带有用于馈电线的连接片的模块

文档序号:440226 发布日期:2021-12-24 浏览:5次 >En<

阅读说明:本技术 带有用于馈电线的连接片的模块 (Module with connection tabs for power supply lines ) 是由 A·蒂姆 H·克雷斯 于 2021-06-07 设计创作,主要内容包括:本发明涉及一种模块(1),其中经由馈电线施加大于1000V的电压和大于100A的电流,该模块具有电气绝缘的载体(2),具有材料厚度大于0.3mm的连接装置(3),该连接装置经由由第一端(23)和第二端(24)界定的金属化区域(4)与载体(2)连接,具有根据需要与连接装置(3)电气连接的电子组件(19、20),以及具有冷却装置(14)。为了从外部经由连接装置(3)直接向模块输送电流并因此省去现有技术中惯用的接合过程及由此避免电流引线上的寄生电感,根据本发明提出,连接装置(3)在至少一个部位处突出超过金属化区域(4)的一端(23、24),在该区域(9)中不与载体(2)固定并且具有接触装置(22)。(The invention relates to a module (1) in which a voltage of more than 1000V and a current of more than 100A are applied via supply lines, having an electrically insulating carrier (2), having a connecting device (3) with a material thickness of more than 0.3mm, which is connected to the carrier (2) via a metallization region (4) delimited by a first end (23) and a second end (24), having electronic components (19, 20) which are electrically connected to the connecting device (3) as required, and having a cooling device (14). In order to supply current directly from the outside to the module via the connecting means (3) and thus to dispense with the joining process customary in the prior art and thus to avoid parasitic inductances on the current supply lines, it is proposed according to the invention that the connecting means (3) project beyond one end (23, 24) of the metallization region (4) at least one point, in which region (9) it is not fastened to the carrier (2) and has contact means (22).)

带有用于馈电线的连接片的模块

技术领域

本发明涉及功率电子设备领域中的一种可以控制大于1000V电压和大于100A电流的模块。所述模块至少包括:

-具有至少一个连接装置的电气绝缘载体,所述至少一个连接装置经由金属化区域与所述载体连接,其中所述连接装置优选地由铜形成并且具有大于0.3mm的材料厚度,

-布置在所述载体上并且与所述连接装置电气连接的电子组件,以控制所输送的功率,以及

-适合散热的冷却元件。

背景技术

具有绝缘栅电极(IGBT)的双极晶体管是已知的,所述双极晶体管用作功率电子设备中的半导体部件。大于1000V的电压和大于100A的电流经由馈电线施加到这些IGBT模块上。

这些现有技术中已知的模块包括板状衬底,例如经过烧结的陶瓷,所述衬底具有正面和背面。为了冷却所述模块在所述背面上布置了金属冷却器。在所述衬底的正面上设置了由铜构成的金属化区域,其材料厚度在0.3mm和1.0mm之间。铜与所述模块外部存在的电流和电压源之间的连接是借助于所谓的接合线(Bonddrähte)进行的。为了保证可以将高的电压和电流传导到所述模块中,需要大量的接合线。这些接合线部分地布置成彼此之间的距离较小并且处于弯曲状态,以补偿温度波动。由此可能形成所谓的寄生电感。将所述金属化区域与所述衬底连接的已知方法是DCB(Direct copper bonded)“直接铜接合”或AMB(Active Metal Brazing)“活性金属钎焊”。

DCB方法是一种可以在1060℃至1065℃的高温范围内将铜与陶瓷衬底连接的连接技术。为此,将铜加热到接近其1085°C的熔点。在此,铜达到软化温度的范围,这会影响其在该过程步骤中的特性和尺寸稳定性。在DCB方法中,陶瓷和铜之间可能产生空腔,即所谓的气孔。这些空腔对热传递产生不利影响并促进部分放电,从安全角度来看,这可能意味着风险。DCB方法用于对尺寸为7.5"x5.5"的所谓主卡(Master-Karte)进行金属化。主卡可以包括多个伸展较小的衬底,根据这些衬底的应用来分开这些衬底。利用DCB方法可以由铜和陶瓷来制造复合体。根据所使用的陶瓷,这些复合体适用于100到1000次负载变化。

