtain a high-strength graphite drop groove blank. As shown in fig. 2 to 3, the graphite drop groove die comprises a graphite drop groove upper die 5 and a graphite drop groove lower die 6, wherein the graphite drop groove upper die 5 is arranged on an upper movable beam and a lower movable beam of the hydraulic machine 3, and the graphite drop groove lower die 6 is arranged on a working table of the hydraulic machine 3.

D: and D, demolding the high-strength graphite falling groove blank in the graphite falling groove mold in the step C through a graphite falling groove gypsum turnover mold. As shown in fig. 4 to 5, the graphite falling groove gypsum turnover mold comprises a graphite falling groove gypsum turnover mold body 7 and a graphite falling groove gypsum turnover mold body support 8, wherein the graphite falling groove gypsum turnover mold body 7 is erected on the graphite falling groove gypsum turnover mold body support 8; the graphite drop groove gypsum turnover mould body support 8 is erected on the ground. The graphite falling groove die gypsum overturning die is equivalent to an inverted graphite falling groove upper die 5, and when the graphite falling groove die gypsum overturning die is used, a high-strength graphite falling groove blank in a graphite falling groove lower die 6 is overturned and buckled on a graphite falling groove gypsum overturning die body 7, so that demoulding is completed.

E: and D, air-drying the demolded high-strength graphite drop groove blank in the graphite drop groove gypsum turnover mold to obtain a high-strength graphite drop groove semi-finished product. In the air drying process, if alcohol is selected as the wet material, the air drying speed can be accelerated in a low-temperature environment.

F: and D, feeding the high-strength graphite groove semi-finished product in the step D into an electric roasting kiln 4 for roasting. The roasting temperature in the roasting process is gradually increased from room temperature of 20 ℃ to 650 ℃, the roasting time is 111 hours in total, and the roasting temperature increasing process is as follows:

s1: the temperature is linearly increased from 20 ℃ to 100 ℃ at the rate of 8 ℃ per hour, and then the temperature is kept constant for 4 hours, and the total time is 14 hours.

S2: the temperature is linearly increased from 100 ℃ to 200 ℃ at the rate of 5 ℃ per hour, and then the temperature is kept constant for 4 hours, and the total time is 24 hours.

S3: the temperature is linearly increased from 200 ℃ to 300 ℃ at the rate of 5 ℃ per hour, and then the temperature is kept constant for 4 hours, and the total time is 24 hours.

S4: the temperature is linearly increased from 300 ℃ to 550 ℃ at the rate of 10 ℃ per hour, and then the temperature is kept for 6 hours, which is 31 hours in total.

S5: the temperature is linearly increased from 550 ℃ to 650 ℃ at the rate of 10 ℃ per hour, and then the temperature is kept for 8 hours, which is 18 hours in total.

G: and naturally cooling the roasted product to obtain the high-strength graphite drop tank.

The high-strength graphite drop grooves produced in the above embodiments 1 to 3 not only have a greatly shortened production cycle compared to the prior art, but also have a greatly prolonged service life when applied to production at a later stage, taking the experimental data in summer as an example, the comparison data is as follows:

name (R) Production period (sky) Time of use (h)
Examples1 8 96
Example 2 8 92
Example 3 8 90
Comparative example 14 24

Example 4

A high-strength graphite crucible is prepared by mixing wet materials, powder, fibers and a high-temperature binder, wherein the wet materials are 3.75 parts, and the wet materials are at least one of water and alcohol; the powder comprises the following components in parts by weight: 10 parts of 180-mesh pickaxe-quartz powder, 10 parts of 100-mesh artificial graphite, 10 parts of 0-mesh artificial graphite, 20 parts of phi 5mm artificial graphite, 20 parts of 325-mesh natural graphite powder, 15 parts of 0-mesh silicon carbide powder and 15 parts of 180-mesh refractory clay; 0.3 part of fiber; 22.5 parts of high-temperature binder.

The high-strength graphite crucible in the embodiment is prepared by the following steps:

a: the wet material, the powder, the fiber and the high-temperature binder are sent into a stirrer 1 according to the weight portion and are stirred evenly to form a mixed material. When the environmental temperature is higher, water is selected as a wet material; when the environmental temperature is lower, alcohol is selected as the wet material.

B: and D, conveying the mixed materials in the step A to a vacuum pugging machine 2 to produce into mud strips.

C: and D, feeding the mud strips obtained in the step B into a graphite crucible die arranged on a hydraulic machine 3, and performing hydraulic forming to obtain a high-strength graphite crucible blank.

D: and D, demolding the high-strength graphite crucible blank in the graphite crucible mold in the step C through a graphite crucible gypsum overturning mold.

E: and D, air-drying the demolded high-strength graphite crucible blank on a graphite crucible gypsum turnover mold to obtain a high-strength graphite crucible semi-finished product. In the air drying process, if alcohol is selected as the wet material, the air drying speed can be accelerated in a low-temperature environment.

F: and D, feeding the high-strength graphite crucible semi-finished product in the step D into an electric roasting kiln 4 for roasting.

G: and naturally cooling the roasted product to obtain the high-strength graphite crucible.

12页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种高导热块体制备方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!