次级线圈模块、移动淬火装置及移动淬火方法

文档序号:491726 发布日期:2022-01-04 浏览:20次 >En<

阅读说明:本技术 次级线圈模块、移动淬火装置及移动淬火方法 (Secondary coil module, movable quenching device and movable quenching method ) 是由 山根明仁 秦利行 小塚千寻 于 2020-05-20 设计创作,主要内容包括:该次级线圈模块包括圆弧形线圈和冷却夹具。所述圆弧形线圈具有冷媒导入口和冷媒排出口。所述冷却夹具具有:冷媒导入管,其具有开口前端部,该开口前端部被构成为可相对于所述冷媒导入口自由嵌合;冷媒排出管,其具有开口前端部,该开口前端部被构成为可相对于所述冷媒排出口自由嵌合;第1连接部件,其将所述冷媒导入管的所述开口前端部可自由拆装地连接于所述冷媒导入口;第2连接部件,其将所述冷媒排出管的所述开口前端部可自由拆装地连接于所述冷媒排出口;冷媒供给管,其以向所述圆弧形线圈的半径方向外侧延伸的方式连接于所述冷媒导入管;以及冷媒回收管,其以向所述圆弧形线圈的所述半径方向外侧延伸的方式连接于所述冷媒排出管。(The secondary coil module includes a circular arc coil and a cooling jig. The circular arc coil is provided with a refrigerant introducing port and a refrigerant discharging port. The cooling jig has: a refrigerant inlet pipe having an open front end portion configured to be freely fitted to the refrigerant inlet port; a refrigerant discharge pipe having an open front end portion configured to be freely fitted to the refrigerant discharge port; a 1 st connecting member that detachably connects the open front end portion of the refrigerant introducing pipe to the refrigerant introducing port; a 2 nd connecting member for detachably connecting the open front end portion of the refrigerant discharge pipe to the refrigerant discharge port; a refrigerant supply pipe connected to the refrigerant introduction pipe so as to extend outward in a radial direction of the circular arc coil; and a refrigerant recovery pipe connected to the refrigerant discharge pipe so as to extend outward in the radial direction of the arc coil.)

次级线圈模块、移动淬火装置及移动淬火方法

技术领域

本发明涉及次级线圈模块、移动淬火装置及移动淬火方法。

本申请基于2019年5月23日于日本国申请的特愿2019-096867号来主张优先权,并将其内容援引于此。

背景技术

以往,通过感应加热来对轴状体进行移动淬火,从而提高轴状体的疲劳强度。此处所说的所谓移动淬火,意味着一边使线圈构件等相对于轴状体沿轴状体的轴线方向移动一边进行淬火。

在感应加热中,向被形成为环状的初级线圈构件内插入轴状体,并使高频电流流过初级线圈构件,通过感应加热来加热轴状体。在感应加热中,轴状体与初级线圈构件的距离越短,轴状体就越会被以高温加热。因此,会存在如下这样的问题:在轴状体包括主体部、以及被设置于主体部且直径比主体部更小的小径部的情况下,与主体部相比,小径部难以被加热。

针对该问题,提出了一种移动淬火装置,其在初级线圈构件的内侧包括次级线圈构件,该次级线圈构件具有比初级线圈构件的内径更小的外径(例如参照下述专利文献1~3)。次级线圈构件被形成为“O”字形或“C”字形。在使用被提出的次级线圈的装置中,轴状体与接近轴状体的线圈构件的距离在主体部和小径部中几乎不变,因此能够将主体部与小径部同等地加热。

在这些移动淬火装置中,多个线圈构件被配置为同心圆状,因此轴状体与接近轴状体的线圈构件的距离在周向的各位置处会变得均匀。因为能够使用使匝数变多的电流效率较佳的线圈构件,所以能够以较少的电流均匀地、有效地加热轴状体。

先行技术文献

专利文献

专利文献1:日本国特公昭52-021215号公报

专利文献2:日本特开2015-108188号公报

专利文献3:日本特开2000-87134号公报

发明内容

发明要解决的技术问题

然而,在上述专利文献1~3所公开的移动淬火装置中,均是将在轴线方向的端部设置有小径部的轴状体作为加热对象。在轴状体的小径部被设置于轴状体的轴线方向的中间部的情况下,会存在如下这样的问题:使安装于小径部的次级线圈构件移动到轴状体的轴线方向的端部,并将其从轴状体取下需要时间。

此外,在对各种形状的轴状体进行淬火的情况下,适于该形状的次级线圈各自不同。在1根轴状体中轴径会发生变化的情况下,适于各轴径的次级线圈也不同。当为多个阶段的径差时,例如考虑不仅使用次级线圈,还使用具有比次级线圈的内径更小的外径的三级线圈的方法,但因为三级线圈需要一定以上的粗细,所以难以通过使用三级线圈的方法来灵活地应对以细节距来设置有径差的轴状体。因此,在使用上述的次级线圈及三级线圈来淬火的情况下,投入能量的效率会降低,也易于在产生径差的台阶的角部等处发生过加热。

本发明鉴于上述情况而完成,其目的在于提供一种可应对具有各种形状(直径)的轴状体且次级线圈的更换容易性较高的次级线圈模块、一种包括该次级线圈模块的移动淬火装置、以及一种可通过该移动淬火装置来实现的移动淬火方法。

解决技术问题的技术手段

本发明为解决上述问题以达成上述目的,采用以下手段。

(1)本发明的一个方案的次级线圈模块包括:圆弧形线圈,其具有中空矩形截面;以及冷却夹具,其被构成为可相对于所述圆弧形线圈自由拆装。

所述圆弧形线圈具有:冷媒导入口,其设置于所述圆弧形线圈的周向一端部;以及冷媒排出口,其设置于所述圆弧形线圈的周向另一端部。

所述冷却夹具具有:冷媒导入管,其具有开口前端部,该开口前端部被构成为相对于所述冷媒导入口可自由嵌合;冷媒排出管,其具有开口前端部,该开口前端部被构成为相对于所述冷媒排出口可自由嵌合;第1连接部件,其将所述冷媒导入管的所述开口前端部可自由拆装地连接于所述冷媒导入口;第2连接部件,其将所述冷媒排出管的所述开口前端部可自由拆装地连接于所述冷媒排出口;冷媒供给管,其以向所述圆弧形线圈的半径方向外侧延伸的方式连接于所述冷媒导入管;以及冷媒回收管,其以向所述圆弧形线圈的所述半径方向外侧延伸的方式连接于所述冷媒排出管。

(2)本发明的另一个方案的次级线圈模块包括:圆弧形线圈,其具有中空矩形截面;以及冷却夹具,其被构成为可相对于所述圆弧形线圈自由拆装。

所述圆弧形线圈具有:冷媒导入口,其在所述圆弧形线圈的周向一端部向所述圆弧形线圈的中心轴方向的一侧开口;以及冷媒排出口,其在所述圆弧形线圈的周向另一端部向与所述冷媒导入口相同的朝向开口。