AMB方法应理解为“活性金属钎焊”,即活性焊钎焊,例如金属与陶瓷的连接。在此,在真空或惰性气体气氛中借助于金属焊料合金将铜与诸如AlSiC的陶瓷连接。由于过程条件、真空或惰性气体气氛,AMB方法是一种成本密集型过程。尽管如此,它已经在冷却的功率模块的工业制造中确立了自己的地位,因为根据所使用的材料制造出适合多达5000次负载变化的复合体。

发明内容

本发明基于以下任务,即改进功率电子设备中的模块的性能,使得在大量负载变化的情况下以紧凑的形式持久地确保无干扰的电子作用方式。

根据本发明,该任务通过具有权利要求1的特征的模块来解决。

根据本发明的模块具有载体,优选为陶瓷载体,连接装置布置在所述载体的第一平坦侧上。所述连接装置优选地由铜形成并且代表与外部电流源或电压源的连接。所述连接装置可以形成为线轨或汇流排(BUS-Bar)的形式并且经由金属化区域与所述载体连接。根据本发明,所述连接装置伸展超过所述金属化区域和/或所述载体的几何尺度,即,该连接装置突出超过所述金属化区域和/或载体。换句话说,所述连接装置在至少一个部位处在侧向方向上突出超过所述载体和/或所述金属化区域。部位可以理解为位置和/或区域,例如侧面,和/或侧面的部分区域和/或外周的片段/区域。如果所述载体和/或所述金属化区域具有例如尺寸为LxBxH的长方体形式,则根据本发明,所述连接装置有区域或片段布置在该长方体之外。这意味着所述连接装置的第一端布置在所述载体和/或所述金属化区域的外部,而所述连接装置的第二端布置在所述载体和/或所述金属化区域的第一平坦侧的区域中。

所述连接装置借助于金属化部与所述载体材料适配地(stoffschlüssig)连接。为了保证所述载体和所述连接装置之间的牢固连接,已经令人惊讶地确定,所述连接装置仅在部分区域中借助于金属化部与所述载体连接就足够了。为了实现可靠的作用方式,所述连接装置的大约66%的基面积借助于金属化部与所述载体连接就足够了。这意味着所述连接装置的大约33%的基面积布置在所述载体、所述功率模块之外或所述金属化区域之外,并相对于所述载体和/或金属化区域形成突出部。换句话说,如果所述连接装置形成LxBxH的长方体形式,则当所述连接装置的由LxB得到的66%的基面积与所述载体连接时,连接装置和载体之间的牢固连接得到保证。合适的连接过程是AMB。在所述突出部的区域中,所述连接装置可以抵靠在所述载体上并在热膨胀的情况下在所述载体上滑动。

所述连接装置在其第一端处具有至少一个接触元件,所述电流源或电压源可以连接到该接触元件。所述接触元件可以形成为所述连接装置的延长部并且于是布置在与所述连接装置相同的平面中。由此用于固定馈电线的钎焊或焊接过程热远离载体地进行。由此减少了功率源的固定过程对所述模块的影响,理想情况下完全避免功率源的固定过程对所述模块的影响。

在替代的实施例中,所述接触元件可以与所述连接装置有角度地形成。接触元件和连接装置于是例如具有L形状。其他形状,例如U形状、T形状等也是可能的,这取决于电源和电压源的连接装置。

可以在所述连接装置的第一端和第二端之间设置膨胀装置形式的热释放区。至少一个膨胀装置可以布置在所述载体和/或所述金属化区域之外,优选地与所述载体和/或所述金属化区域直接相邻。所述膨胀装置补偿所述连接装置和所述载体和/或电子部件(例如芯片)下方的加热金属化部之间的热膨胀差异。由此,减小、优选地完全避免了由于放热而引起的功率模块的机械负荷。

