一种复合陶瓷材料及其制备方法

文档序号:480369 发布日期:2022-01-04 浏览:20次 >En<

阅读说明:本技术 一种复合陶瓷材料及其制备方法 (Composite ceramic material and preparation method thereof ) 是由 刘建 王重海 路翔 齐刚 于淼 翟萍 廖荣 于 2021-09-07 设计创作,主要内容包括:本发明公开了一种复合陶瓷材料,由以下原料制备而成:石墨粉或碳粉、聚碳硅烷、助剂,以及氮化硅粉、氮化铝粉、硼化锆粉、硼化钛粉中的一种或者几种;所述助剂包括:氧化铝、氟化钙、氧化镍、氧化钇、氧化钙中的一种或者几种;本发明另一方面公开了一种复合陶瓷材料制备方法,能够实现陶复合瓷材料具有抗氧化性、高导热性,能够代替石墨材料在600-1000℃使用,且在≤800℃的工作环境下不会出现石墨氧化现象。(The invention discloses a composite ceramic material which is prepared from the following raw materials: graphite powder or carbon powder, polycarbosilane, an auxiliary agent and one or more of silicon nitride powder, aluminum nitride powder, zirconium boride powder and titanium boride powder; the auxiliary agent comprises: one or more of aluminum oxide, calcium fluoride, nickel oxide, yttrium oxide and calcium oxide; the invention also discloses a preparation method of the composite ceramic material, which can realize the oxidation resistance and high thermal conductivity of the ceramic composite ceramic material, can replace the graphite material to be used at the temperature of 600-1000 ℃, and can not generate the graphite oxidation phenomenon under the working environment of less than or equal to 800 ℃.)

一种复合陶瓷材料及其制备方法

技术领域

本发明涉及抗氧化、高导热复合陶瓷材料领域,具体涉及了金属热耦合模具领域。

背景技术

常温下石墨在自然界中有着较好的稳定性,具有优异的高温力学性能、耐腐蚀性能以及导热性能等特性,广泛应用于冶金、电气、电化学等领域;但是随着温度升高至400℃,石墨结构里的一些活性点部位易与腐蚀性气体(O2、NH3等)发生化学反应;在高于400℃的有氧环境下,会发生氧化,且氧化速率会随着温度升高而急剧加速,材料的强度大幅度下降甚至消失,这极大地限制了石墨材料在有氧条件下的应用。特别是随着电子工业技术的不断发展,新兴起的新能源电动汽车,3D手机屏幕等行业都用到了石墨材质的模具材料,其工作温度通常在600-800℃,这个温度对石墨材料及其制品的高温抗氧化性是个极大挑战,现在工厂实际操作过程中为了降低石墨氧化速度,不得不采取各种的抗氧化办法来降低其氧化速度,比如浸渍法,每隔4-8小时须把复杂模具从设备拆卸,然后浸入抗氧化药水中浸泡一段时间,干燥后重新装设备生产,这样一来耗费大量时间、人力和物力,给现代化生产效率带来了很大阻碍;为此,多年来人们一直在寻找解决如何提高石墨材料高温抗氧化性,且材料保持高导热性的办法。

发明内容

本发明目的在于,实现陶复合瓷材料具有抗氧化性、高导热性,能够代替石墨材料使用,且在≤800℃的工作环境下不会出现石墨氧化现象;提供了一种复合陶瓷材料,所述复合陶瓷材料的制备材料包括:石墨粉或碳粉、聚碳硅烷、助剂,以及氮化硅粉、氮化铝粉、硼化锆粉、硼化钛粉中的一种或者几种;实现复合材料的抗氧化性,同时能够提高其导热性能。

为实现上述目的,本发明的技术方案如下:

根据本发明一个方面提供了一种复合陶瓷材料,由以下原料制备而成:石墨粉或碳粉、聚碳硅烷、助剂,以及氮化硅粉、氮化铝粉、硼化锆粉、硼化钛粉中的一种或者几种;所述助剂包括:氧化铝、氟化钙、氧化钇、氧化钙、碳化硅中的一种或者几种;