所述冷却夹具具有:冷媒导入管,其具有开口前端部,该开口前端部被构成为相对于所述冷媒导入口可自由嵌合;冷媒排出管,其具有开口前端部,该开口前端部被构成为相对于所述冷媒排出口可自由嵌合;第1连接部件,其在所述冷媒导入管的所述开口前端部嵌合于所述冷媒导入口且所述冷媒导入管的长度方向与所述中心轴方向平行的状态下,将所述冷媒导入管可自由拆装地连接于所述圆弧形线圈;第2连接部件,其在所述冷媒排出管的所述开口前端部嵌合于所述冷媒排出口且所述冷媒排出管的长度方向与所述中心轴方向平行的状态下,将所述冷媒排出管可自由拆装地连接于所述圆弧形线圈;冷媒供给管,其以向所述圆弧形线圈的半径方向外侧延伸的方式连接于所述冷媒导入管;以及冷媒回收管,其以向所述圆弧形线圈的所述半径方向外侧延伸的方式连接于所述冷媒排出管。

(3)也可以是,在上述(2)所述的次级线圈模块中,所述第1连接部件具有:第1臂部,其由弹性材料构成,且沿所述中心轴方向延伸;第1固定部,其将所述第1臂部的长度方向一端部固定于所述冷媒导入管;以及第1爪部,其被设置于所述第1臂部的长度方向另一端部,且向所述圆弧形线圈的半径方向内侧突出。此外,也可以是,所述第2连接部件具有:第2臂部,其由弹性材料构成,且沿所述中心轴方向延伸;第2固定部,其将所述第2臂部的长度方向一端部固定于所述冷媒排出管;以及第2爪部,其被设置于所述第2臂部的长度方向另一端部,且向所述圆弧形线圈的所述半径方向内侧突出。

(4)也可以是,上述(2)或(3)所述的次级线圈模块还具有夹持部件,该夹持部件被固定于所述圆弧形线圈。也可以是,所述夹持部件具有:第1部位,其从所述圆弧形线圈向所述中心轴方向的一侧延伸;以及第2部位,其从所述第1部位向所述圆弧形线圈的所述半径方向外侧延伸。

(5)本发明的一个方案的移动淬火装置用于对轴状体进行移动淬火,该轴状体具有主体部、以及被设置于所述主体部的轴线方向的中间部且直径小于所述主体部的小径部;该移动淬火装置包括:环状的初级线圈构件,其使高频电流流过,并在内部插入所述轴状体;如上述(1)~(4)中的任意一个所述的多个次级线圈模块;以及定位装置,其进行所述多个次级线圈模块的定位,使得所述多个次级线圈模块的所述圆弧形线圈在所述小径部的径向外侧以沿周向相互分离的状态配置在所述初级线圈构件内。

(6)也可以是,在上述(5)所述的移动淬火装置中,在将所述小径部的端部中的、位于所述轴线方向的一侧的端部记为一侧端部,将位于所述轴线方向的另一侧的端部记为另一侧端部时,所述移动淬火装置作为所述多个刺激线圈包括:多个次级第1线圈模块,其被用于所述小径部的所述另一侧端部的加热;以及多个次级第2线圈模块,其被用于所述小径部的所述一侧端部的加热。

(7)本发明的一个方案的移动淬火方法用于对轴状体进行移动淬火,该轴状体具有主体部、以及被设置于所述主体部的轴线方向的中间部且直径小于所述主体部的小径部;该移动淬火方法具有:更换工序,其根据所述小径部的直径来更换如上述(1)~(4)中的任意一个所述的多个次级线圈模块的所述圆弧形线圈;配置工序,其对所述多个次级线圈模块进行定位,使得在通过所述更换工序更换的所述圆弧形线圈在所述小径部的径向外侧沿周向相互分离地配置;以及加热工序,其通过在使以在内部插入有所述轴状体的状态流过高频电流的环状的初级线圈构件从位于所述小径部的所述轴线方向的一侧的端部向位于所述小径部的另一侧的端部沿所述轴线方向移动时,在所述初级线圈构件内配置所述多个次级线圈模块的所述圆弧形线圈的至少一部分,从而通过感应加热来对所述小径部进行加热。

(8)也可以是,在上述(7)所述的移动淬火方法中,在将所述小径部的一对端部中的、位于所述轴线方向的一侧的所述端部记为一侧端部,将位于所述轴线方向的另一侧的所述端部记为另一侧端部时,进行以下工序:第1更换工序,其作为所述更换工序,根据所述小径部的所述另一侧端部的直径来更换所述多个次级线圈模块所包含的多个次级第1线圈模块的圆弧形线圈;第1配置工序,其作为所述配置工序,对所述多个次级第1线圈模块进行定位,使得这些圆弧形线圈在所述小径部的所述另一侧端部的径向外侧沿周向相互分离地配置;第1加热工序,其作为所述加热工序,在相对于所述轴状体而向所述轴线方向的一侧相对移动的所述初级线圈构件内配置有所述多个次级第1线圈模块的所述圆弧形线圈的至少一部分时,对所述小径部的所述另一侧端部进行加热;分离工序,其在所述第1加热工序之后,在相对于所述初级线圈构件而使所述多个次级第1线圈模块向所述轴线方向的一侧移动后,使所述多个次级第1线圈模块从所述小径部向所述径向外侧移动;第2更换工序,其作为所述更换工序,根据所述小径部的所述一侧端部的直径来更换所述多个次级线圈模块所包含的多个次级第2线圈模块的圆弧形线圈;第2配置工序,其作为所述配置工序,对所述多个次级第2线圈模块进行定位,使得这些圆弧形线圈从所述初级线圈构件的所述轴线方向的另一侧穿过所述初级线圈构件内在所述小径部的所述一侧端部的径向外侧沿周向相互分离地配置;以及第2加热工序,其作为所述加热工序,在相对于所述轴状体而向所述轴线方向的一侧相对移动的所述初级线圈构件内配置有所述多个次级第2线圈模块的圆弧形线圈的至少一部分时,对所述小径部的所述一侧端部进行加热。

发明效果

根据本发明的上述各方案,能够提供一种可应对具有各种形状(外径)的轴状体且次级线圈的更换容易性较高的次级线圈模块、一种包括该次级线圈模块的移动淬火装置、以及一种可通过该移动淬火装置来实现的移动淬火方法。

附图说明

图1是示意性地表示在本发明的一个实施方式中被用作次级线圈的一对圆弧形线圈的立体图。

图2A是示意性地表示该实施方式的次级线圈模块的外观的俯视图。

图2B是表示该次级线圈模块的图,且为图2A的A-A剖视图。

图2C是表示该次级线圈模块的图,且为从图2A的箭头B观察的侧视图。

图3A是示意性地表示该次级线圈模块所包括的圆弧形线圈的外观的立体图。

图3B是该圆弧形线圈的俯视图。

图3C是表示该圆弧形线圈的图,且为图3B的Ca-Ca剖视图。

图4是用于在该次级线圈模块中,在将圆弧形线圈的外径固定为一个值,并根据该固定值将冷媒导入管与冷媒排出管的中心间距离固定为一个值这样的条件下,例示使圆弧形线圈的内径变化的情况的俯视图。即,在(b)中,使内径R20变得比(a)更大。