所述膨胀装置可以是所述连接装置的集成部分并且可以被构造为例如弯曲或有角的片段、卷边、倒圆、弯曲等的形式。所述膨胀装置的横截面可以等于或小于所述连接装置的横截面。

在一种特殊的实施方式中,所述膨胀装置的横截面可以小于所述连接装置的横截面。由此提高了所述膨胀装置的柔性。所述膨胀装置还可以具有一个或多个凹口。凹口可以形成为具有底部的开口的形式或通孔的形式。如果所述膨胀装置包括布置成一排的多个通孔,则所述膨胀装置被构造为穿孔的形式。

凹口或开口的形状可以任意形成,例如圆形或方形或矩形或这些形状的组合。所述连接装置可以在其与所述载体连接之前具有所述膨胀装置。

无论所述膨胀装置的形状如何,都可以在整个宽度上延伸,或者替代地仅在所述连接装置宽度的部分区域上延伸。所述膨胀装置的构造与功率馈送期间的放热适配。所述膨胀装置补偿了所述连接装置的伸展并因此增加了根据本发明的模块的使用寿命。

由于所述连接装置在至少一个部位上侧向地或有角度地突出超过所述金属化区域,在该区域中没有固定在所述载体上并且具有用于馈电线的接触元件,简化了外部电流引线到所述模块的连接。费力地制造的接合过程不再需要,并且可以被省去。附加地,由此避免了电流引线上的寄生电感。根据本发明的将功率馈送到所述模块中的直接连接可能性的另一个优点是由此减小了建造高度。省去了现有技术所需的弯曲接合线。因此,将高功率电路的建造高度减小了接合线在电子组件上的伸展。功率电子设备的小型化、更低的建造高度是在功率电子设备中开发组件的一个持续挑战。

在根据本发明的一种实施方式中,所述连接装置在至少一个部位处侧向地或有角度地突出超过所述金属化区域并且具有未突出超过所述载体的接触元件。这意味着,在该实施方式中所述连接装置位于所述载体的区域中,但在部分区域中没有固定在所述载体上,例如以材料适配的方式连接。然而,所述连接装置可以抵靠在所述载体上并在热膨胀时在所述载体上滑动。该特殊的实施方式适用于其中侧向地在所述载体旁也只有很小的空间可用的应用。

在一种替代实施方式中,所述连接装置可以在界定所述连接装置的所有侧面上,即在整个外周上都突出超过所述金属化区域,并且仍然布置在所述载体的尺寸内。

术语“电子组件”包括所有有源和无源的电气或电子元件或部件和/或元件或部件的一部分,例如导体线路、接合线、电压源、开关、电阻器、电容器、线圈、二极管、致动器、传感器、IC(集成电路)芯片、SiC芯片、晶体管等。该电子组件列表应当表明在本出版物的意义上,所有可用的电气或电子部件均应视为电子组件。该列表并不声称是详尽无遗的。

电子组件具有金属化区域形式的接触部位,可以借助于所述接触部位与例如所述连接装置和/或如上定义的其他电子组件的连接。这些接触部位是所述电子组件的一部分,是金属的并且是导电的,并且使得所述电子组件能够在功能上结合到电路中。在一种优选设计中,所述接触部位,即所述金属化区域可以被构造为由Ag、Au、Sn和/或SAC焊料制成的涂层。由此可以确保与电路的其他组件的材料适配的导电连接。

所述连接装置优选地由铜制成。在一种设计中,将至少一个导电涂层,即接触部位,即金属化区域施加到所述连接装置上。所述金属化区域,即所述接触部位,是所述连接装置的组成部分,并以材料适配的方式与所述连接装置连接。所述涂层优选地选自Ag、Au、Sn和/或SAC焊料。

在一种优选设计中,所述连接装置由纯度为≥99%、优选≥99.9%并且特别优选≥99.99%的铜制成。在一种特别优选的设计中,将低氧和/或低磷的铜用于所述连接装置。