所述复合陶瓷材料在≤800℃时的使用环境下3小时内不被氧化;

所述复合材料在800℃时的氧化率为0,在1000℃时的氧化率≤0.12wt%,在900℃时的氧化率≤0.03wt%;所述复合材料氧化速率的检测方法为:将复合陶瓷样品干燥称重并计量数据为W0,放入相应温度马弗炉中,保温3小时,取出复合陶瓷样品称重Wy,氧化速度=(W0-Wy)/W0*100%;所述复合陶瓷复合材料致密度>93%;抗弯强度80-800Mpa;硬度0.4-12Gpa;电阻率2.0-20μΩ·m;使用温度600-1000℃。

本发明相对于现有技术的有益效果在于,

1、通过复合陶瓷材料制备原材料中包括氮化硅粉、氮化铝粉、硼化锆粉、硼化钛粉中的一种或者几种,在烧结过程中形成玻璃态分散在石墨或碳周围进行包裹,有利于减少石墨与其他物相之间的宏观及微观缺陷;

2、由于石墨或碳不容易在陶瓷中烧结,既不利于与陶瓷物料结合,因此通过加入聚碳硅烷,进一步填补了石墨或碳物相周围的缝隙,聚碳硅烷既与石墨或碳以及其他物料烧结时形成的玻璃相均有良好亲附性能;最终减少了复合材料中的晶相缺陷或裂纹,从而具有良好的导热性能;

3、使用过程中,所述复合材料在高温环境中时,氮化硅、氮化铝、硼化锆、硼化钛会形成金属氧化物,此既避免了氧气对石墨或碳的氧化同时,所述金属氧化物所又进一步的附着甚至包裹在石墨或碳周围,避免了石墨或碳被氧化或腐蚀;所述金属氧化物具有高的耐热性能,在高温下不挥发、不熔化、不被破坏,会在高温度下依然对石墨或碳进行保护,避免其在高温下腐蚀。

相比较常见的B4C等材料与石墨粉或碳粉进行混合烧结时,在一定的温度时候会氧化成B2O3,B2O3会包裹在易氧化组份表面,在一定温度下抗氧化效果,但是B2O3是个易挥发材料,特别当温度高于850℃时,这主要是由于B2O3的挥发度增加,会造成复合材料的氧化速度开始增加;

所述的物料合理的设计了复合材料骨架,微观结构及烧结机理,从而能够实现高温、快速烧结;有利于复合材料的致密化,从而有利于实现复合陶瓷的高导热性;

因此所述复合陶瓷材料在≤800℃时的使用环境下持续3小时内不被氧化,在1000℃时的氧化率≤0.12wt%;明显对石墨材料的耐腐蚀性明显提高,且依然具有很好的导热性,同时保留了石墨良好的稳定性、以及对金属的非浸润性,可以代替石墨材料在高温度领域使用。

进一步的,所述复合陶瓷材料热导率为35-60W/m.k(25℃)。

采用上述进一步技术方案的有益效果在于,所述复合陶瓷材料导热率为35-60W/m.k(25℃),可以实现代替石墨材料作为金属材质热压成型磨具的材质,既具有高导热率,可以实现热量通过复合材料模具传递给模压制品。

进一步的,石墨粉或碳粉占所述固体原料总质量的10-30wt%。

采用上述进一步技术方案的有益效果在于,所述石墨或碳具有较好的稳定性,优良的高温力学性能,以及金属非浸润性,因此复合陶瓷材料中石墨添加量高,其高温力学性能以及金属非浸润性越好,但是石墨在陶瓷中烧结困难,容易出现复合陶瓷强度与导热性差;因此石墨粉或碳粉占所述固体原料总质量的10-30wt%是一个优选的方案。