图5是将该实施方式的移动淬火装置的一部分切断并示意性地示出的侧视图。

图6是该移动淬火装置的主要部分的立体图。

图7是表示该移动淬火装置的主要部分的图,且为从图5的D-D线观察的俯视剖视图。

图8是表示在该移动淬火装置中,在轴状体的小径部配置有次级第2线圈构件的状态的立体图。

图9是表示该实施方式的移动淬火方法的流程图。

图10是用于说明该移动淬火方法中的第1分离工序的图,且为该移动淬火装置的立体图。

图11是用于说明该移动淬火方法中的第1分离工序的立体图。

图12是用于说明该移动淬火方法中的中央加热工序的图,且为将移动淬火装置的一部分切断并示意性地示出的侧视图。

图13是用于说明该移动淬火方法中的第2配置工序的立体图。

图14是用于说明该移动淬火方法中的第2配置工序的立体图。

图15是在该移动淬火装置的仿真中使用的分析模型的侧视图。

图16是表示实施例1的移动淬火装置的仿真结果的图。

图17是表示实施例2的移动淬火装置的仿真结果的图。

图18是表示比较例的移动淬火装置的仿真结果的图。

具体实施方式

本申请的发明人们基于使用加热效率较佳的次级线圈的方法,对以下专心研究了对具有各种半径或台阶的轴状体进行移动淬火的方法。

次级线圈的优点在于:由于在其周向存在缺损部,因而次级线圈所产生的涡流不会沿周向闭合,而会从次级线圈的外周面绕入到内周面,并利用绕入到其内周面的涡流来对轴状体的表面进行感应加热。另一方面,在像以往那样使用被形成为“O”字形或“C”字形的次级线圈的情况下,在初级线圈相对于轴状体而相对移动的期间(即移动淬火中),无法在初级线圈与轴状体之间的空隙中自由地配置次级线圈或将其取出。

因此,本申请的发明人们提出了一种方案,其如图1所示地准备出多个圆弧形线圈100作为次级线圈,并根据轴状体的直径来更换圆弧形线圈100。根据该方法,在将多个圆弧形线圈100视为一体的次级线圈时,会在其周向形成多个缺损部110,因此能够保持着可通过绕入到各圆弧形线圈100的内周面的涡流来对轴状体的表面进行感应加热这样的功能,在移动淬火中,在初级线圈与轴状体之间的空隙中自由地配置次级线圈(圆弧形线圈100)或将其取出。

另外,在图1中,作为一例,图示了将2个(一对)圆弧形线圈100用作次级线圈的情况,因此也形成了2处缺损部110。然而,圆弧形线圈100的数量不限于2个,3个也好,4个也好,只需要准备出所需数量的圆弧形线圈100即可。

如图1所示,圆弧形线圈100的外径R10被设计为小于初级线圈的内径且接近初级线圈的内径的值。此外,圆弧形线圈100的内径R20被设计为大于轴状体的外径且接近轴状体的外径的值。另外,在图1中,附图标记C10指示各圆弧形线圈100的中心轴。通过根据轴状体的外径预先准备出多个像这样被设计的圆弧形线圈100,从而能够应对各种形状的轴状体。此外,在1根轴状体中轴径会发生变化的情况下,也得以通过在移动淬火中,更换为适于各轴径的圆弧形线圈100的方法来应对。

本申请的发明人们对可最大限度地利用具有如上所述的高更换容易性的圆弧形线圈100的特性的移动淬火装置的构成进行了研究。此外,因为圆弧形线圈100本身也会在涡流流过时因焦耳效应而发热,所以需要在移动淬火中对圆弧形线圈100进行冷却。因此,本申请的发明人们对一边最大限度地利用圆弧形线圈100的特性,一边也能够实现移动淬火中的圆弧形线圈100的冷却的移动淬火装置的构成进一步进行了研究。结果,发明了本发明的次级线圈模块、以及包括该次级线圈模块的移动淬火装置。

以下,针对本发明的一个实施方式,参照附图详细进行说明。

〔次级线圈模块〕

首先,针对本实施方式的次级线圈模块200进行说明。

图2A~图2C是示意性地表示次级线圈模块200的外观的图。图2A是次级线圈模块200的俯视图。图2B是表示次级线圈模块200的图,且为图2A的A-A剖视图。图2C是表示次级线圈模块200的图,且为从图2A的箭头B观察的侧视图。

如图2A~图2C所示,次级线圈模块200包括:圆弧形线圈300,其具有中空矩形截面;冷却夹具(410、420、430、440、450、460),其被构成为可相对于圆弧形线圈300自由拆装;以及夹持部件500。

首先,参照图3A~图3C,针对圆弧形线圈300进行说明。图3A~图3C是示意性地表示圆弧形线圈300的外观的图。图3A是圆弧形线圈300的立体图。图3B是圆弧形线圈300的俯视图。图3C是图3B所示的圆弧形线圈300的Ca-Ca剖视图。

如图3A~图3C所示,圆弧形线圈300为具有中空矩形截面,且在俯视下具有圆弧形的形状的线圈。圆弧形线圈300具有:外径R10,其被设计为小于后述的初级线圈的内径且接近初级线圈的内径的值;以及内径R20,其被设计为大于后述的轴状体(尤其是小径部)的外径且接近轴状体的外径的值。

圆弧形线圈300具有:冷媒导入口310,其在圆弧形线圈300的周向一端部向圆弧形线圈300的中心轴C10方向的一侧(上方侧)D10开口;以及冷媒排出口320,其在圆弧形线圈300的周向另一端部向与冷媒导入口310相同的朝向(上方侧)开口。通过这些冷媒导入口310及冷媒排出口320,冷却水等冷媒能够在圆弧形线圈300的内部空间中流通。

另外,如图3C所示,冷媒导入口310被形成为开口径从中心轴C10方向的一侧D10向另一侧D20逐渐变小。冷媒排出口320也被形成为开口径从中心轴C10方向的一侧D10向另一侧D20逐渐变小。即,冷媒导入口310被形成为从圆弧形线圈300的外部向内部变得尖细。冷媒导入口310也被形成为从圆弧形线圈300的外部向内部变得尖细。

圆弧形线圈300具有与中心轴C10方向正交的一对表面。以下,将这一对表面中的、位于中心轴C10方向的一侧D10的圆弧形的表面称为第1圆弧面330,将位于中心轴C10方向的另一侧D20的圆弧形的表面称为第2圆弧面340。

以下,回到图2A~图2C,继续次级线圈模块200的说明。

如图2A~图2C所示,冷却夹具由冷媒导入管410、冷媒排出管420、第1连接部件430、第2连接部件440、冷媒供给管450、以及冷媒回收管460构成。

冷媒导入管410为用于从外部向圆弧形线圈300内导入冷媒的管状部件,具有开口前端部411,该开口前端部411被构成为可相对于圆弧形线圈300的冷媒导入口310自由嵌合。具体而言,开口前端部411被构成为具有无间隙地适合于冷媒导入口310的形状。

冷媒排出管420为用于从圆弧形线圈300内向外部排出冷媒的管状部件,具有开口前端部421,该开口前端部421被构成为可相对于圆弧形线圈300的冷媒排出口320自由嵌合。具体而言,开口前端部421被构成为具有无间隙地适合于冷媒排出口320的形状。

第1连接部件430为用于在冷媒导入管410的开口前端部411嵌合于冷媒导入口310且冷媒导入管410的长度方向与圆弧形线圈300的中心轴C10方向平行的状态下,将冷媒导入管410可自由拆装地连接于圆弧形线圈300的部件。

具体而言,第1连接部件430具有:第1臂部431,其由弹性材料构成,且沿中心轴C10方向延伸;第1固定部432,其将第1臂部431的长度方向一端部固定于冷媒导入管410;以及第1爪部433,其被设置于第1臂部431的长度方向另一端部,且向圆弧形线圈300的半径方向内侧突出。在第1爪部433的前端,形成有倾斜面433a。如上所述,第1臂部431由弹性材料构成,具有当赋予外力时会弯曲,当外力消失时会恢复到原来的直线状的形状的板簧那样的性质。