根据本发明,将至少一个电子组件直接施加到所述连接装置上,即该电子组件的接触部位与所述连接装置的接触部位以材料适配的方式直接电气连接。在此,在连接所述电子组件时,所述连接装置的涂层的金属和/或材料,即所述连接装置的接触部位与所述电子组件的接触部位涂层的金属和/或材料发生反应。产生材料适配的、机械的和/或电气的连接。在这些电子组件和所述连接装置之间没有诸如接合线的连接装置。在该背景下,直接连接意味着两个部分,例如电子组件与连接装置,被布置为以直接接触的方式彼此作用连接。不需要额外的电气连接装置。通过取消额外的装置,一方面可以节省这些装置,附加地还可以节省连接这些装置所需的过程,例如钎焊、焊接等。消除额外的装置和过程减少了两个组件之间的过渡,通过所述过渡产生诸如电感的损耗功率。这种布置的效率和使用寿命增加,并且制造成本和产品成本降低。

通过所述连接装置和所述电子组件之间的直接连接,电路的这些部分可以布置在一个平面中,由此避免或最小化了各个部分相对于彼此的垂直偏移。电气组件相对于连接装置的偏移以及它们经由接合线或其他线连接的电气连接通常导致电子信号干扰,这些电子信号干扰产生损耗功率,因此应当加以避免。根据本发明的布置避免了这些缺点。

可以用不导电的物质(例如,现有技术中已知的硅物质)来封装根据本发明的模块以防止外部影响,通向外部的接触装置除外。

根据模块的应用选择本身已知的固定方法。例如,外部功率源通过诸如钎焊、夹紧、压接、拧紧的固定方式与接触元件电气连接。也可以使用插接连接。

所述电气绝缘载体优选是经过烧结的陶瓷。氧化铝或氮化铝陶瓷非常适合于制造高质量且使用寿命长的功率模块。氧化铝或氮化铝陶瓷的特点是其优异的导热性和电气绝缘特性。

为了冷却所述模块,所述载体优选地具有冷却装置。所述冷却装置可以例如以用于空气冷却的翅片的形式布置在所述载体的第二平坦侧上。为了优化所述翅片与所述载体的热耦合,将所述翅片优选与所述载体一体地连接。换言之,所述冷却装置和所述载体形成一个部件并且一起制造。冷却装置和载体之间不存在分隔线。

所述载体还可以具有通道形式的至少一个空腔。该通道于是形成由流体(气体、水、空气等)流过的冷却装置,由此可以冷却所述模块。于是所述模块是流体冷却体或经过流体冷却的模块。

所述连接装置优选通过AMB过程与陶瓷载体连接。正是AMB过程使得可以将陶瓷载体连接到连接装置和/或释放区,所述连接装置具有大于0.3mm的材料厚度并且突出超过所述金属化区域和/或载体。在此,在真空或惰性气体气氛中借助于金属焊料合金(即活性焊料)将铜与诸如AlSiC的陶瓷连接。在AMB方法中,优选使用印刷在20-40µm之间的焊膏进行处理,因此可以均匀地润湿表面。已经发现,在小心地应用AMB方法的情况下不会在所述陶瓷和所述连接装置之间形成气孔或空腔。由此可以在陶瓷和连接装置之间制造牢固和可靠的连接。连接装置和陶瓷之间的无空腔连接有利于热传递并且因此有利于借助于冷却装置的散热。由此强烈改进了冷却性能。

所述模块内的电子组件(例如Si/SiC芯片)与所述连接装置的连接可以借助于带,即所谓的“带式接合(Ribbon bonding)”进行。

用于制造根据本发明的模块的根据本发明的方法由方法权利要求13的特征描述。该方法涉及经由馈电线施加了大于1000V的电压和大于100A的电流的模块。电气绝缘载体经由金属化区域与材料厚度大于0.3mm的连接装置连接。由于所述连接装置在至少一个部位处侧向地或有角度地至少突出超过所述金属化区域和/或所述载体,并且具有至少一个接触元件,因此对于从外部向所述模块的电流输送不再需要接合过程。由此避免了寄生电感。附加地,可以减小或降低高功率电路的建造高度。不再需要接合线弧形地在所述电子组件上伸展。所述连接装置借助于接触元件与功率源连接。