根据本发明的另一个方面提供了一种复合陶瓷材料制备方法,包括以下步骤:原料包括石墨粉或碳粉,以及氮化硅粉、氮化铝粉、硼化锆粉、硼化钛粉中的一种或者几种混合得混合料;将混合料、助剂、分散剂、聚碳硅烷加入设备中进行混合,得到陶瓷浆料;将所述陶瓷浆料进行干燥得到陶瓷粉料;将所述陶瓷粉料进行预压成型得到陶瓷坯体;将所述陶瓷坯体进行烧结,即得;优先助剂加入分散剂中预混,预混时间为2-4小时,然后将所述混合料加入预混后的物料中,混料时间在6-10小时;进一步优先,所述石墨粉或碳粉大小为D50:1-5μm;氮化硅粉大小为D50:<1μm;硼化锆粉大小为D50:1-3μm。

本发明相对于现有技术的有益效果在于,所述的物料合理的设计了复合材料骨架,微观结构及烧结机理,从而能够实现高温、快速烧结;有利于复合材料的致密化,从而有利于实现复合陶瓷的高导热性;

陶瓷浆料干燥后,进行预压成型制备陶瓷坯体,可以提高素坯的密度,增加装炉产量,节约成本,更有利于烧结后复合材料致密化,导热性提高;

因此所述复合陶瓷材料在≤800℃时的使用环境下持续3小时内不被氧化,在1000℃时的氧化率≤0.12wt%;明显对石墨材料的抗氧化性能明显提高,且依然具有很好的导热性,同时保留了石墨良好的稳定性、以及对金属的非浸润性,可以代替石墨材料在更高温度领域使用。

进一步的,所述混合料添加比例为:所述石墨粉或碳粉为总固体原料质量的10-30wt%,氮化硅粉为总固体原料质量的40-70wt%,氮化铝粉为总固体原料质量的10-20wt%;或所述石墨粉或碳粉为总固体原料质量的10-30wt%,硼化锆粉为总固体原料质量的30-40wt%,氮化铝粉为总固体原料质量的10-30wt%;硼化钛粉为总固体原料质量的10-30wt%。

采用上述进一步技术方案的有益效果在于,所述复合材料的密度是随着石墨添加量的增加而逐步降低的;导热系数是随着添加量增加先出现一个增加,而后下降的趋势;因此所述物料添加比例实现高导热性以及高耐腐蚀性。

进一步的,所述助剂包括:氧化铝、氟化钙、氧化钇、氧化钙、碳化硅中的一种或者几种;所述氧化铝、氟化钙、氧化钇、氧化钙、碳化硅添加质量分别为所述石墨粉或碳粉添加质量的0-20wt%、0-10wt%、0-26.7wt%、0-20wt%、0-28wt%。

采用上述进一步技术方案的有益效果在于,所述助剂有利于物料烧结以及致密化,且在烧结后,在高温环境工作中,不会出现因为高温出现助剂部分或全部发生挥发等现象,造成内部缺陷,造成复合材料抗氧化性、高导热性降低。

进一步的,聚碳硅烷添加质量为所述石墨粉或碳粉添加质量的5-10wt%。

采用上述进一步技术方案的有益效果在于,通过上述聚碳硅烷的添加比例,能够有效填充由于石墨或碳粉造成的物相之间的宏观和微观缺陷,提高复合材料的致密性,从而提高其导热性;避免了添加过多时,复合材料强度降低。

进一步的,所述分散剂为无水乙醇;所述陶瓷浆料进行干燥时,采用真空干燥,干燥温度为60-80℃,干燥时间为12-14小时,所述陶瓷粉料的无水乙醇含量<2wt%;