第2连接部件440为用于在冷媒排出管420的开口前端部421嵌合于冷媒排出口320,且冷媒排出管420的长度方向与圆弧形线圈300的中心轴C10方向平行的状态下,将冷媒排出管420可自由拆装地连接于圆弧形线圈300的部件。

具体而言,第2连接部件440具有:第2臂部441,其由弹性材料构成,且沿中心轴C10方向延伸;第2固定部442,其将第2臂部441的长度方向一端部固定于冷媒排出管420;以及第2爪部443,其被设置于第2臂部441的长度方向另一端部,且向圆弧形线圈300的半径方向内侧突出。在第2爪部443的前端,形成有倾斜面443a。如上所述,第2臂部441由弹性材料构成,具有当赋予外力时会弯曲,当外力消失时会恢复到原来的直线状的形状的板簧那样的性质。

冷媒供给管450为被以向圆弧形线圈300的半径方向外侧延伸的方式连接于冷媒导入管410的管状部件。该冷媒供给管450被构成为可从未图示的次级线圈用冷媒供给装置供给冷却水等冷媒。即,能够从所述次级线圈用冷媒供给装置介由冷媒供给管450及冷媒导入管410向圆弧形线圈300供给冷媒。

另外,例如也可以是,使用“L”字形的管状部件,用一个部件构成冷媒导入管410和冷媒供给管450。

冷媒回收管460为被以向圆弧形线圈300的半径方向外侧延伸的方式连接于冷媒排出管420的管状部件。该冷媒回收管460被构成为将用于圆弧形线圈300的冷却的冷媒向上述次级线圈用冷媒供给装置送回。即,能够从圆弧形线圈300介由冷媒排出管420及冷媒回收管460向所述次级线圈用冷媒供给装置送回冷媒。

另外,例如也可以是,使用“L”字形的管状部件,用一个部件构成冷媒排出管420和冷媒回收管460。

以上为冷却夹具的构成,这种冷却夹具能够通过如下顺序容易地连接于圆弧形线圈300。

(1)首先,以冷媒导入管410的中心轴与冷媒导入口310的中心轴一致,且冷媒导入管410的开口前端部411朝向中心轴C10方向的另一侧D20的方式,将冷媒导入管410配置于从冷媒导入口310向一侧D10远离的位置。

(2)接着,以圆弧形线圈300与冷媒导入管410沿中心轴C10方向相互接近的方式使一者或两者移动。在该过程中,第1连接部件430的第1爪部433首先与圆弧形线圈300的第1圆弧面330接触,但保持这样使圆弧形线圈300与冷媒导入管410进一步接近。于是,被形成于第1爪部433的倾斜面433a被第1圆弧面330向半径方向外侧推开,因此指向半径方向外侧的外力被赋予到第1爪部433。

当指向半径方向外侧的外力像这样被赋予到第1爪部433时,由弹性材料构成的第1臂部431会向半径方向外侧弯曲,从而能够不被第1爪部433干扰地,使圆弧形线圈300与冷媒导入管410接近。

(3)接着,使圆弧形线圈300与冷媒导入管410进一步接近,直到冷媒导入管410的开口前端部411嵌合于冷媒导入口310为止(即,到开口前端部411无间隙地适合于冷媒导入口310为止)。在此,冷媒导入口310被形成为开口径从中心轴C10方向的一侧D10向另一侧D20逐渐变小,因此能够在冷媒导入管410的开口前端部411适合于冷媒导入口310的状态下,使冷媒导入管410向另一侧D20的移动停止。

如此,当冷媒导入管410的开口前端部411成为配合于冷媒导入口310的状态时,被赋予到第1爪部433的外力会消失,第1臂部431会恢复到原来的直线形状。结果,会成为第1爪部433被卡止于圆弧形线圈300的第2圆弧面340的状态(卡住的状态),且在冷媒导入管410的开口前端部411配合于冷媒导入口310的状态下,冷媒导入管410被连接于圆弧形线圈300(参照图2B)。

根据如上的顺序,能够将冷媒导入管410容易地连接于圆弧形线圈300。根据同样的顺序,也能够将冷媒排出管420容易地连接于圆弧形线圈300。

(1)即,首先,以冷媒排出管420的中心轴与冷媒排出口320的中心轴一致,且冷媒排出管420的开口前端部421朝向中心轴C10方向的另一侧D20的方式,将冷媒排出管420配置于从冷媒排出口320向一侧D10远离的位置。

(2)接着,以圆弧形线圈300与冷媒排出管420沿中心轴C10方向相互接近的方式使一者或两者移动。在该过程中,第2连接部件440的第2爪部443首先与圆弧形线圈300的第1圆弧面330接触,但保持这样使圆弧形线圈300与冷媒排出管420进一步接近。于是,被形成于第2爪部443的倾斜面443a被第1圆弧面330向半径方向外侧推开,因此指向半径方向外侧的外力被赋予到第2爪部443。

当指向半径方向外侧的外力像这样被赋予到第2爪部443时,由弹性材料构成的第2臂部441会向半径方向外侧弯曲,从而能够不被第2爪部443干扰地,使圆弧形线圈300与冷媒排出管420接近。

(3)接着,使圆弧形线圈300与冷媒排出管420进一步接近,直到冷媒排出管420的开口前端部421嵌合于冷媒排出口320为止(即,到开口前端部421无间隙地适合于冷媒排出口320为止)。在此,冷媒排出口320被形成为开口径从中心轴C10方向的一侧D10向另一侧D20逐渐变小,因此能够在冷媒排出管420的开口前端部421适合于冷媒排出口320的状态下,使冷媒排出管420向另一侧D20的移动停止。

如此,当冷媒排出管420的开口前端部421成为配合于冷媒排出口320的状态时,被赋予到第2爪部443的外力会消失,第2臂部441会恢复到原来的直线形状。结果,会成为第2爪部443被卡止于圆弧形线圈300的第2圆弧面340的状态(卡住的状态),且在冷媒排出管420的开口前端部421配合于冷媒排出口320的状态下,冷媒排出管420被连接于圆弧形线圈300(参照图2B)。

另外,如图2B所示,在冷媒导入管410被连接于圆弧形线圈300的状态下,向倾斜面433a赋予指向半径方向外侧的外力。由此,当向第1爪部433再次赋予指向半径方向外侧的外力,使第1臂部431向半径方向外侧弯曲时,能够将冷媒导入管410从圆弧形线圈300容易地取下。

以同样的方法,也能够将冷媒排出管420从圆弧形线圈300容易地取下。即,在冷媒排出管420被连接于圆弧形线圈300的状态下,向倾斜面443a赋予指向半径方向外侧的外力。由此,当向第2爪部443再次赋予指向半径方向外侧的外力,使第2臂部441向半径方向外侧弯曲时,能够将冷媒排出管420从圆弧形线圈300容易地取下。

进而,次级线圈模块200具有被固定于圆弧形线圈300的夹持部件500。夹持部件500为被固定于圆弧形线圈300的第1圆弧面330的周向中央部的“L”字形的部件。夹持部件500具有:第1部位510,其从圆弧形线圈300的第1圆弧面330向中心轴C10方向的一侧D10延伸;以及第2部位520,其从第1部位510的前端向半径方向外侧延伸。夹持部件500为在通过后述的定位装置来控制次级线圈模块200的圆弧形线圈300的位置时,由机器人臂等把持机构把持的部件。