优选使用经过烧结的陶瓷作为电气绝缘载体,并且通过AMB过程将所述连接装置固定在所述载体的金属化区域上。在描述高功率电路的根据本发明的模块时已经详细描述了AMB方法的优点。

本发明涉及一种电子高功率模块或其模块,其中经由馈电线施加大于1000V的电压和大于100A的电流,所述模块具有电气绝缘载体,在该电气绝缘载体上经由金属化区域固定了具有大于0.3mm的材料厚度的连接装置并且在该电气绝缘载体上布置有电子组件,所述电子元件根据需要与所述连接装置电气连接。

为了从外部直接向所述模块、向所述连接装置输送电流并因此省去现有技术中惯用的接合过程并且由此避免电流引线上的寄生电感,根据本发明提出,所述连接装置在至少一个部位处侧向地或有角度地至少突出超过所述金属化区域,所述连接装置在该突出部中不固定在所述载体上并且具有用于所述馈电线的接触装置。

附图说明

下面基于附图进一步解释本发明。所有附图均包含本发明的部分示意性图示并且以示例的方式用于解释本发明。本发明的特殊实施方式可以不同于这些图。附图中根据本发明的功率模块的图示是粗略和示意性的。

在此

图1示出了根据本发明的功率模块的横截面,

图2示出了根据图1的功率模块的俯视图,

图3示出了根据本发明的功率模块的特殊实施,

图4示出了根据本发明的具有热释放区的功率模块的透视图,

图5A、图5B、图5C示出了根据图4的功率模块的热释放区的不同实施,以及

图6示出了根据本发明的具有热释放区的不同设计并且具有不同冷却装置的功率模块的透视图。

具体实施方式

图1示出了根据本发明的功率模块,即模块1,具有载体2、高度或材料厚度≥0.3mm的连接装置3,该连接装置经由金属化区域4与载体2连接。根据图1,载体2是尺寸为7.5英寸×5.5英寸的板。这些陶瓷板也称为衬底。第一电子组件19(例如芯片)又经由金属化区域4直接与载体2连接。第一电子组件19借助于所谓的接合线21与第二组件20连接。第二组件20经由金属化区域4直接布置在连接装置3上。在该实施例中,以附图标记4示出的金属化区域4包括涂层形式的接触部位。这些接触部位中的一些是连接装置3的一部分,而这些接触部位中的另一些是第二组件20的一部分。这导致组件20以材料适配的方式无需附加装置(接合线21)地直接与连接装置3连接。根据图1的载体2是长方体形式的陶瓷载体2。该长方体由第一平坦侧5和第二平坦侧6界定。这两个平坦侧5和6之间的距离形成陶瓷载体2的高度。在侧向取向中,载体2由四个侧面界定。在图1中可以识别出第一侧面7和第二侧面8。连接装置3由第一端11和第二端12界定。连接装置3的第二端12布置在由载体2的侧面形成的区域内。连接装置3的第一端11布置成与载体2和金属化区域4有距离,其中金属化区域4具有第一端23和第二端24。该距离在图1中显现为突出部9。在此,突出部9a由连接装置3的第一端11和载体2的第一侧面7之间的距离形成。突出部9b是连接装置3的第一端11和金属化区域4的第一端23之间的距离。接触装置22设置在连接装置3的第一端11处。该接触装置22与功率源(未示出)连接。由此可以向所述功率模块提供电流和电压。为了使功率模块1能够得到充分的冷却,该功率模块具有冷却通道14。流体可以被引导通过这些冷却通道14以实现和改进散热。

图2示出了根据图1的根据本发明的模块1的第一平坦侧5的俯视图。经由金属化区域4与载体2连接的连接装置3具有五个接触装置22。在各个接触装置22之间设置有距离,即间隙。该距离大到以至于在施加电压时两个相邻布置的接触装置22之间不会发生火花放电。接触装置22的数量以及接触装置22的尺寸和设计取决于模块1的功耗并且可以与所述功耗适配。连接装置3突出超过载体2的区域用突出部9示出。附加地,图2示例性地示出了第一和第二电子组件19、20。电子组件19、20之间的连接由接合线21表示。为了清楚起见,分别仅示出两个接合线21。事实上,大量这种接合线21用于所述电子组件之间的连接。第二组件20直接与所述连接装置连接。不需要接合线21来将第二组件20与连接装置3连接。