所述陶瓷粉浆料进行预压成型时,压力为400-800kg/cm3

采用上述进一步技术方案的有益效果在于,通过先干燥,且所述陶瓷粉料的无水乙醇含量<2wt%,有利于实现后续预压制备坯体的强度与致密度。

进一步的,所述陶瓷坯体烧结过程具体过程为:升温到500℃,升温时间为28-32min;500-1000℃,升温时间为68-72min;1000-1400℃,升温时间为68-72min,保温时间为58-62min,达到1400℃时开始加压;1400-1760℃,升温时间为68-72min,保温时间为58-62min;或升温到500℃,升温时间为28-32min;500-1000℃,升温时间为68-72min;1000-1400℃,升温时间为48-52min,保温时间为13-17min,达到1400℃时开始加压;1400-1900℃,升温时间为68-72min,保温时间为60min;所述加压压力为2MPa或22MPa。

采用上述进一步技术方案的有益效果在于,采用上述烧结温度,既快速烧结,且终烧成温度高,有利于复合材料致密化;且采用分段升温控制升温速率,实现各材料受热均匀,且保证了各组份之间反应时间及空隙的排除时间,避免了陶瓷组份与石墨结合时不利造成物相之间裂痕或晶相缺陷增多,最终实现复合陶瓷材料高导热性。

具体实施方式

为了更好的了解本发明的技术方案,下面结合具体实施例对本发明作进一步的说明。

实施例1:

本实施例中一方面提供一种复合陶瓷材料,由以下原料制备而成:石墨粉、聚碳硅烷、助剂,以及氮化硅粉、氮化铝粉;所述助剂包括:氧化铝、氟化钙、氧化钇、氧化钙;所述石墨粉占所述固体原料总质量的22wt%;所述复合陶瓷材料在≤800℃时的使用环境下持续3小时内不被氧化;所述复合材料在800℃时的氧化率为0,在1000℃时的氧化率≤0.12wt%,在900℃时的氧化率≤0.03wt%;所述复合材料氧化速率的检测方法为:将复合陶瓷样品干燥称重并计量数据为W0,放入相应温度马弗炉中,保温3小时,取出复合陶瓷样品称重Wy,氧化速度=(W0-Wy)/W0*100%;所述复合陶瓷材料热导率为43W/m.k(25℃);致密度>93%;抗弯强度500Mpa;硬度5.2Gpa;热导率43W/m.k(25℃);电阻率5.6μΩ·m;使用温度600-1000℃。

本实施例中另一个方面提供了一种复合陶瓷材料制备方法,包括以下步骤:将石墨粉300g、氮化硅粉780g、氮化铝粉150g混合得混合料;将所述助剂加入分散剂中预混,预混时间为4小时,然后将混合料、聚碳硅烷加入球磨设备中进行球磨,得到陶瓷浆料;所述聚碳硅烷添加质量为30g;将所述陶瓷浆料进行干燥得到陶瓷粉料;将所述陶瓷粉料进行预压成型得到陶瓷坯体;将所述陶瓷坯体进行烧结,即得;所述助剂包括:氧化铝30g、氟化钙30g、氧化钇60g、氧化钙10g;所述分散剂为无水乙醇,无水乙醇添加量为1500ml;所述球磨时间为12h,陶瓷浆料干燥温度为75℃,干燥时间为13小时;所述陶瓷粉料中的无水乙醇含量为1.8wt%;

将所述陶瓷粉料在干压机中进行预压,预压的压力控制在800kg/cm3,预压好的陶瓷坯体按如下制度进行烧结:

升温到500℃,升温时间为30min;500-1000℃,升温时间为70min;1000-1400℃,升温时间为50min,保温时间为60min,达到1400℃时开始加压;1400-1900℃,升温时间为70min,保温时间为60min;

所述加压压力为2MPa,通过充氮气实现。

实施例2:

本实施例与实施例1相同的特征不再赘述,本实施例与实施例1不同的特征在于:本实施例中一方面提供一种复合陶瓷材料,由以下原料制备而成:石墨粉、聚碳硅烷、助剂,以及硼化锆粉,氮化铝粉,硼化钛粉;所述助剂包括:氧化钇、氧化铝、碳化硅;所述石墨粉或碳粉占所述固体原料总质量的20.6wt%;所述复合陶瓷材料热导率为57W/m.k(25℃),抗弯强度290Mpa;硬度7Gpa;电阻率2.6μΩ·m。