以上,针对次级线圈模块200的构成进行了说明,但优选的是,至少与圆弧形线圈300接触的部件,即冷媒导入管410、冷媒排出管420、第1连接部件430、第2连接部件440及夹持部件500由电绝缘材料构成。

此外,在上述说明中,作为第1连接部件430的构成,例示了采用包含第1臂部431、第1固定部432及第1爪部433的构成的情况,但第1连接部件430的构成并不仅限于此。只要是能够在冷媒导入管410的开口前端部411嵌合于冷媒导入口310且冷媒导入管410的长度方向与圆弧形线圈300的中心轴C10方向平行的状态下,将冷媒导入管410可自由拆装地连接于圆弧形线圈300的构成,则作为第1连接部件430的构成,采用何种构成均可。

针对第2连接部件440也是同样。即,只要能够在冷媒排出管420的开口前端部421嵌合于冷媒排出口320且冷媒排出管420的长度方向与圆弧形线圈300的中心轴C10方向平行的状态下,将冷媒排出管420可自由拆装地连接于圆弧形线圈300的构成,则作为第2连接部件440的构成,采用何种构成均可。

根据如上的次级线圈模块200,通过根据圆弧形线圈300的大小来调整冷媒导入管410及冷媒排出管420的位置,从而能够每次更换多个圆弧形线圈300。即,如果根据圆弧形线圈300的外径,在外径较大的情况下将冷媒导入管410及冷媒排出管420的位置设为圆弧形线圈300的半径方向外侧,相反在外径较小的情况下设为半径方向内侧,则能够不改变冷媒导入管410与冷媒排出管420的间隔地应对多个圆弧形线圈300。

或者,如图4的(a)、图4的(b)所示,根据初级线圈的内径,即圆弧形线圈300的外径R10来设定冷媒导入管410与冷媒排出管420的中心间距离L10。即,将圆弧形线圈300的外径R10固定为一个值,并根据该固定值将冷媒导入管410与冷媒排出管420的中心间距离L10固定为一个值。通过这样去做,无需调整冷媒导入管410及冷媒排出管420的位置,能够容易地更换具有各种内径R20的圆弧形线圈300。

图4的(a)例示了圆弧形线圈300的内径R20比较小的情况。图4的(b)例示了圆弧形线圈300的内径R20比较大的情况。根据这些图,如果将圆弧形线圈300的外径R10固定为一个值,并根据该固定值将冷媒导入管410与冷媒排出管420的中心间距离L10固定为一个值,则无需调整冷媒导入管410及冷媒排出管420的位置,就会得到能够容易地更换具有各种内径R20的圆弧形线圈300的次级线圈模块200。

如上,根据本实施方式,能够得到一种次级线圈模块200,其能够应对具有各种形状(外径)的轴状体,且次级线圈(圆弧形线圈300)的更换容易性较高,进而也能够在移动淬火中进行次级线圈的冷却。

〔移动淬火装置〕

接着,针对本实施方式的移动淬火装置1,参照图5~图14,详细进行说明。

如图5及图6所示,移动淬火装置1为一种用于使用高频电流对铁路车辆用的车轴等轴状体51进行移动淬火的装置。

首先,针对轴状体51进行说明。轴状体51包括:主体部52;以及小径部53,其被设置于主体部52的轴线C方向的中间部。主体部52及小径部53分别被形成为圆柱状,小径部53的轴线与主体部52的轴线C一致。

以下,将主体部52中的、相对于小径部53而被配置于轴线C方向的一侧D1的部分称为第1主体部52A。将相对于小径部53而被配置于轴线C方向的另一侧D2的部分称为第2主体部52B。

第1主体部52A、小径部53及第2主体部52B分别被形成为圆柱状,并被配置在共通的轴线C上。小径部53的外径分别比第1主体部52A及第2主体部52B的外径更小。

轴状体51由铁氧体相的碳钢、含有95重量%以上铁(Fe)的低合金钢等具有导电性的材料形成。

移动淬火装置1包括支撑构件6、初级线圈构件11、多个次级第1线圈构件16A、16B、多个次级第2线圈构件17A、17B(参照图8)、冷却环36、以及控制部46。

另外,次级第1线圈构件(次级第1线圈模块)16A、16B与次级第2线圈构件(次级第2线圈模块)17A、17B分别具有与上述次级线圈模块200相同的构成(特征),但为了便于说明,在图5~图14中,仅图示了圆弧形线圈300和夹持部件500所对应的部位。即,以下,将次级第1线圈构件16A、16B、以及次级第2线圈构件17A、17B作为与圆弧形线圈300本身对应的部位进行说明。针对夹持部件500所对应的部位,在以下进行说明。

此外,本来,移动淬火装置1包括向各次级线圈模块供给冷却水等冷媒的次级线圈用冷媒供给装置,但针对于此,在图5~图14中也省略了图示。在移动淬火中,通过从次级线圈用冷媒供给装置向各次级线圈模块供给冷媒,从而这些各圆弧形线圈被冷却。

如图5所示,支撑构件6包括下方中心件7和上方中心件8。下方中心件7从第2主体部52B的下方支撑轴状体51的第2主体部52B。上方中心件8从第1主体部52A的上方支撑轴状体51的第1主体部52A。下方中心件7及上方中心件8以轴线C沿着上下方向、且轴线C方向的一侧D1为上方而另一侧D2为下方的方式支撑轴状体51。

初级线圈构件11被形成为将线圈的导线卷成螺旋状的环状。初级线圈构件11的内径大于第1主体部52A及第2主体部52B的外径。在初级线圈构件11的内部,同轴地插入有轴状体51。

初级线圈构件11的各端部被电连接及机械连接于变流器12。变流器12使高频电流流过初级线圈构件11。

如图6及图7所示,在本实施方式中,作为多个次级第1线圈构件16A、16B,包括2个次级第1线圈构件16A、16B。但是,移动淬火装置1所包括的次级第1线圈构件的数量为多个时,并不仅限于2个,也可以为3个以上。

次级第1线圈构件16A、16B在沿轴线C方向观察的俯视下,被形成为圆弧形。次级第1线圈构件16A、16B被沿着轴状体51的周向(以下,简称为周向),且在周向的2处彼此分离地并排配置。该周向与初级线圈构件11的周向等一致。在该例中,如图5所示,次级第1线圈构件16A、16B的轴线C方向的长度与轴状体51的小径部53的轴线C方向的长度相比非常短。

如图7所示,与次级第1线圈构件16A、16B的轴线C相对的各外表面相接的内切圆的直径R1(即,由次级第1线圈构件16A、16B的内周面形成的内径)比轴状体51的小径部53的直径(即外径)更大。该内径R1优选比第1主体部52A及第2主体部52B的直径(即外径)更小。与次级第1线圈构件16A、16B的轴线C的相反侧的各外表面相接的外接圆的直径R2(即,由次级第1线圈构件16A、16B的外周面形成的外径)比初级线圈构件11的内径更小。

次级第1线圈构件16A、16B能够配置在小径部53的径向外侧且初级线圈构件11内的位置,并能够配置为与小径部53及初级线圈构件11分别分离的状态。另外,该径向与初级线圈构件11的径向等一致。