图3示出了根据本发明的模块1的特殊实施例。在此连接装置3的第一端11和第二端12均位于由载体2的侧面形成的区域内。金属化区域4由第一端23和第二端24界定。连接装置3的沿载体2的方向布置的面积大于用于将连接装置3与载体2连接的金属化区域4的面积。突出部9由连接装置3的第一端11和金属化区域4的第一端23之间的距离形成。陶瓷载体2包括翅片形式的冷却装置14。这些冷却装置14是载体2的集成部分并且与载体2一体地连接。冷却装置14和载体2之间没有分隔线。冷却装置14是彼此有间距地布置的各个翅片。由此产生了空间,通过该空间空气可以循环,从而提高了冷却性能。

图4示出了根据本发明的模块1,其中连接装置3在突出部9的区域中具有带有膨胀装置16的释放区15。该释放区15被构造为其补偿由于输入到所述模块中的功率和由此带来的放热而引起的伸展。由此增加了模块1的使用寿命。根据图4的释放区15由具有膨胀装置16的圆形片段组成。膨胀装置16被构造为柔性的。通过这些片段的横截面与连接装置3的横截面相比减小来实现该柔性。附加地,从图4中可以看出冷却通道形式的冷却装置14。图4中的这些冷却装置14以示例的方式示出。根据模块1的应用,冷却装置14在其布置、取向、直径、尺寸及其分布方面可以不同。

从图5A、图5B和图5C可以看出释放区15的不同形状的膨胀装置16。如图5A所示,该膨胀装置是凹口,或者根据图5B是形成为三角形的形式或根据图5C形成为弯曲片段的形式的有角度布置的柔性区。为了增加膨胀装置16的柔性,膨胀装置16可以具有比连接装置3更小的横截面,而不管膨胀装置16的形式如何。在图5C中可以看出,膨胀装置16的高度18或材料厚度小于连接装置3的高度17或材料厚度。所有这些不同形状的膨胀装置16的共同点是它们被构造为柔性的。柔性可以由几何形状或由例如锥形横截面形成。

图6示出了根据本发明的模块1的透视图。在此在载体2上布置了不同的冷却装置14a、14b、14c。载体2具有冷却通道形式的冷却装置14a,也如图4所示。附加地,载体2具有如图3所示的冷却装置14b。该冷却装置与载体2整体地连接。附加地,从图6可以识别出,冷却装置14c与载体2连接。冷却装置14c是使用本身已知的连接技术与载体2连接的独立装置。因此可以在冷却装置14c和载体2之间识别出分隔线25。图6中所示的各种冷却装置14a、14b、14c可以单独地布置在载体2上或以任何可想象的组合布置。

附加地,从图6中可以识别出释放区15。该释放区15具有不同设计的膨胀装置16。这些膨胀装置是释放区15内的凹口,由此增加了释放区的柔性。这些凹口可以由孔、盲孔或任何形状的凹槽形成,例如椭圆形凹槽或具有自由形状的凹槽。释放区15内的任何凹槽组合都是可以想到的,通过这些凹槽组合可以增加释放区15的柔性。

在所有图中均未示出可以用不导电的灌注料封装所述电子高功率电路。如果是这种情况,则只有接触装置22从灌注料伸出并且可以与外部功率源连接。

1 模块
2 载体
3 连接装置
4 金属化区域
5 2的第一平坦侧
6 2的第二平坦侧
7 2的第一侧面
8 2的第二侧面
9, 9a, 9b 突出部
11 3的第一端
12 3的第二端
14, 14a, 14b, 14c 冷却装置
15 释放区
16 膨胀装置
17 3的高度
18 16的高度
19 第一电子组件
20 第二电子组件
21 接合线
22 接触装置
23 4的第一端
24 4的第二端
25 分隔线

14页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:电路板的热管理

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!