本实施例中另一个方面提供了一种复合陶瓷材料制备方法,包括以下步骤:将石墨粉220g、硼化锆粉400g、氮化铝粉150g,硼化钛粉150g混合得混合料;将所述助剂加入分散剂中预混,预混时间为3小时,然后将混合料、聚碳硅烷加入球磨设备中进行球磨,得到陶瓷浆料;所述聚碳硅烷添加质量为16g;将所述陶瓷浆料进行干燥得到陶瓷粉料;将所述陶瓷粉料进行预压成型得到陶瓷坯体;将所述陶瓷坯体进行烧结,即得;所述助剂包括:氧化铝30g,氧化钇58g、碳化硅60g;所述分散剂为无水乙醇,无水乙醇添加量为1300ml;所述球磨时间为10h,陶瓷浆料干燥温度为60-80℃,干燥时间为13小时;所述陶瓷粉料中的无水乙醇含量为1.2wt%;

所述陶瓷粉料在干压机中进行预压,预压的压力控制在500kg/cm3,预压好的陶瓷坯体按如下制度进行烧结:

升温到500℃,升温时间为30min;500-1000℃,升温时间为70min;1000-1400℃,升温时间为50min,保温时间为15min,达到1400℃时开始加压;1400-1900℃,升温时间为70min,保温时间为60min;所述加压压力为22MPa。

实施例3:

本实施例与实施例1相同的特征不再赘述,本实施例与实施例1不同的特征在于:本实施例中一方面提供一种复合陶瓷材料,由以下原料制备而成:碳粉、聚碳硅烷、助剂,以及氮化硅粉、氮化铝粉;所述助剂包括:氧化铝、氟化钙、氧化钇、氧化钙;所述石墨粉或碳粉占所述固体原料总质量的20wt%;所述复合陶瓷材料热导率为35-60W/m.k(25℃)。

本实施例中另一个方面提供了一种复合陶瓷材料制备方法,包括以下步骤:将碳粉300g、氮化硅粉780g、氮化铝粉150g混合得混合料;将所述助剂加入分散剂中预混,预混时间为2小时;所述聚碳硅烷添加质量为15g;所述助剂包括:氧化铝30g,氟化钙30g、,氧化钇60g、,氧化钙10g;所述分散剂为无水乙醇,无水乙醇添加量为1600ml;所述球磨时间为10h,陶瓷浆料干燥温度为60℃,干燥时间为13小时;所述陶瓷粉料中的无水乙醇含量为1.2wt%。

以上描述仅为本申请的较佳实施例以及对所运用技术原理的说明。本领域技术人员应当理解,本申请中所涉及的发明范围,并不限于上述技术特征的特定组合而成的技术方案,同时也应涵盖在不脱离所述发明构思的情况下,由上述技术特征或其等同特征进行任意组合而形成的其它技术方案。例如上述特征与本申请中公开的(但不限于)具有类似功能。

对比例:

1、本发明的复合材料与石墨材料在不同温度下氧化率的对比例表格如下:

本申请复合材料不同氧化温度下氧化率的对比表格:

2、本发明石墨添加量为单一变量下,复合陶瓷材料密度与导热率的数据表格:

石墨添加量对复合材料的影响:

石墨添加量wt% 5 10 20 30 40
密度(g/cm3) 2.737 2.690 2.650 2.582 2.085
导热率(W/m.k) 25.21 47.36 62.8 53.36 38.66

3、本发明最终烧成温度为单一变量下,复合陶瓷材料密度的数据表格:

烧成温度对复合材料的影响:

9页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:氮化硅基陶瓷体、氮化硅基陶瓷表面原位自生成氮化锆涂层的方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!