如图6及图7所示,在次级第1线圈构件16A、16B上固定有第1支撑部19A、19B。

第1支撑部19A包括:第1支撑片20A,其从次级第1线圈构件16A向上方延伸;以及第1连结片21A,其从第1支撑片20A的上端向径向外侧延伸。第1支撑片20A被配置于次级第1线圈构件16A的周向上的中央部或端部。优选通过将第1支撑片20A安装于次级第1线圈构件16A的径向外侧的端部且比第1主体部52A及第2主体部52B靠径向外侧的位置,从而避免第1支撑片20A与第1主体部52A及第2主体部52B的干扰。第1连结片21A从第1支撑片20A中的与固定有次级第1线圈构件16A的下端部相反的上端部向径向外侧延伸。

与第1支撑部19A同样,第1支撑部19B包括第1支撑片20B、以及第1连结片21B。第1连结片21A、21B被配置在同一直线上。第1支撑部19A、19B例如通过将具有电绝缘性的棒状构件弯折为直角的方式来形成。以上说明的第1支撑部19A、19B为次级线圈模块200中的相当于夹持部件500的部位。

如图7所示,在第1连结片21A上连接有第1移动部23A(定位装置)。此外,在第1连结片21B上连接有第1移动部23B(定位装置)。第1移动部23A、23B例如包括未图示的3轴工作台及驱动电机,能够介由第1支撑部19A、19B而使次级第1线圈构件16A、16B在上下方向及沿着水平面的方向上移动。

如图5及图8所示,次级第2线圈构件17A、17B被与次级第1线圈构件16A、16B同样地构成。初级线圈构件11、次级第1线圈构件16A、16B及次级第2线圈构件17A、17B由铜等具有导电性的材料分别形成。在次级第2线圈构件17A上固定有第2支撑部25A。在次级第2线圈构件17B上固定有第2支撑部25B。

第2支撑部25A包括:第2支撑片26A,其从次级第2线圈构件17A的下表面向下方延伸;以及第2连结片27A,其从第2支撑片26A的下端向径向外侧延伸。第2支撑片26A被连接于次级第2线圈构件17A的周向上的中央部或端部。优选通过将第2支撑片26A安装于次级第2线圈构件17A的径向外侧的端部且比第1主体部52A及第2主体部52B靠径向外侧的位置,从而避免第2支撑片26A与第1主体部52A及第2主体部52B的干扰。第2连结片27A从第2支撑片26A中的与固定有次级第2线圈构件17A的上端部相反的下端部向径向外侧延伸。

与第2支撑部25A同样,第2支撑部25B包括第2支撑片26B、以及第2连结片27B。第2连结片27A、27B被配置在同一直线上。在该例中,第1连结片21A、21B及第2连结片27A、27B被配置在同一平面上。以上说明的第2支撑部25A、25B为次级线圈模块200中的相当于夹持部件500的部位。

如图5所示,在第2连结片27A、27B(第2连结片27B未图示)上分别连接有被与第1移动部23A、23B同样地构成的第2移动部29A、29B(第2移动部29B未图示)。第2移动部29A(定位装置)能够介由第2支撑部25A来使次级第2线圈构件17A在上下方向及沿着水平面的方向上移动。第2移动部29B(定位装置)能够介由第2支撑部25B来使次级第2线圈构件17B在上下方向及沿着水平面的方向上移动。

如图5及图6所示,冷却环36被形成为环状。在冷却环36内,形成有内部空间36a。在冷却环36的内周面,沿周向相互分离地形成有与内部空间36a连通的多个喷嘴36b。在冷却环36的内部,插入轴状体51。冷却环36被配置在比初级线圈构件11靠下方处。

在冷却环36上介由送水管37a而连结有泵37。泵37将水等冷却液L介由送水管37a来供给到冷却环36的内部空间36a内。被供给到内部空间36a的冷却液L通过多个喷嘴36b来向轴状体51的外周面喷出,对轴状体51进行冷却。

如图5所示,初级线圈构件11、变流器12、冷却环36及泵37被固定于支撑板39。在支撑板39上形成有小齿轮39a。在支撑板39上安装有驱动小齿轮39a的电机40。

支撑板39的小齿轮39a与齿条42啮合。当驱动电机40时,小齿轮39a会正转或反转,因此支撑板39会相对于齿条42而向上方或下方移动。

另外,齿条42也可以为滚珠丝杠。在该情况下,小齿轮39a也可以被夹着滚珠丝杠地配置多个。

虽未图示,但控制部46包括运算电路和存储器。在存储器中,存储有用于驱动运算电路的控制程序等。

控制部46被连接于变流器12、第1移动部23A、23B、第2移动部29A、29B、泵37及电机40,并对它们进行控制。

〔移动淬火方法〕

接着,针对使用被如上所述地构成的移动淬火装置1实现的移动淬火方法进行说明。

图9是表示本实施方式的移动淬火方法S的流程图。

首先,在第1更换工序(更换工序,图9所示的步骤S0)中,通过根据小径部53的下端部的外径来更换用于加热轴状体51的小径部53的下端部(另一侧端部)的次级线圈模块的圆弧形线圈,从而装备次级线圈模块(即,次级第1线圈构件16A、16B),该次级线圈模块包括适于小径部53的下端部的加热的圆弧形线圈。

接着,在第1配置工序(配置工序,图9所示的步骤S1)中,如图5及图6所示,控制部46驱动第1移动部23A、23B,将次级第1线圈构件16A、16B配置于轴状体51的小径部53的下端部。此时,将次级第1线圈构件16A、16B以在周向的2处相互分离的方式配置于小径部53的径向外侧。进而,将与次级第1线圈构件16A、16B的轴线C相对的各外周面相接的内切圆的直径R1(即内径)配置为比轴状体51的小径部53的外径更大。此时,优选将内径R1配置为比第1主体部52A及第2主体部52B的外径更小。次级第1线圈构件16A、16B的各内周面从小径部53的外周面向径向外侧分离。

当第1配置工序S1结束时,转移到步骤S3。

接着,在第1主体加热工序(步骤S3)中,控制部46对轴状体51的第2主体部52B进行移动淬火。

具体而言,通过驱动变流器12,使高频电流流过初级线圈构件11。通过驱动泵37,从冷却环36的多个喷嘴36b喷出冷却液L。通过驱动电机40,使支撑板39相对于齿条42而向上方移动。将初级线圈构件11及冷却环36依次外插到轴状体51上,并使它们向上方移动。上方为初级线圈构件11相对于轴状体51的移动方向。

对于第2主体部52B,从其下端部向上方(小径部53),通过初级线圈构件11进行加热,进而通过冷却环36来急速地进行冷却。通过使高频电流流过初级线圈构件11,电流因初级线圈构件11的电磁感应,不介由其他线圈而直接流过第2主体部52B,并因第2主体部52B的电阻而在第2主体部52B中产生焦耳热。第2主体部52B通过感应加热而被加热,成为奥氏体相。通过利用追在初级线圈构件11之后向上方移动的冷却环36来对以感应加热加热后的第2主体部52B进行冷却,从而第2主体部52B成为马氏体相。这样,对第2主体部52B进行移动淬火。

另外,在第1主体加热工序S3、以及后述的第1加热工序S5、第1分离工序S7、中央加热工序S9、第2配置工序S11、第2加热工序S13、第2主体加热工序S15中,初级线圈构件11及冷却环36相对于轴状体51的向上方的移动不会停止,而是进行移动淬火。

当第1主体加热工序S3结束时,转移到步骤S5。

接着,在第1加热工序(加热工序,步骤S5)中,在初级线圈构件11内配置有次级第1线圈构件16A、16B的至少一部分时,开始对小径部53的下端部进行加热。此时,次级第1线圈构件16A、16B从初级线圈构件11向径向内侧分离。

通过使高频电流流过初级线圈构件11,电流因初级线圈构件11的电磁感应,介由次级第1线圈构件16A、16B而流过小径部53的下端部,小径部53的下端部通过感应加热而被加热。具体而言,如图7所示,当方向E1的电流流过初级线圈构件11时,会因电磁感应而在次级第1线圈构件16A、16B的外表面流过方向E2、E3的涡流,进而会在小径部53的外表面流过方向E4的涡流。这样,小径部53的下端部被加热。

另外,也可以是,在第1主体加热工序S3之后且第1加热工序S5之前,进行第1配置工序S1。

当第1加热工序S5结束时,转移到步骤S7。

接着,在第1分离工序(分离工序,步骤S7)中,控制部46对第1移动部23A、23B进行驱动,如图10所示,用第1支撑部19A、19B来使次级第1线圈构件16A、16B相对于初级线圈构件11而向上方移动。然后,如图11所示,使次级第1线圈构件16A、16B从小径部53向径向外侧分离。第1分离工序S7在第1加热工序S5后进行。

当第1分离工序S7结束时,转移到步骤S9。

接着,在中央加热工序(步骤S9)中,如图12所示,对小径部53中的轴线C方向的中央部进行加热。此时,在初级线圈构件11与小径部53之间,未配置次级第1线圈构件16A、16B,因此使流过初级线圈构件11的高频电流的电流值増加。加热小径部53的中央部时的初级线圈构件11相对于轴状体51中的第1主体部52A及第2主体部52B与小径部53的连接部分51a(尤其是,向轴状体51的外侧凸出的部分),比被配置在初级线圈构件11加热小径部53的下端部的位置时更为分离。因此,即使使流过初级线圈构件11的电流值増加,也会抑制连接部分51a的温度过于变高。

当小径部53的轴线C方向的中央部的加热结束时,使流过初级线圈构件11的高频电流的电流值降低,回到原电流值。

当中央加热工序S9结束时,转移到步骤S10。

另外,也可以是,代替第1分离工序S7及中央加热工序S9,在中央加热工序中,用次级第1线圈构件16A、16B对小径部53中的轴线C方向的中央部进行加热。在该情况下,在该中央加热工序后,进行第1分离工序,该第1分离工序使次级第1线圈构件16A、16B从小径部53向径向外侧分离。

接着,在第2更换工序(更换工序,图9所示的步骤S10)中,根据小径部53的上端部的外径来更换用于加热轴状体51的小径部53的上端部(一侧端部)的次级线圈模块的圆弧形线圈。由此,装备次级线圈模块(即,次级第2线圈构件17A、17B),该次级线圈模块包括适于小径部53的上端部的加热的圆弧形线圈。

接着,在第2配置工序(配置工序,步骤S11)中,控制部46驱动第2移动部29A、29B,如图13所示地,使次级第2线圈构件17A、17B从初级线圈构件11及冷却环36的下方侧接近小径部53的下端部。然后,如图14所示,使次级第2线圈构件17A、17B向上方移动,从而如图8所示地,将次级第2线圈构件17A、17B穿过初级线圈构件11内配置于小径部53的上端部。次级第2线圈构件17A、17B从小径部53向径向外侧分离。

当第2配置工序S11结束时,转移到步骤S13。

接着,在第2加热工序(加热工序,步骤S13)中,如图8所示地,在相对于轴状体51向上方移动的初级线圈构件11内配置有次级第2线圈构件17A、17B的至少一部分时,控制部46对小径部53的上端部进行加热。此时,次级第2线圈构件17A、17B从初级线圈构件11沿径向分离。

当第2加热工序S13结束时,转移到步骤S15。

接着,在第2主体加热工序(步骤S15)中,在初级线圈构件11内配置有轴状体51的第1主体部52A时,控制部46对第1主体部52A进行移动淬火。当第2主体加热工序S15结束时,转移到步骤S17。

接着,在第2分离工序(步骤S17)中,控制部46驱动第2移动部29A、29B,使次级第2线圈构件17A、17B从小径部53向径向外侧分离。另外,也可以是,第2分离工序S17在第2主体加热工序S15之前进行。

通过在第1加热工序S5、中央加热工序S9、第2加热工序S 13及第2主体加热工序S15中,在小径部53及第1主体部52A被加热后,使冷却液L从冷却环36喷出,从而小径部53及第1主体部52A被冷却。

当第2分离工序S17结束时,移动淬火方法S的全部工序结束,轴状体51整体成为已被移动淬火的状态。被移动淬火后的轴状体51的硬度提高。

如上所述,在移动淬火方法S中,一边在小径部53的径向外侧配置线圈构件16A、16B、17A、17B或使线圈构件16A、16B、17A、17B从小径部53分离,一边对轴状体51进行移动淬火。

如以上说明的那样,根据本实施方式的移动淬火装置1及移动淬火方法S,将预先相互分离的状态的多个次级第1线圈构件16A、16B沿周向相互分离地并排配置于轴状体51的小径部53的径向外侧。

然后,使高频电流流过相对于轴状体51向上方移动的初级线圈构件11。于是,针对轴状体51的第1主体部52A及第2主体部52B,因初级线圈构件11的电磁感应而在第1主体部52A及第2主体部52B中直接流过电流,并因第1主体部52A及第2主体部52B的电阻而在第1主体部52A及第2主体部52B中产生焦耳热。利用追在初级线圈构件11之后向上方移动的冷却环36来对被焦耳热加热后的第1主体部52A及第2主体部52B进行冷却,从而对第1主体部52A及第2主体部52B进行移动淬火。

另一方面,针对轴状体51的小径部53,因电磁感应,介由被配置于小径部53的径向外侧的次级第1线圈构件16A、16B而在轴状体51的小径部53中流过电流,并因小径部53的电阻而在小径部53中产生焦耳热。同样以冷却环36对被焦耳热加热后的小径部53进行冷却,从而对小径部53进行移动淬火。当小径部53的移动淬火结束时,将次级第1线圈构件16A、16B从小径部53向径向外侧取下。

此时,如果使次级第1线圈构件16A、16B从小径部53向径向外侧移动时,则使次级第1线圈构件16A、16B从小径部53取下,因此能够容易地使次级第1线圈构件16A、16B从轴状体51取下。

例如,即使在次级第1线圈构件16A、16B的内切圆的直径R1(即内径)略大于轴状体51的第1主体部52A及第2主体部52B的外径的情况下,应能够避免次级第1线圈构件16A、16B干扰到第1主体部52A及第2主体部52B。

此外,与次级第1线圈构件16A、16B的轴线C相对的各外表面相接的内切圆的直径R1(即内径)小于第1主体部52A及第2主体部52B的外径。由此,能够使次级第1线圈构件16A、16B更加靠近小径部53,从而利用次级第1线圈构件16A、16B更有效地对小径部53进行加热。

此外,在本实施方式中,包括次级第1线圈构件16A、16B及次级第2线圈构件17A、17B。在通过初级线圈构件11及次级第1线圈构件16A、16B对轴状体51的小径部53的下端部进行加热后,使用第1支撑片20A、20B来使次级第1线圈构件16A、16B相对于初级线圈构件11向上方。由此,能够防止第1支撑片20A、20B干扰到初级线圈构件11、以及被配置在比小径部53靠下方处的第2主体部52B,将次级第1线圈构件16A、16B从初级线圈构件11内取出,并使次级第1线圈构件16A、16B从小径部53向径向外侧分离。

然后,在通过初级线圈构件11及次级第2线圈构件17A、17B对小径部53的上端部进行加热后,使用第2支撑片26A、26B使次级第2线圈构件17A、17B相对于初级线圈构件11向下方移动。由此,能够抑制第2支撑片26A、26B干扰到初级线圈构件11、以及被配置在比小径部53靠上方处的第1主体部52A,从初级线圈构件11内取出次级第2线圈构件17A、17B,并使多个次级第2线圈构件17A、17B从小径部53向径向外侧分离。

另外,也可以是,取代次级第2线圈构件17A及第2支撑部25A,使用从次级第1线圈构件16A及第1支撑部19A取下第1支撑部19A,然后,安装了第2支撑部25A的构件。或者,也可以是,取代次级第2线圈构件17A及第2支撑部25A,使用使次级第1线圈构件16A及第1支撑部19A的配置围绕沿水平面的轴线旋转180°(上下翻转)的构件。

第1支撑部19A也可以不包括第1连结片21A。第2支撑部25A也可以不包括第2连结片27A。第1支撑部19B也可以不包括第1连结片21B。第2支撑部25B也可以不包括第2连结片27B。

在次级第1线圈构件16A、16B的轴线C方向的长度与轴状体51的小径部53的轴线C方向的长度大致相等的情况下等,移动淬火装置1也可以不包括次级第2线圈构件17A、17B、第2支撑部25A、25B、以及第2移动部29A、29B。在该情况下,在移动淬火方法S中,不进行中央加热工序S9、第2配置工序S11、第2加热工序S13及第2分离工序S17。

以上,针对本发明的一个实施方式进行了说明,但本发明并不仅限于上述实施方式,能够在不脱离本发明的主旨的范围内进行各种变更。

例如,在上述实施方式中,轴状体51既可以不被配置为轴线C沿着上下方向(铅垂方向),也可以被配置为轴线C相对于上下方向而倾斜。在该情况下,初级线圈构件11及冷却环36相对于上下方向倾斜地移动。

也可以是,移动淬火装置1不包括支撑构件6及控制部46。

轴状体51假定为铁路车辆用的车轴,但也可以是滚珠丝杠等其他轴状体。

此外,在图2A至图4中,示出了圆弧形线圈300的冷媒导入口310及冷媒排出口320向中心轴C10方向的一侧D10开口的例子。在初级线圈的半径方向内侧配置有次级线圈(圆弧形线圈)时,如果使初级线圈与次级线圈的间隙变小则能够以较少的供给电流进行加热。因此,冷媒导入口310及冷媒排出口320优选向中心轴C10方向开口,当使导入侧与排出侧的方向一致时,易于使其从初级线圈分离,拆装会变得容易,因此是优选的。但是,开口部也可以被形成于半径方向朝外侧,或者也可以被形成于中心轴C10方向的另一侧。

此外,在上述实施方式中,针对使冷媒导入管410及冷媒排出管420在圆弧形线圈300上拆装的连接部件,以弹性材料的例子进行了说明。但是,如果连接部件能够控制嵌合力,则未必需要使连接部件弹性变形,连接部件也可以为高刚性的材料。

〔分析结果〕

以下,针对基于本实施方式的实施例1、2的移动淬火装置1、以及对比较例的移动淬火装置进行仿真的结果进行说明。

在图15中,示出用于仿真的分析模型。

用于仿真的轴状体51为以下形状:次级第1线圈构件16A、16B的上下方向的长度与轴状体51的小径部53的上下方向的长度相比不是那么短,且在移动淬火时,轴状体51的温度容易变高。

另外,在实施例1的分析模型中,次级第1线圈构件16A、16B的内切圆的直径大于主体部52的外径。

设定为主体部52的外径为198mm,小径部53的外径(最小径)为181mm。设轴状体51的材质为碳钢。将流过初级线圈构件11的高频电流的频率设为1kHz。在进行通过移动淬火对轴状体51进行一定深度的淬火所需的加热时,求得轴状体51的温度的最高值。

若在移动淬火时轴状体51的温度过于变高(成为过加热),则存在轴状体51的组织会发生变化这样的问题。因此,优选的是,针对轴状体51确保一定深度的淬火,并抑制轴状体51的温度的最高值。

[实施例1]

在图16中,示出实施例1的移动淬火装置1的仿真结果。在图16及后述的图17、图18中,示出与灰色的浓淡对应的温标。随着灰色变白,温度逐渐变高。

当通过实施例1的移动淬火装置1对轴状体51进行移动淬火时,可知将在小径部53能够加热到800℃以上的深度确保为5.0mm,同时在图16中所示的初级线圈构件11的位置时,区域R11的温度表示轴状体51的最高温度。在该区域R11中的最高温度为1149℃。

[实施例2]

与实施例1的移动淬火装置1相比,如在图15中以双点划线示出的那样,实施例2的移动淬火装置1的不同在于:次级第1线圈构件16A、16B的内切圆的直径小于主体部52的外径。次级第1线圈构件16A、16B的内切圆的直径比主体部52的外径小6mm。

当通过实施例2的移动淬火装置1对轴状体51进行移动淬火时,可知将在小径部53中能够加热到800℃以上的深度确保为4.8mm,同时在图17中所示的初级线圈构件11的位置时,区域R12的温度表示轴状体51的最高温度。该区域R12中的最高温度为1072℃。

[比较例]

在图18中,示出比较例的移动淬火装置1A的仿真结果。比较例的移动淬火装置1A与实施例1、2的移动淬火装置1的构成不同,不包括次级第1线圈构件16A、16B。当通过比较例的移动淬火装置1A对轴状体51进行移动淬火时,可知尽管能够确保在小径部53能够加热到800℃以上的深度为3.5mm,但区域R13的温度表示轴状体51的最高温度。该区域R13中的最高温度为1225℃。

得知了:与比较例的移动淬火装置1A相比,实施例1的移动淬火装置1能够将在小径部53能够加热到800℃以上的深度加深1.5mm,且能够将移动淬火时的轴状体51的温度的最高值降低约76℃。

进而,得知了:与比较例的移动淬火装置1A相比,实施例2的移动淬火装置1能够将在小径部53中能够加热到800℃以上的深度加深1.3mm,且能够将移动淬火时的轴状体51的温度的最高值降低约153℃。

工业可利用性

根据本发明,能够提供一种可应对具有各种形状(外径)的轴状体,且次级线圈的更换容易性较高的次级线圈模块、一种包括该次级线圈模块的移动淬火装置、以及一种能够通过该移动淬火装置来实现的移动淬火方法。因此,工业可利用性较大。

附图标记说明

100、300 圆弧形线圈

200 次级线圈模块

310 冷媒导入口

320 冷媒排出口

410 冷媒导入管、冷却夹具

420 冷媒排出管、冷却夹具

430 第1连接部件、冷却夹具

440 第2连接部件、冷却夹具

450 冷媒供给管、冷却夹具

460 冷媒回收管、冷却夹具

500 夹持部件

1 移动淬火装置

11 初级线圈构件

16A、16B 次级第1线圈构件

17A、17B 次级第2线圈构件

51 轴状体

52 主体部

53 小径部

39页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:Cu基合金粉末

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!